With Group Iv, V, Vi, Vii Or Viii Metal Compound Patents (Class 208/295)
  • Patent number: 7591943
    Abstract: The present invention relates to a process of reducing sulfur- or nitrogen-containing compounds and also producing oxygenates, which can be used as an excellent octane booster in the reformulated gasoline and as a cetane booster for the future oxygenated diesel in a one-pot reaction.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: September 22, 2009
    Assignee: Kocat Inc.
    Inventors: Jin S. Yoo, Sang-Chul Lee, Ho Dong Kim
  • Publication number: 20090166265
    Abstract: The hydrorefining method of the invention is characterized by contacting, in the presence of hydrogen, a fuel stock comprising normal paraffins and oxygen-containing compounds, with a hydrorefining catalyst comprising a support containing USY zeolite and at least one solid acid selected from among silica-alumina, alumina-boria, silica-zirconia, silica-magnesia and silica-titania, and at least one metal selected from among metals of Group VIb and metals of Group VIII of the Periodic Table supported on the support.
    Type: Application
    Filed: December 7, 2006
    Publication date: July 2, 2009
    Inventors: Hiroyuki Seki, Masahiro Higashi
  • Patent number: 7435330
    Abstract: A heavy oil reforming method which reforms a heavy oil to give a fuel suitable for a gas turbine, eliminates sulfur and vanadium, i.e., harmful components, from a heavy oil, and enables almost all the hydrocarbons in the heavy oil to be used in gas turbine combustion; an apparatus therefor; and a gas turbine power generation system using the reformed heavy oil as fuel is disclosed. The method includes reacting a heavy oil with supercritical water and then with a scavenger for sulfur and vanadium to eliminate sulfur and vanadium from the heavy oil.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: October 14, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Atsushi Morihara, Hiromi Koizumi
  • Patent number: 7416655
    Abstract: An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0?×?1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 26, 2008
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, María Antonia Cortés Jacome, Gerardo Ferrat Torres, Carlos Angeles Chávez, Luis Francisco Flores Ortiz, Maria de Lourdes Araceli Mosqueira Mondragon, Esteban López Salinas, Jose Escobar Aguilar, Rodolfo Juventino Mora Vallejo, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Marcelo Lozada y Cassou
  • Patent number: 7371318
    Abstract: The invention relates to a process for the elimination of sulphur compounds from the diesel fraction, which is characterized in that an oxidising reaction of said sulphur compound is carried out by using at least an organic-inorganic composite as catalyst, said composite comprising Si, Ti; and silicon bonded to carbon, and organic and inorganic hydroperoxides as oxidizing agents. According to the inventive process, said organic-inorganic composite can be obtained by a method comprising a post-synthesis silylation step.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 13, 2008
    Assignees: Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia
    Inventors: Avelino Corma Canós, Marcelo Eduardo Domine, Cristina Martinez Sánchez
  • Patent number: 7175755
    Abstract: A process for the extractive oxidation of contaminants from raw hydrocarbon streams rich in heteroatomic polar compounds is described, the said process involving the extractive oxidation of sulfur and nitrogen compounds from said streams, the said process comprising treating said streams with a peroxide solution/organic acid couple, the weight percent of the peroxide solution and organic acid based on raw hydrocarbon being at least 3 for both the peroxide and organic acid solution, under an acidic pH, atmospheric or higher pressure and ambient or higher temperature. As a result of the reaction, the oxidized heteroatomic compounds, having strong affinity for the aqueous phase, are extracted into said aqueous phase, while the oxidized hydrocarbon is neutralized, water washed and dried, the resulting end product being a hydrocarbon stream from which have been removed 88.1 wt % or more of total nitrogen compounds and basic nitrogen up to 99.1 wt %, both calculated as mass contents, total Sulfur 23.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: February 13, 2007
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventor: Wladmir Ferraz de Souza
  • Patent number: 7153414
