Miscellaneous Electrolysis Patents (Class 205/799)
  • Patent number: 8693835
    Abstract: A method for transferring a thin layer from a lithium-based first substrate includes proton exchange between the first substrate and a first electrolyte, which is an acid, through a free face of the first substrate so as to replace lithium ions of the first substrate by protons, in a proportion between 10% and 80%, over a first depth e1. A reverse proton exchange between the first substrate and a second electrolyte, through the free face is carried out so as to replace substantially all the protons with lithium ions over a second depth e2 smaller than the first depth e1, and so as to leave an intermediate layer between the depths e1 and e2, in which intermediate layer protons incorporated during the proton exchange step remain. The depth e2 defines a thin layer between the free face and the intermediate layer. A heat treatment is carried out under conditions suitable for embrittling the intermediate layer and the thin film is separated from the first substrate at the intermediate layer.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: April 8, 2014
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Aurélie Tauzin, Jean-Sébastien Moulet
  • Patent number: 8546028
    Abstract: The present invention relates to a method for charging the cell by electrodeposition of metal fuel on the anode thereof.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel Hayes
  • Patent number: 8329027
    Abstract: The electrolytic reaction of a solution supplemented with oxidation-reduction substances is caused in a magnetic field. Lorentz force generated by the interaction between an electrolytic current and the magnetic field is utilized. As a result, the effective stirring or transfer of a solution as well as the detection of a biologically relevant substance with high precision can be achieved without causing the aggregation or uneven distribution of magnetic beads or the like.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: December 11, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Wataru Kubo
  • Patent number: 8327460
    Abstract: The present invention allows simple and sensitive detection of microimpurities, microdefects, and corrosion starting points which may be present in a material. A probe microscope has a function to sense ions diffused from a specimen in a liquid. A probe is caused to scan over a predetermined range on a specimen. Then, the probe is fixed to a particular position in a liquid so as to set the distance between the specimen and the probe to a given value at which the microstructure of the specimen surface cannot be observed. Thereafter, one of the current between the probe and a counter electrode and the potential between the probe and a reference electrode is controlled, and the other of the current and potential which varies in accordance with the control is measured. Thus, ions diffused from the specimen are sensed.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 4, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kyoko Honbo, Katsumi Mabuchi, Motoko Harada
  • Publication number: 20110017612
    Abstract: The inventions relates to a kit comprising a swallowable capsule (1, 45) with a potentiometric sensor (3), such as a pH sensor, with an unfilled electrolyte cell (31). The kit further includes a separate container (46) containing a liquid electrolyte. The kit can, e.g., be packed in a blister package. After unpacking the capsule the electrolyte cell (31) is filled with the electrolyte.
    Type: Application
    Filed: March 24, 2009
    Publication date: January 27, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Johan Frederik Dijksman, Anke Pierik, Judith Margreet Rensen, Jeff Shimizu, Petrus Leonardus Adrianus Van Der Made, Michel Gerardus Pardoel, Frits Tobi De Jongh, Johan Gerard Kleibeuker
  • Publication number: 20100230298
    Abstract: An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 16, 2010
    Inventors: Juergen Biener, Theodore F. Baumann, Lihua Shao, Joerg Weissmueller
  • Publication number: 20090152129
    Abstract: An embodiment of the invention provides an ultrasensitive and selective system and method for detecting reactants of the chemical reaction catalyzed by an oxidoreductase, such as glucose and ethanol, at a concentration level down to zepto molar (10?21 M). In embodiments, the invention provides a cyclic voltammetry system comprising a working electrode, an oxidoreductase, and an electric field generator, wherein the oxidoreductase is immobilized on the working electrode; and the electric field generator generates an electric field that permeates at least a portion of the interface between the oxidoreductase and the working electrode. The ultrasensitivity of the system and method is believed to be caused by that the electrical field enhances quantum mechanical tunneling effect in the interface, and therefore facilitates the interfacial electron transfer between the oxidoreductase and the working electrode.
    Type: Application
    Filed: November 7, 2008
    Publication date: June 18, 2009
    Inventor: Siu-Tung Yau
  • Publication number: 20090145781
    Abstract: One embodiment of the invention includes an electrochemical cell including a proton exchange membrane and a method of treating nanoparticles using the same.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 11, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Junliang Zhang, Susan G. Yan, Frederick T. Wagner
  • Publication number: 20080237066
    Abstract: An electrolytic processing unit device includes an electrolytic processor for performing electrolytic processing on a wafer, a washer for washing the processed wafer, and a drier for drying the wafer. The electrolytic processor, the washer, and the drier are placed in one processing chamber to form one module. In this manner, the electrolytic processing procedure, the washing procedure, and the drying procedure for wafers can be continuously carried out in one place.
