Silicon Or Carbon Containing Treating Agent Patents (Class 208/307)
-
Patent number: 11192804Abstract: A method of using a nanoporous carbon material for adsorption of one or more PAH and diesel fuel from an aqueous solution is described. The aqueous solution may comprise the one or more PAH at a concentration of 0.1 mg/L-1 g/L, and the diesel fuel at a concentration of 0.1-5 g/L. The nanoporous carbon material may adsorb at least 96 wt % of one or more PAH within 10 minutes. The nanoporous carbon material may be obtained by contacting a carbonized asphalt with a base.Type: GrantFiled: November 19, 2019Date of Patent: December 7, 2021Assignee: King Fahd University of Petroleum and MineralsInventors: Mohammad Nahid Siddiqui, Basheer Chanbasha, Faisal Mohammed Al-Issa
-
Patent number: 9663723Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.Type: GrantFiled: August 26, 2015Date of Patent: May 30, 2017Assignee: King Fahd University of Petroleum and MineralsInventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
-
Patent number: 8821717Abstract: A process for upgrading hydrocarbon oil feedstreams employs a solid adsorption material to lower sulfur and nitrogen content by contacting the hydrocarbon oil, with a solid adsorbents in a mixing vessel; passing the slurry to a membrane separation zone to separate the solid adsorption material with the adsorbed sulfur and nitrogen compounds from the treated oil; recovering the upgraded hydrocarbon product having a significantly reduced nitrogen and sulfur content as the membrane permeate; mixing the solid adsorbent material with aromatic solvent to remove and stabilize the sulfur and nitrogen compounds; transferring the solvent mixture to a fractionation tower to recover the solvent, which can be recycled for use in the process; and recovering the hydrocarbons that are rich in sulfur and nitrogen for processing in a relatively small high-pressure hydrotreating unit or transferring them to a fuel oil pool for blending.Type: GrantFiled: December 20, 2011Date of Patent: September 2, 2014Assignee: Saudi Arabian Oil CompanyInventor: Omer Refa Koseoglu
-
Publication number: 20140027352Abstract: A carbon adsorbent having the characteristics of: a nitrogen micropore volume at 77° K, measured as liquid capacity, that is greater than 0.30 mL/g; a neopentane capacity measured at 273° K and 1 bar, measured as liquid capacity, that is less than 7% of the nitrogen micropore volume, measured as liquid capacity; and an access pore size in a range of from 0.50 to 0.62 nm. Such adsorbent is usefully employed for contacting with hydrocarbon mixtures to adsorb low-octane, linear and mono- or di-substituted alkanes therefrom, and thereby increase octane rating, e.g., of an isomerization naphtha raffinate. Adsorption processes and apparatus are also described, in which the carbon adsorbent can be utilized for production of higher octane rating hydrocarbon mixtures.Type: ApplicationFiled: April 17, 2012Publication date: January 30, 2014Applicant: Advanced Technology Materials, Inc.Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
-
Publication number: 20140005460Abstract: The present invention provides a method of increasing the efficiency of exothermic CO2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.Type: ApplicationFiled: December 16, 2011Publication date: January 2, 2014Applicant: RESEARCH TRIANGEL INSTITUTEInventors: Aqil Jamal, Raghubir P. Gupta
-
Patent number: 8524071Abstract: The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.Type: GrantFiled: April 19, 2010Date of Patent: September 3, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: Miron V. Landau, Mordechay Herskowitz, Iehudit Reizner, Yaron Konra, Himanshu Gupta, Rajeev Agnihotri, Paul J. Berlowitz, James E. Kegerreis
-
Patent number: 8518240Abstract: One exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon. The adsorption zone is operated at a temperature of at least 370° C.Type: GrantFiled: February 5, 2010Date of Patent: August 27, 2013Assignee: UOP LLCInventors: Manuela Serban, Mark P. Lapinski, Mark D. Moser
-