    Abstract: A process for the upgrading of raw hydrocarbon streams rich in heteroatomic polar compounds and/or unsaturated moieties involving the extractive oxidation of sulfur, nitrogen, conjugated dienes and other unsaturated compounds from said streams, the said process comprising treating said streams with a peroxide solution/organic acid couple and an iron oxide catalyst which is a limonite ore, under an acidic pH, atmospheric pressure and ambient or higher temperature. As a result of the reaction, the oxidized heteroatomic compounds, having strong affinity for the aqueous slurry phase, are extracted into said aqueous phase, while the oxidized hydrocarbon is separated from catalyst by decanting, neutralizing, water washing and drying, the resulting end product being a hydrocarbon stream from which have been removed 90% or more of total nitrogen compounds and basic nitrogen up to 99.7%, both calculated as mass contents.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: December 26, 2006
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventor: Wladmir Ferraz De Souza
  • Patent number: 6808621
    Abstract: Metal hydride compounds, which are prepared by mixing together from about 1 to about 10 parts by molecular weight of at least one metal selected from the group consisting of silicon, aluminum, tin, and zinc; from about 1 to about 3 parts by molecular weight of an alkali metal hydroxide; and from about 5 to about 10 parts by molecular weight of water and allowing this mixture to stand for a time sufficient to form a metal hydride, can be used for making fuel additives, treating sour gas, enhancing oil refining, extracting oil from tar sands and shale, increasing production of hydrogen from a hydrogen plant, treating oil and gas wells to enhance production, eliminate PCBs, cleaning soil contaminated by hydrocarbons and/or heavy metals, controlling odors, cleaning polluting stack emissions, extracting edible and essential oils, and eliminating bacteria, fungicides, and parasites from vegetation.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: October 26, 2004
    Inventor: Ignacio Cisneros
  • Patent number: 6793805
    Abstract: A process for capturing mercury and possibly arsenic comprising at least: a) vaporising (or flashing, step a1) then condensing a hydrocarbon-containing feed (step a2) without separating said feed; b) treating the effluent from step a2 comprising at least one step for bringing said effluent into contact with hydrogen and a catalyst, and optionally capturing arsenic; c) a step consisting in passing the effluent from step b) over a mercury capture mass.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 21, 2004
    Assignee: Institut Francais du Pétrole
    Inventors: Blaise Didillon, Carine Petit-Clair, Laurent Savary
  • Patent number: 6623629
    Abstract: The invention concerns a process for eliminating arsenic from a hydrocarbon cut in which said cut is brought into contact with an absorption mass that is at least partially pre-sulfurized and comprises a support and lead oxide. The support, for example alumina, or said mass preferably has a specific surface area in the range 10 to 300 m2/g, a total pore volume in the range 0.2 to 1.2 cm3/g and a macroporous volume in the range 0.1 to 0.5 cm3/g. The lead content of said mass, expressed as lead oxide, is preferably in the range of 5% to 50% by weight. The fraction of the sulfurized mass preferably represents at least {fraction (1/20)}th of the total volume of the absorption mass.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 23, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Laurent Savary
  • Publication number: 20030168381
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: September 18, 2002
    Publication date: September 11, 2003
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Patent number: 6589418
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Publication number: 20030106841
    Abstract: A process for adsorptive desulfurization of gasoline or diesel oil or aromatics lower than C12 containing organic sulfide impurities, wherein these feedstocks contact with a amorphous alloy adsorbent comprising nickel as a major active component in a fluidized bed reactor or a magnetic-stabilized fluidized bed reactor or a slurry bed reactor. There is only a single diffuse peak at 2&thgr;=45° in the 2&thgr; range from 20° to 80° in the X-ray diffraction (XRD) pattern of the adsorbent. The adsorbent consists of 50-95 wt % of nickel, 1-30 wt % of aluminum, 0-35 wt % of iron, and 0-10 wt % of one or more metals selected from the group consisting of copper, zinc, molybdenum, chromium, and cobalt.