    Type: Application
    Filed: December 21, 2007
    Publication date: October 2, 2008
    Inventors: Takashi FUJITA, Kyouji WATANABE
  • Patent number: 7279088
    Abstract: A catalytic electrode, cell, system and process for absorbing and storing hydrogen (H2) and deuterium (D2) from the gaseous to the solid ionic form. The cell includes a non-conductive sealed housing and a conductive catalytic electrode positioned within the housing which absorbs H2 and/or D2 gas and stores it in a solid ionic form. These electrodes are formed of palladium (Pd), titanium (Ti), or zirconium (Zr). Each end of the electrode is plated with a layer of gold and encapsulated with a curable resin to form a confinement zone for H± and/or D± storage. The process includes connecting an external d.c. electric power source to each confinement zone during H2 and/or D2 gas loading of the electrode to cause a plasma-like reaction to occur which drives the H2 and/or D2 in the electrode to each encapsulated confinement to effect long-term storage of the ion form H± and D± in a solid form for later use.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: October 9, 2007
    Inventor: James A. Patterson
  • Patent number: 6887367
    Abstract: The invention relates to a process which is suitable for applying a permanently adhering, stable, dirt and water repellent coating to metallic surfaces, specifically chromium surfaces, specifically sanitary and kitchen fixtures, and also to the components coated in this manner. The process is based on first chemically activating the surface and then coating it by means of a sol.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: May 3, 2005
    Assignees: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V., FEW Chemicals GmbH
    Inventors: Siegfried Berg, Thomas Bolch, Friedrich Auer
  • Patent number: 6875331
    Abstract: Embodiments of the invention generally provide an electrochemical plating cell having a cell body configured to contain a plating solution therein. An anode assembly is immersed in a fluid solution contained in the cell body, the anode being positioned in an anode compartment of the cell body. A cathode assembly is positioned in a cathode compartment of the cell body, and a multilevel diffusion differentiated permeable membrane is positioned between the anode compartment and the cathode compartment. The multilevel diffusion differentiated permeable membrane is generally configured to separate the anode compartment from the cathode compartment, while allowing a fluid solution to flow therethrough in a direction from the anode compartment towards the cathode compartment.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: April 5, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Harald Herchen
  • Patent number: 6869516
    Abstract: A method for cleaning the electrical contact areas or substrate contact areas of an electrochemical plating contact ring is provided. Embodiments of the method include positioning a substrate on a substrate support member having one or more electrical contacts, chemically plating a metal layer on at least a portion of a surface of the substrate, removing the processed substrate from the support member, and cleaning the one or more electrical contacts with a vapor mixture comprising an alcohol. In another aspect, the method includes spraying the vapor mixture on the electrical contacts while rotating the substrate support member.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Michael X. Yang, Girish A. Dixit, Vincent E. Burkhart, Allen L. D'Ambra, Yeuk-Fai Edwin Mok, Harald Herchen
  • Patent number: 6855239
    Abstract: A plating method and apparatus using contactless electrode is described. In one embodiment an inductive element is placed proximally to a substrate and a moving electromagnetic field generates an emf in the substrate to plate the surface. In another embodiment, a conductive plate is used, so that the conductive plate and the wafer, separated by a dielectric material, operate as two plates of a capacitor when voltage is applied to the conductive plate. The resulting electrostatic field impresses a charge potential on the substrate to plate the surface of the substrate.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: February 15, 2005
    Inventor: Rahul Jairath
  • Patent number: 6841056
    Abstract: A process tool for electrochemically treating a substrate is configured to reduce the oxygen concentration and/or the sulfur dioxide concentration in the vicinity of the substrate so that corrosion of copper may be reduced. In one embodiment, a substantially inert atmosphere is established within the process tool including a plating reactor by providing a continuous inert gas flow and/or by providing a cover that reduces a gas exchange with the ambient atmosphere. The substantially inert gas atmosphere may also be maintained during further process steps involved in electrochemically treating the substrate including required transportation steps between the individual process steps.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 11, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Axel Preusse
  • Patent number: 6811672
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: November 2, 2004
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 6808612
    Abstract: A method and apparatus for electrochemically depositing a metal into a high aspect ratio structure on a substrate are provided. In one aspect, a method is provided for processing a substrate including positioning a substrate having a first conductive material disposed thereon in a processing chamber containing an electrochemical bath, depositing a second conductive material on the first conductive material as the conductive material is contacted with the electrochemical bath by applying a plating bias to the substrate while immersing the substrate into the electrochemical bath, and depositing a third conductive material in situ on the second conductive material by an electrochemical deposition technique to fill the feature. The bias may include a charge density between about 20 mA*sec/cm2 and about 160 mA*sec/cm2. The electrochemical deposition technique may include a pulse modulation technique.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: October 26, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Peter Hey, Byung-Sung Leo Kwak
  • Patent number: 6797144
    Abstract: A method for in-situ cleaning an electrodeposition surface following an electroplating process including providing a first electrode assembly and a second electrode assembly; applying a first current density across the first electrode assembly and the second electrode assembly for carrying out the electrodeposition process; carrying out the electrodeposition process to electrodeposit a metal onto an electrodeposition surface of the second electrode assembly; and, applying a second current density having a second polarity reversed with reference to the first polarity across the first electrode assembly and the second electrode assembly the second current density having a relatively lower current density compared to the first current density.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: September 28, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Hung-Wen Su, Shih-Wei Chou, Ching-Hua Hsieh, Shau-Lin Shue
  • Patent number: 6323128
    Abstract: A method for forming a quaternary alloy film of Co—W—P—Au for use as a diffusion barrier layer on a copper interconnect in a semiconductor structure and devices formed incorporating such film are disclosed. In the method, a substrate that has copper conductive regions on top is first pre-treated by two separate pre-treatment steps. In the first step, the substrate is immersed in a H2SO4 rinsing solution and next in a solution containing palladium ions for a length of time sufficient for the ions to deposit on the surface of the copper conductive regions. The substrate is then immersed in a solution that contains at least 15 gr/l sodium citrate or EDTA for removing excess palladium ions from the surface of the copper conductive regions.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: November 27, 2001
    Assignee: International Business Machines Corporation
    Inventors: Carlos Juan Sambucetti, Judith Marie Rubino, Daniel Charles Edelstein, Cyryl Cabral, Jr., George Frederick Walker, John G Gaudiello, Horatio Seymour Wildman