Patent number: 8431018Abstract: A supported carbon having high surface area, high pore volume containing (i) molybdenum (ii) a metal of non noble Group VIII, (iii) phosphorous, is used for hydrometallization of heavy crude oil and residue. The catalyst contains about 6 to 15 wt % molybdenum as MoO3, about 1 to 6 wt % cobalt or nickel as CoO or NiO and phosphorus as phosphorous oxide. One characteristic of the catalyst is the portion of pores having pore diameter in the range of 200 to 2000 Angstrom of 20 percent or more. The catalyst prepared by chelating agent has higher hydrodesulfurization activity assuming that more dispersed active metals are present on this catalyst. Long run activity studies show that catalyst having only molybdenum supported on activated carbon has good stability with time-on-stream and very high metal retention capacity.Type: GrantFiled: March 3, 2010Date of Patent: April 30, 2013Assignees: Instituto Mexicano del Petroleo, Toyo Engineering CorporationInventors: Samir Kumar Maity, Jorge Ancheyta Juárez, Fernando Alonso Martínez, Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida
-
Patent number: 8409426Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.Type: GrantFiled: January 18, 2011Date of Patent: April 2, 2013Assignee: Petrosonics, LLCInventor: Mark Cullen
-
Patent number: 8377287Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, collecting a gaseous and liquid product mixture comprising a mixture of a light fraction and a heavy fraction from the product stream, and using a vacuum tower to separate the light fraction as a substantially bottomless product and the heavy fraction from the product mixture.Type: GrantFiled: March 11, 2008Date of Patent: February 19, 2013Assignee: Ivanhoe Energy, Inc.Inventors: Robert Graham, Barry Freel
-
Patent number: 8354019Abstract: The present invention is related with the application of an adsorbent material of microporous carbon (MCA), prepared from the direct pyrolysis of copolymers generically known as Saran, in adsorption processes to reduce the benzene content in naphtha boiling range hydrocarbon streams, between 27 and 191° C., in which is preferable to perform a first separation by distillation of the C6's fraction, and a further separation of Benzene by adsorption through an adsorbent material bed, obtaining the fraction of C6's free of Benzene and an adsorbent with Benzene, which is further regenerated by pressure or temperature swing desorption or by displacement using a desorbent such as an inert gas at high temperature or by passing a desorbent which after the process, the desorbent and Benzene are separated by distillation. The fraction of C6's free of Benzene is reintegrated to the hydrocarbon stream and providing a gasoline with a Benzene content less than 1 volume %.Type: GrantFiled: November 23, 2007Date of Patent: January 15, 2013Assignee: Instituto Mexicano del PetroleoInventors: Georgina Cecilia Laredo Sanchez, J. Jesus Castillo Munguia, Fidencio Hernandez Perez, Ricardo Saint Martin Castanon, Maria del Carmen Martinez Guerrero, Federico Jesus Jimenez Cruz, Obet Marroquin de la Rosa, Jose Luis Cano Dominguez
-
Patent number: 8246814Abstract: A process for upgrading crude oil fractions or other hydrocarbon oil feedstreams boiling in the range of 36° to 520° C., and preferably naphtha and gas oil fractions boiling in the range of 36° to 400° C., employs a solid adsorption material to lower sulfur and nitrogen content by contacting the hydrocarbon oil, and optionally a viscosity-reducing solvent, with one or more solid adsorbents such as silica gel or silica, silica alumina, alumina, attapulgus clay and activated carbon in a mixing vessel for a predetermined period of time; passing the resulting slurry to a membrane separation zone, optionally preceded by a primary filtration step (i.e.Type: GrantFiled: May 15, 2009Date of Patent: August 21, 2012Assignee: Saudi Arabian Oil CompanyInventor: Omer Refa Koseoglu
-
Patent number: 8216450Abstract: According to the invention, trace olefins and dienes are removed from aromatic plant feedstocks by contacting the catalyst using conditions outside the ordinary range used for this application today.Type: GrantFiled: April 12, 2010Date of Patent: July 10, 2012Assignee: ExxonMobil Chemical Patents Inc.Inventor: Stephen H. Brown
-
Publication number: 20120048780Abstract: The invention is a process for removing impurities from an aromatics stream and apparatus for the practice thereof, whereby trace olefins and dienes are removed from aromatic plant feedstocks using a reactor design that enables the product to be backmixed with the feedstock and that enables a feed/effluent heat exchanger.Type: ApplicationFiled: July 19, 2011Publication date: March 1, 2012Inventor: Stephen H. Brown
-