    Type: Application
    Filed: August 14, 2002
    Publication date: June 12, 2003
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Baoning Zong, Xiangkun Meng, Hailong Lin, Xiaoxin Zhang, Xuhong Mu, Enze Min
  • Patent number: 6544409
    Abstract: A process for the catalytic oxidation of sulfur and nitrogen contaminants as well as unsaturated compounds present in a hydrocarbon fossil oil medium is described, the process comprising effecting the oxidation in the presence of at least one peroxide, at least one acid and a pulverized raw iron oxide. The process shows an improved oxidation power towards the contaminants typically present in a fossil oil medium, this deriving from the combination of the peroxyacid and the hydroxyl radical generated in the reaction medium due to the presence of an iron oxyhydroxide such as a limonite clay, which bears a particular affinity for the oil medium. The process finds use in various applications, from a feedstock for refining until the preparation of deeply desulfurized and deeply denitrified products.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: April 8, 2003
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventor: Wladmir Ferraz De Souza
  • Patent number: 6540904
    Abstract: The present invention provides a process for the upgradation of petroleum residue into useful fractions by subjecting petroleum residue in the presence of a solvent and ferrous sulphate catalyst to a pressure in the range of 10 atm. to 120 atm., temperature in the range of 380-420° C., for a period in the range of 0-120 minutes, in a reactor vessel, in an inert atmosphere. The charge is then cooled to room temperature and the product gas released through scrubbers. The residue is re-heated, if required, for free flow of liquid product. The resulting liquid product is distilled to obtain useful fractions.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 1, 2003
    Inventors: Suhas Ranjan Gun, Priya Bandhu Chowdhury, Kashi Nath Bhattacharya, Achinta Kumar Roy, Umanand Sharma, Swapan Kumar Ghosh, Awadhesh Kumar Sinha, Santosh Kumar Chanda, Sukumar Mandal, Sanjay Kumar Ray, Asit Kumar Das, Satish Makhija, Sobhan Ghosh, Akhilesh Kumar Bhatnagar
  • Patent number: 6531103
    Abstract: The present invention provides a process for removing sulfur compounds including sulfur in the (−2) oxidation state such as mercaptans, dialkyl sulfides, carbonyl sulfide, hydrogen sulfide, thiophenes and benzothiophenes, from liquid or gas feed streams, particularly hydrocarbon feed streams such as, for example, natural gas and refinery process streams. According to the process, such a feed stream including these sulfur impurities is contacted with an absorbent which includes a metal ion-containing organic composition such as, for example, iron, copper, lead, nickel, tin, zinc or mercury cation-containing phthalocyanine or porphyrin to thereby form sulfur-metal cation coordination complexes in which the oxidation state of the sulfur and the metal cation remains essentially unchanged. The complexes are separated from the feed stream, and the absorbent is regenerated by disassociating the sulfur compound from the complexes.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: March 11, 2003
    Assignee: Union Carbide Chemicals and Plastics Technology Corporation
    Inventors: Leo Ernest Hakka, Paulino Forte
  • Publication number: 20020189975
    Abstract: A process for the catalytic oxidation of sulfur and nitrogen contaminants as well as unsaturated compounds present in a hydrocarbon fossil oil medium is described, the process comprising effecting the oxidation in the presence of at least one peroxide, at least one acid and a pulverized raw iron oxide. The process shows an improved oxidation power towards the contaminants typically present in a fossil oil medium, this deriving from the combination of the peroxy-acid and the hydroxyl radical generated in the reaction medium due to the presence of an iron oxyhydroxide such as a limonite clay, which bears a particular affinity for the oil medium. The process finds use in various applications, from a feedstock for refining until the preparation of deeply desulfurized and deeply denitrified products.
    Type: Application
    Filed: May 16, 2001
    Publication date: December 19, 2002
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventor: Wladmir Ferraz De Souza
  • Publication number: 20020139720
    Abstract: A process for capturing mercury and possibly arsenic comprising at least:
    Type: Application
    Filed: June 29, 2001
    Publication date: October 3, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Blaise Didillon, Carine Petit-Clair, Laurent Savary
  • Patent number: 6368496
    Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: April 9, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
  • Patent number: 6338794
    Abstract: Particulate sorbent compositions comprising zinc titanate support having thereon a substantially reduced valence promotor metal selected from the group consisting of cobalt, nickel, iron, manganese, copper, molybdenum, tungsten, silver, tin and vanadium or mixtures thereof provide a system for the desulfurization of a feed stream of cracked-gasolines or diesel fuels in a desulfurization zone by a process which comprises contacting such feed streams in a desulfurization zone with a particulate sorbent composition followed by separation of the resulting low sulfur-containing steam and sulfurized sorbent and thereafter regenerating and activating the separated sorbent before recycle of same to the desulfurization zone.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: January 15, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Publication number: 20010045376
    Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.
    Type: Application
    Filed: June 25, 2001
    Publication date: November 29, 2001
    Inventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
  • Publication number: 20010027939
    Abstract: The invention concerns a process for eliminating arsenic from a hydrocarbon cut in which said cut is brought into contact with an absorption mass that is at least partially pre-sulphurized and comprises a support and lead oxide.
    Type: Application
    Filed: March 8, 2001
    Publication date: October 11, 2001
    Inventors: Blaise Didillon, Laurent Savary
  • Patent number: 6039865
    Abstract: Phosphates can be removed from a hydrocarbon stream by contacting said stream with a ceramic formed of a basic material which is insoluble in the hydrocarbon stream. A ceramic as used in this patent document is a solid solution formed by calcination of a compound. The removal of the organic acid is accomplished at temperatures ranging from 20.degree. C. to 400.degree. C., a preferred temperature is between 200.degree. C. and 370.degree. C. A hydrocarbon stream consists of C.sub.5 + hydrocarbons. The basic material can be made up of one or more alkaline earth oxides, alkaline earth compounds, alkaline metal compounds, group IIIA element compounds, group IVA element compounds, group VIA element compounds. Preferred alkaline earth oxides are sodium, magnesium, potassium, calcium, aluminum and silicon. The support for the basic material can be made from any inorganic oxide.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: March 21, 2000
    Assignee: Trisol Inc.
    Inventor: Shaun T. E. Mesher
  • Patent number: 6036849
    Abstract: A method of removing hydrocarbons from soils contaminated with various hydrocarbons such as gasoline, diesel fuel, solvents, motor oil and crude oil. The process first screens the soil to remove oversized rocks and debris and to reduce the contaminated soil to uniformly sized particles. The soil particles are moved along a conveyor and first sprayed with an oxidizer diluted with ionized water and then sprayed with only ionized water. The washed particles are then vigorously mixed with their entrained oxidizer and ionized water in an auger mixer for several minutes to oxidize almost all of the remaining hydrocarbons. The washed and hydrocarbon-free soil is then moved by conveyor to a stockpile for storage, testing and drying.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: March 14, 2000
    Assignee: Universal Environmental Technologies Inc.
    Inventors: William W. Rippetoe, David N. Shroff
  • Patent number: 5961815
    Abstract: The hydroconversion of heavy petroliferous stocks boiling mainly above 400.degree. F. is carried out in a distillation column reactor where concurrently a petroleum stream is fed into a feed zone; hydrogen is fed at a point below said feed zone; the petroleum stream is distilled and contacted in the presence of a cracking catalyst prepared in the form of a catalytic distillation structure at total pressure of less than about 300 psig and a hydrogen partial pressure in the range of 1.0 to less than 70 psia and a temperature in the range of 400 to 1000.degree. F. whereby a portion of the petroleum stream is cracked to lighter products boiling below the boiling point of the feed and products are distilled to remove a vaporous overhead stream comprising products mainly boiling below the boiling point of the feed and a liquid bottoms stream.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 5, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Thomas P. Hickey, Dennis Hearn, Hugh M. Putman
  • Patent number: 5948238
    Abstract: The present invention relates to a process for reducing the acidity of a petroleum oil containing organic acids comprising treating said petroleum oil containing organic acids with an effective amount of an alcohol at a temperature and under conditions sufficient to form the corresponding ester of said alcohol and wherein said treatment is conducted in the presence of a metal carboxylate.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: September 7, 1999
    Assignee: Exxon Research And Engineering Co.