Patent number: 8080156Abstract: Methods and apparatus relate to removal of mercury from crude oil. Such removal relies on transferring mercury from a liquid hydrocarbon stream to a natural gas stream upon contacting the liquid hydrocarbon stream with the natural gas stream. Processing of the natural gas stream after used to strip the mercury from the liquid hydrocarbon stream removes the mercury from the natural gas stream.Type: GrantFiled: August 10, 2009Date of Patent: December 20, 2011Assignee: ConocoPhillips CompanyInventors: Joseph B. Cross, Probjot Singh, Richard D. Sadok, Howard L. Wilson, John M. Hays
-
Patent number: 8057664Abstract: The present invention relates to a process for reducing the Bromine Index of a hydrocarbon feedstock having at least 50 wt. % of C8 aromatics, comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes a molecular sieve having a zeolite structure type of MWW.Type: GrantFiled: November 17, 2005Date of Patent: November 15, 2011Assignee: ExxonMobil Chemical Patents, Inc.Inventors: Stephen H. Brown, James R. Waldecker, Khavinet Lourvanij
-
Patent number: 8048294Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.Type: GrantFiled: April 23, 2010Date of Patent: November 1, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
-
Patent number: 8048295Abstract: A process for reducing the Bromine Index of a hydrocarbon feed containing bromine-reactive contaminants that has improved cycle length and utilizes a crystalline molecular sieve catalyst. The process is carried out by contacting the hydrocarbon feed under conversion conditions with a catalyst shaped in the form of an elongated aggregate comprising a crystalline molecular sieve having a MWW or *BEA framework type. The shortest cross-sectional dimension of the elongated aggregate is less about 1/10 inch (2.54 millimeters).Type: GrantFiled: December 5, 2006Date of Patent: November 1, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen H. Brown, Jose G. Santiesteban, Bryson J. Sundberg, Terry E. Helton, Daria N. Lissy, Jean W. Beeckman, Arthur P. Werner
-
Patent number: 8002971Abstract: Processes and systems associated with hydrodynamic cavitation-catalyzed oxidation of sulfur-containing substances in a fluid are described. In one example method, carbonaceous fluid is combined with at least one oxidant to form a mixture and then the mixture is flowed through at least one local constriction in a flow-through chamber at a sufficient pressure and flow rate to create hydrodynamic cavitation in the flowing mixture having a power density of between about 3,600 kWatts/cm2 and about 56,000 kWatts/cm2 measured at the surface of the local constriction normal to the direction of fluid flow. The creation of hydrodynamic cavitation in the flowing mixture initiates one or more chemical reactions that, at least in part, oxidize at least some of the sulfur-containing substances in the carbonaceous fluid.Type: GrantFiled: June 9, 2008Date of Patent: August 23, 2011Assignee: Arisdyne Systems, Inc.Inventor: Oleg V. Kozyuk
-
Publication number: 20110147265Abstract: One exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon. The adsorption zone is operated at a temperature of at least 370° C.Type: ApplicationFiled: February 5, 2010Publication date: June 23, 2011Applicant: UOP LLCInventors: Manuela Serban, Mark P. Lapinski, Mark D. Moser
-
Patent number: 7947167Abstract: A method for removing metals from fuel containing vanadium or nickel including intimately mixing an adsorbent with the fuel and isolating the treated fuel. The treated fuel has reduced levels of vanadium, nickel and other metals. Systems for fuel treatment are also provided.Type: GrantFiled: June 12, 2007Date of Patent: May 24, 2011Assignee: General Electric CompanyInventors: John Aibangbee Osaheni, John Matthew Bablin, Deborah Ann Haitko, Grigorii Lev Soloveichik
-
Patent number: 7919665Abstract: A process is disclosed for removing mercury from a liquid hydrocarbon stream by contacting the mercury-containing liquid hydrocarbon stream with ferrous halide at moderate temperatures and without preheating the liquid hydrocarbon stream, or subjecting the liquid hydrocarbon stream to a heat treating step, immediately prior to contact with the ferrous halide particles.Type: GrantFiled: February 17, 2009Date of Patent: April 5, 2011Assignee: ConocoPhillips CompanyInventors: John M. Hays, Erin E. Tullos, Joseph B. Cross
-
Patent number: 7871512Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.Type: GrantFiled: August 20, 2003Date of Patent: January 18, 2011Assignee: Petrosonics, LLCInventor: Mark Cullen
-
Patent number: 7744750Abstract: This invention relates to a process for reducing the Bromine Index of a hydrocarbon feedstock having less than 5 wppm oxygenates-oxygen, comprising the step of contacting the feedstock with a catalyst at conversion conditions to form a first effluent, wherein the catalyst includes a molecular sieve having a zeolite structure type of MWW.Type: GrantFiled: November 17, 2005Date of Patent: June 29, 2010Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen H. Brown, James R. Waldecker, Khavinet Lourvanij
-
Patent number: 7731839Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.Type: GrantFiled: May 27, 2005Date of Patent: June 8, 2010Assignee: Exxonmobil Chemical Patents Inc.Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
-
Patent number: 7572365Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents.Type: GrantFiled: October 11, 2002Date of Patent: August 11, 2009Assignee: Ivanhoe Energy, Inc.Inventors: Barry Freel, Jerry F. Kriz, Doug Clarke
-
Patent number: 7572362Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents.Type: GrantFiled: April 17, 2003Date of Patent: August 11, 2009Assignee: Ivanhoe Energy, Inc.Inventors: Barry Freel, Jerry F. Kriz, Doug Clarke
-
Patent number: 7550074Abstract: A process for preparing a gasoline including blending appropriate components together to prepare a gasoline having a final boiling point of less than 200° C. and contacting the blended gasoline as a whole with a decolorizing, activated carbon. The carbon removes at least some of the following trace impurities: indanes, naphthalenes, phenanthrenes, pryene, alkylbenzene, and mixtures thereof. The prepared gasoline, when combusted, can provide reduced deposits.Type: GrantFiled: March 19, 2002Date of Patent: June 23, 2009Assignee: BP Oil International LimitedInventors: Alisdair Quentin Clark, Spencer Edwin Taylor
-
Patent number: 7501054Abstract: A process for upgrading a diesel fuel, includes the steps of providing a diesel fuel feedstock; hydrogenating the feedstock at a pressure of less than about 600 psig so as to provide a hydrogenated product wherein a portion of the feedstock is converted to alkyl-naphthene-aromatic compounds; and selectively oxidizing the hydrogenated product in the presence of a catalyst so as to convert the alkyl-naphthene-aromatic compounds to alkyl ketones. A catalyst and oxygen-containing Diesel fuel are also provided.Type: GrantFiled: October 7, 2004Date of Patent: March 10, 2009Assignee: Intevep, S.A.Inventor: Roberto Galiasso
-
Patent number: 7311815Abstract: A method of preparing high linear paraffin or high end-chain monomethyl content products is accomplished by converting synthesis gas in a Fischer-Tropsch reaction to hydrocarbon products. These may be hydrotreated to provide an n-paraffin content of greater than 50% by weight, with substantially all branched paraffins being monomethyl end-chain branched paraffins. At least one non-linear paraffin isomer, which may be a monomethyl paraffin isomer, may be separated from the hydrocarbon products through distillation to provide an n-paraffin product having an n-paraffin content percentage by weight of the n-paraffin product that is greater than the initial n-paraffin content.Type: GrantFiled: April 30, 2003Date of Patent: December 25, 2007Assignee: Syntroleum CorporationInventor: Armen N. Abazajian
-
Patent number: 7201839Abstract: A composition comprising a metal oxide, a silica-containing material, a gallium-containing material, an aluminum-containing material, and a promoter, wherein at least a portion of the promoter is present as a reduced-valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.Type: GrantFiled: December 12, 2003Date of Patent: April 10, 2007Assignee: ConocoPhillips CompanyInventors: Uday T. Turaga, Jason J. Gislason
-
Patent number: 7160438Abstract: The present invention is directed to the removal of nitrogen and sulfur containing impurities from high molecular weight petroleum feedstock obtained from fluid cracking catalyst or distillation zone of a petroleum treatment plant. The present process comprises first treating C12 and higher hydrocarbon petroleum feedstock having nitrogen and sulfur containing compounds therein with a porous, particulate adsorbent comprising a silica matrix having an effective amount of metal atoms therein to cause the adsorbent to have Lewis acidity of at least 500 ?mol/g and then treating the resultant feedstock to catalytic hydrodesulfurization to produce a hydrocarbon fuel having low sulfur and nitrogen content.Type: GrantFiled: December 19, 2002Date of Patent: January 9, 2007Assignee: W.R. Grace & Co. - Conn.Inventors: Markus Friedrich Manfred Lesemann, Constance Setzer