    Inventors: Guido Sartori, David W. Savage, Saul C. Blum, David C. Dalrymple, William E. Wales
  • Patent number: 5827421
    Abstract: A process for hydrotreating a charge hydrocarbon feed containing components boiling above 1000.degree. F. and sulfur, metals, and carbon residue, to provide product containing decreased levels of components having a boiling point greater than 1000.degree. F., decreased levels of sulfur, particularly decreased sulfur contents in the unconverted 1000.degree. F.+ boiling point products, and reduced sediment, which comprises:contacting said hydrocarbon feed with hydrogen at isothermal hydroprocessing conditions in the presence of, as catalyst, a porous alumina support containing .ltoreq.0.5 wt % of silica, wherein no silicon containing components, particularly silicon oxide, are intentionally added to the alumina, alumina support, impregnating solution or impregnating solutions, and bearing 2.2-6 wt % of a Group VIII metal oxide, 7-24 wt % of a Group VIB metal oxide and 0.0-2.0 wt % of a phosphorus oxide,said catalyst having a Total Surface Area of 195-230 m.sup.2 /g, a Total Pore Volume of 0.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: October 27, 1998
    Assignee: Texaco Inc
    Inventor: David Edward Sherwood, Jr.
  • Patent number: 5770041
    Abstract: The invention is a method of inhibiting the formation of fouling deposits occurring on the surface of an alkaline scrubber used to remove acid gases, such as hydrogen sulfide, carbon dioxide and mercaptans, from hydrocarbon streams. These deposits are formed during the scrubbing of pyrolytically produced hydrocarbons contaminated with oxygen-containing compounds with a caustic solution having a pH>7 which comprises adding an effective deposit-inhibiting amount of a non-enolizable carbonyl compound to the caustic solution. The invention is also a method of inhibiting the formation of fouling deposits occurring in spent caustic wash/stripper systems used for hydrocarbon manufacturing processes. Fouling occurs in these systems when they are in contact with hydrocarbon processing streams contaminated with oxygen-containing compounds, such as aldehydes.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: June 23, 1998
    Assignee: Nalco/Exxon Energy Chemicals, L.P.
    Inventors: Vincent E. Lewis, Robert D. McClain, Michael K. Poindexter
  • Patent number: 5744025
    Abstract: The present invention provides a process for hydrotreating a metal-contaminated hydrocarbonaceous feedstock of which at least 60% wt. boils at a temperature 370.degree. C., the process comprising contacting the feedstock at elevated temperature and elevated pressure in the presence of hydrogen with one or more catalyst beds each of a first catalyst, a second catalyst and a third catalyst, wherein(i) the first catalyst comprises a Group VI and/or a Group VIII hydrogenation metal component on an inorganic oxide support having at least 40% of its pore volume in pores with diameters in the range from 17 nm to 25 nm and a surface area in the range from 100 m.sup.2 /g to 160 m.sup.2 /g;(ii) the second catalyst comprises a Group VI and/or a Group VIII hydrogenation metal component on an inorganic oxide support having at least 40% of its pore volume in pores with diameters in the range from 3 nm to 17 nm and a surface area in the range from 160 m.sup.2 /g to 350 m.sup.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 28, 1998
    Assignee: Shell Oil Company
    Inventors: Andries Qirin Maria Boon, Constantinus Johannes Jacobus Den Ouden, Opinder Kishen Bhan
  • Patent number: 5608112
    Abstract: Nitrogen-containing substituents of aliphatic or aromatic compounds can be reduced by treatment with a reagent comprising (i) at least one complex of a transition metal of group 4 or 5 with a multidentate or unidentate organic or inorganic ligand and (ii) a reducing agent. The reaction is conducted optionally in the presence of an aliphatic or aromatic amine, and/or in the presence of an inert organic solvent.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: March 4, 1997
    Assignee: The Trustees of Princeton University
    Inventor: Jeffrey Schwartz
  • Patent number: 5601701
    Abstract: The invention concerns a process for the elimination of mercury from hydrocarbons by passage of the feedstock with hydrogen over a catalyst then bringing the product obtained into contact with a mercury retention bed, the catalyst comprising at least one element selected from the group constituted by iron, nickel, cobalt, molybdenum, tungsten, palladium, wherein at least 5% is in the sulphide state. Any arsenic present in the feedstock is also eliminated.In accordance with the invention, the catalyst is simultaneously presulphurated and reduced.The invention results in a considerable reduction in operation period and high retention efficiency at temperatures between 120.degree. C. and 250.degree. C. and in the presence of 0-1000 mg of sulphur/kg of feed.
    Type: Grant
    Filed: February 8, 1994
    Date of Patent: February 11, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Charles Cameron, Jean Cosyns, Patrick Sarrazin, Jean Paul Boitiaux, Philippe Courty
  • Patent number: 5401392
    Abstract: For removing mercury and any arsenic in hydrocarbon charges containing mercury and sulfur, the charge is contacted with an arsenic collecting material having catalytic properties ("catalyst") in hydrogen, the material containing at least one metal selected from the group consisting of nickel, cobalt, iron, palladium, and platinum; at least one metal selected from the group consisting of chromium, molybdenum, tungsten, and uranium; and an active phase carrier. Downstream of the catalyst or mixed therewith is a mercury collecting material containing a sulfide of at least one metal selected from the group consisting of copper, iron, and silver or sulfur, and an active phase carrier.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: March 28, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Philippe Courty, Pierre Dufresne, Jean P. Boitiaux, Germain Martino
  • Patent number: 5294333
    Abstract: Catalyst for hydrorefining hydrocarbon feedstocks including niobium trisulphide, said catalyst is particularly suited for the scission of carbon-nitrogen and carbon-sulphur bonds.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: March 15, 1994
    Assignee: Elf France
    Inventors: Michele Breysse, Thierry Des Courieres, Michel Danot, Christophe Geantet, Jean-Louis Portefaix
  • Patent number: 5286373
    Abstract: Naphtha is selectively hydrodesulfurized using deactivated hydrotreating catalyst to remove sulfur while minimizing loss in octane level due to olefin saturation.
    Type: Grant
    Filed: July 8, 1992
    Date of Patent: February 15, 1994
    Assignee: Texaco Inc.
    Inventors: Chakka Sudhakar, Gerald G. Sandford
  • Patent number: 5236576
    Abstract: Reducing the ash content of hydrocarbonaceous materials containing bound oxygen by reaction with an oxygen deficient source of an oxygen-reactive element, except oxygen and hydrogen, preferably an oxygen deficient compound of silicon.
    Type: Grant
    Filed: August 16, 1991
    Date of Patent: August 17, 1993
    Inventor: Michael G. Gilman
  • Patent number: 4986898
    Abstract: Trace amounts of mercury and its compounds present in hydrocarbon oil can be removed selectively and efficiently by bringing the hydrocarbon oils containing mercury and its compounds into contact with a certain treating agent after having heated such oils. Since the hydrocarbon oil from which mercury and its compounds have been removed does not contain catalyst poisons, such a hydrocarbon oil can be used extensively for catalytic reaction processes such as hydrogenation.
    Type: Grant
    Filed: May 15, 1989
    Date of Patent: January 22, 1991
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Takashi Torihata, Satoyuki Nisimura
  • Patent number: 4946578
    Abstract: A process for chemically modifying at least one component of a hydrocarbon-based material comprising: contacting the hydrocarbon-based material with at least one metal component selected from the group consisting of vanadium components in which vanadium is present in the 5+ oxidation state in an amount effective to promote the chemical modification of at least one component of the hydrocarbon-based material, iron components in which iron is present in the 3+ oxidation state in an amount effective to promote the chemical modification of at least one component of the hydrocarbon-based material, managanese components in which manganese is present in the 3+ oxidation state in an amount effective to promote the chemical modification of at least one component of the hydrocarbon-based material and mixtures thereof, and at least one oxygen transfer agent in an amount effective to do at least one of the following: maintain at least partially the promoting activity of the metal component; produce at least a portion of
    Type: Grant
    Filed: May 25, 1989
    Date of Patent: August 7, 1990
    Assignee: Ensci, Inc.