-
Patent number: 7128829Abstract: A novel process effective for the removal of organic sulfur compounds, organic nitrogen compounds and light olefins from liquid hydrocarbons is disclosed. The process more specifically addresses the removal of these contaminants from aromatic compounds including benzene and toluene and from naphtha. The liquid hydrocarbons are contacted with a blend of at least one metal oxide and an acidic zeolite. Preferably, the metal oxide comprises nickel oxide and molybdenum oxide and the acidic zeolite is acidic stabilized zeolite Y. This blend has a significant capacity for adsorption of impurities and can be regenerated by oxidative treatment.Type: GrantFiled: May 29, 2003Date of Patent: October 31, 2006Assignee: UOP LLCInventors: Santi Kulprathipanja, Suheil F. Abdo, James A. Johnson, Daniel A. Kauff
-
Patent number: 6808621Abstract: Metal hydride compounds, which are prepared by mixing together from about 1 to about 10 parts by molecular weight of at least one metal selected from the group consisting of silicon, aluminum, tin, and zinc; from about 1 to about 3 parts by molecular weight of an alkali metal hydroxide; and from about 5 to about 10 parts by molecular weight of water and allowing this mixture to stand for a time sufficient to form a metal hydride, can be used for making fuel additives, treating sour gas, enhancing oil refining, extracting oil from tar sands and shale, increasing production of hydrogen from a hydrogen plant, treating oil and gas wells to enhance production, eliminate PCBs, cleaning soil contaminated by hydrocarbons and/or heavy metals, controlling odors, cleaning polluting stack emissions, extracting edible and essential oils, and eliminating bacteria, fungicides, and parasites from vegetation.Type: GrantFiled: August 8, 2001Date of Patent: October 26, 2004Inventor: Ignacio Cisneros
-
Patent number: 6803343Abstract: A sorbent composition comprising a support and a reduced-valence noble metal can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.Type: GrantFiled: October 12, 2001Date of Patent: October 12, 2004Assignee: ConocoPhillips CompanyInventor: Gyanesh P. Khare
-
Patent number: 6793805Abstract: A process for capturing mercury and possibly arsenic comprising at least: a) vaporising (or flashing, step a1) then condensing a hydrocarbon-containing feed (step a2) without separating said feed; b) treating the effluent from step a2 comprising at least one step for bringing said effluent into contact with hydrogen and a catalyst, and optionally capturing arsenic; c) a step consisting in passing the effluent from step b) over a mercury capture mass.Type: GrantFiled: June 29, 2001Date of Patent: September 21, 2004Assignee: Institut Francais du PétroleInventors: Blaise Didillon, Carine Petit-Clair, Laurent Savary
-
Patent number: 6781023Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.Type: GrantFiled: June 25, 2001Date of Patent: August 24, 2004Assignee: ExxonMobil Oil CorporationInventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
-
Publication number: 20040129608Abstract: A process for decolourising gasoline and for removing from liquid hydrocarbon fuels especially gasoline, at least some of trace impurities selected from the group consisting of indanes, naphthalenes, phenanthrenes, pyrene, alkylbenzenes and mixtures thereof, the process comprising contacting the liquid hydrocarbon fuel, especially gasoline, with a decolourising carbon. The product gasoline provides reduced engine deposit formation.Type: ApplicationFiled: September 23, 2003Publication date: July 8, 2004Inventors: Alisdair Quentin Clark, Spencer Edwin Taylor
-
Publication number: 20040007502Abstract: The desulfurization of petroleum distillates can be carried out by cyclic low-temperature adsorption of oxidized sulfur compounds with activated carbon followed by regeneration of the activated carbon using an organic solvent. The activated carbon used in the process is commercially available and its surface area that ranges from approximately 500 to 2000 m2/g having a substantial portion of its pores in the range between 10 to 100 Angstroms.Type: ApplicationFiled: May 15, 2003Publication date: January 15, 2004Inventors: William Wismann, Santosh K. Gangwal
-