    Inventors: Thomas J. Clough, John W. Sibert
  • Patent number: 4946582
    Abstract: A method of selective and efficient removal of mercury from a hydrocarbon oil comprising contacting said oil with a cupric and/or stannous compound forming a reaction system. The purified hydrocarbon oil can be readily separated from the reaction system. The purified hydrocarbon oil does not contain mercury or any other catalyst poisoning component and can, therefore, be used extensively in catalytic reactions typified by hydrogenation reaction.
    Type: Grant
    Filed: January 19, 1989
    Date of Patent: August 7, 1990
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Takashi Torihata, Etsuko Kawashima
  • Patent number: 4883581
    Abstract: Method of producing a baseoil having a reduced coking tendency by removing precursors from the baseoil. Baseoil having reduced coking tendencies which comprises a substantially no coking precursors therein.
    Type: Grant
    Filed: October 3, 1986
    Date of Patent: November 28, 1989
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Ghazi B. Dickakian
  • Patent number: 4877513
    Abstract: An oil characteristic improvement process and device therefor including methodology whereby the specific gravity and viscosity of heavy oil feedstock is reduced. The process includes the steps of forming a mixture of the heavy oil feedstock and one or more organic reagents having a terminal hydroxyl group and heating the mixture from 300.degree. F. to 750.degree. F. in a reactor vessel while simultaneously exposing the mixture to a ferrous metal. In connection with this process, the present invention is also directed to a tubular reactor vessel, the inner walls of which include ferrous metal, the inner diameter and length of the tubular vessel being chosen such that the flow rate of the heavy oil through the vessel is such that the residence time within the vessel ranges from 600 to 6000 seconds, the heat flux through the walls of the vessel is less than 20,000 BTU/hr/sq.ft.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: October 31, 1989
    Assignee: Hydrocarbon Sciences, Inc.
    Inventors: William M. Haire, Celestino Pou
  • Patent number: 4853110
    Abstract: A process for removing arsenic and/or selenium from carbonaceous materials. The arsenic and/or selenium are separated by reaction with a metal oxide and/or metal sulfide which is itself derived from a metal complex, and organometallic compound and/or a metal salt of an organic acid which is soluble in said carbonaceous fluid and which either decomposes to the corresponding metal oxide and/or metal sulfide or which can be converted to the corresponding metal sulfide or metal oxide. The reaction of the metal oxide and/or metal sulfide with the arsenic and/or selenium is accomplished at a temperature within the range from about 300.degree. F. to about 800.degree. F. preferably from about 500.degree. F. to about 750.degree. F., most preferably from about 680.degree. F. to about 750.degree. F. and in either an inert or reducing atmosphere. Preferably, the conversion is accomplished in a reducing atmosphere and in the presence of molecular hydrogen.
    Type: Grant
    Filed: October 31, 1986
    Date of Patent: August 1, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Gopal H. Singhal, Daniel F. Ryan
  • Patent number: 4695369
    Abstract: A process for converting heavy petroleum feedstocks to distillate products with reduced metals and asphaltene content by reaction with hydrogen in the presence of at least two metal catalysts, one a known hydrogenation catalyst and the other either zinc, iron or copper.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: September 22, 1987
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Edwin N. Givens, Frank K. Schweighardt
  • Patent number: 4599472
    Abstract: Hydrocarbon solutions containing iodine or iodine-containing impurities are rendered essentially color-free by distillation in the presence of small amounts of a hydrocarbon soluble organometallic compound.
    Type: Grant
    Filed: June 27, 1985
    Date of Patent: July 8, 1986
    Assignee: Phillips Petroleum Company
    Inventor: Raymond L. Cobb
  • Patent number: 4596654
    Abstract: A catalyst composition is prepared by dissolving a suitable vanadium and oxygen containing compound, a suitable nickel (II) compound and ammonia in water, mixing this solution with an alumina containing support material, and calcining this mixture. This catalyst composition is used primarily for hydrotreating of hydrocarbon feed stream, which contain nickel, vanadium and sulfur impurities, particularly heavy oils.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: June 24, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Simon G. Kukes, Stephen L. Parrott, Karlheinz K. Brandes
  • Patent number: 4588706
    Abstract: A catalyst composition is prepared by dissolving a suitable oxygen containing compound of a Group VIB metal (preferably Mo), a suitable compound of a Group VIII metal (preferably Ni) and phosphorous acid in water, mixing this solution with an alumina containing support material, and calcining this mixture. This catalyst composition is used primarily for hydrotreating of hydrocarbon feed stream, which contain nitrogen and sulfur impurities, particularly heavy cycle oils.
    Type: Grant
    Filed: June 24, 1985
    Date of Patent: May 13, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Simon G. Kukes, Stephen L. Parrott
  • Patent number: 4585751
    Abstract: A catalyst composition is prepared by dissolving a suitable molybdenum and oxygen containing compound (preferably MoO.sub.3), a suitable divalent copper and/or manganese compound and a suitable phosphorus and oxygen containing compound (preferably H.sub.3 PO.sub.4) in water, mixing this solution with an alumina-containing support material, and calcining this mixture. This catalyst composition is used primarily for hydrotreating of hydrocarbon feed streams, which contain sulfur, vanadium and nickel impurities, particularly heavy oils.
    Type: Grant
    Filed: June 24, 1985
    Date of Patent: April 29, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Simon G. Kukes, Stephen L. Parrott, Karlheinz K. Brandes
  • Patent number: 4581131
    Abstract: Phenolic compounds are removed from a hydrocarbon oil by contacting the oil with manganese nodules at suitable conditions of contact time, temperature, and pressure.
    Type: Grant
    Filed: November 23, 1984
    Date of Patent: April 8, 1986
    Assignee: Mobil Oil Corporation
    Inventor: Leslie R. Rudnick
  • Patent number: 4437981
    Abstract: The invention is concerned with substantially eliminating the deactivating effects of alkaline materials and metal contaminants and compounds thereof existing in crude oils by first desalting the crude oil and thereafter adding a select neutralizing and immobilizing metal component or compound thereof to said desalted crude oil prior to and/or during distillation thereof to obtain select fractions subsequently catalytically processed as by catalytic cracking with a crystalline zeolite containing catalyst.
    Type: Grant
    Filed: November 22, 1982
    Date of Patent: March 20, 1984
    Assignee: Ashland Oil, Inc.
    Inventor: Stephen M. Kovach
  • Patent number: 4314902
    Abstract: A process for eliminating and removing impurities including sulfur compounds and microorganisms as well as preventing further microbial contamination is accomplished by treating petroleum products or other hydrocarbon fluids with an aqueous solution of an oxidizing agent such as hydrogen peroxide or ozone together with a metallic ion catalyst, such as a mixture of ferric chloride and cupric chloride, where the metal ion is capable of forming activated oxygen complexes in the presence of such oxidizing agent, or by treatment with an aqueous solution of metallic ion catalyst and activated oxygen complexes formed from permanganate, peroxyborate or chromate ions.
    Type: Grant
    Filed: January 3, 1974
    Date of Patent: February 9, 1982
    Inventors: Raymond S. Bouk, deceased, by Barbara Bouk, heir
  • Patent number: 4188501
    Abstract: Purity of hydrocarbon streams is increased by contacting with stable oxides of calcium, titanium, zinc, or zirconium prior to passage to a catalytic conversion process. In one embodiment, the stable metal oxides are preactivated by heating with vaporous hydrocarbon at an elevated temperature which is effective in extending the temperature at which metal oxides are subsequently effective for purification of hydrocarbon streams.
    Type: Grant
    Filed: August 25, 1978
    Date of Patent: February 12, 1980
    Assignee: Phillips Petroleum Company
    Inventors: Mark R. Rycheck, Filippo Pennella