Publication number: 20030150780Abstract: A process and an apparatus for the preparation of petroleum hydrocarbon solvent with improved color stability from crude oils having high concentration of nitrogenous compounds which comprises passing said petroleum hydrocarbon stream containing substantial amount of nitrogenous compounds over a column of molecular sieves/modified clays at ambient to elevated temperature and pressure maintaining the feed in the liquid state, thereby obtaining the petroleum hydrocarbon stream with desired color stability.Type: ApplicationFiled: March 4, 2002Publication date: August 14, 2003Applicant: INDIA OIL CORPORATION LIMITEDInventors: Anurag Ateet Gupta, Suresh Kumar Puri, Muniaswamy Rajesh, Ambrish Kumar Misra, Bijendra Singh Rawat, Akhilesh Kumar Bhatnagar
-
Patent number: 6565741Abstract: The desulfurization of petroleum distillates can be carried out by cyclic low-temperature adsorption of oxidized sulfur compounds with activated carbon followed by regeneration of the activated carbon using an organic solvent. The activated carbon used in the process is commercially available and its surface area that ranges from approximately 500 to 2000 m2/g having a substantial portion of its pores in the range between 10 to 100 Angstroms.Type: GrantFiled: December 13, 2000Date of Patent: May 20, 2003Inventors: William Wismann, Santosh K. Gangwal
-
Patent number: 6537443Abstract: Mercury is removed from crude oils, natural gas condensates and other liquid hydrocarbons by first removing colloidal mercury and solids that contain adsorbed mercury and then treating the hydrocarbons with an organic or inorganic compound containing at least one sulfur atom reactive with mercury. The sulfur compound reacts with dissolved mercury that contaminates the hydrocarbons to form mercury-containing particulates that are then removed from the hydrocarbons to produce a purified product having a reduced mercury content. Preferably, the treating agent is an organic sulfur-containing compound such as a dithiocarbamate or sulfurized isobutylene.Type: GrantFiled: February 24, 2000Date of Patent: March 25, 2003Assignee: Union Oil Company of CaliforniaInventors: Theodore C. Frankiewicz, John Gerlach
-
Patent number: 6485633Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.Type: GrantFiled: December 13, 2000Date of Patent: November 26, 2002Assignee: DS2 Tech, Inc.Inventors: William Wismann, Santosh K. Gangwal
-
Patent number: 6482316Abstract: The instant invention is directed to a method for reducing the amount of sulfur in hydrocarbon streams comprising the steps of: (a) contacting a hydrocarbon stream comprising hydrocarbons and sulfur compounds with an adsorbent selective for adsorption of said sulfur compounds, under adsorption conditions capable of retaining said sulfur compounds on said adsorbent and obtaining an adsorption effluent comprising a desulfurized hydrocarbon stream, (b) collecting said desulfurized hydrocarbon stream, (c) desorbing said sulfur compounds from said adsorbent by passing a desorbent through said adsorbent under desorption conditions to obtain a desorption effluent comprising sulfur compounds and said desorbent, (d) treating said desorption effluent to remove said sulfur compounds from said desorption effluent and collecting a desulfurized desorbent effluent comprising desorbent.Type: GrantFiled: March 10, 2000Date of Patent: November 19, 2002Assignee: ExxonMobil Research and Engineering CompanyInventor: Kaul Krishan Bal
-
Patent number: 6483001Abstract: The present invention describes a pressure swing adsorption (PSA) apparatus and process for the production of purified hydrogen from a feed gas stream containing heavy hydrocarbons (i.e., hydrocarbons having at least six carbons). The apparatus comprises at least one bed containing at least three layers. The layered adsorption zone contains a feed end with a low surface area adsorbent (20 to 400 m2/g) which comprises 2 to 20% of the total bed length followed by a layer of an intermediate surface area adsorbent (425 to 800 m2/g) which comprises 25 to 40 % of the total bed length and a final layer of high surface area adsorbent (825 to 2000 m2/g) which comprises 40 to 78% of the total bed length.Type: GrantFiled: December 22, 2000Date of Patent: November 19, 2002Assignee: Air Products and Chemicals, Inc.Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr
-
Publication number: 20020139720Abstract: A process for capturing mercury and possibly arsenic comprising at least:Type: ApplicationFiled: June 29, 2001Publication date: October 3, 2002Applicant: Institut Francais du PetroleInventors: Blaise Didillon, Carine Petit-Clair, Laurent Savary
-
Patent number: 6454936Abstract: The instant invention is directed to a process for decreasing the amount of acids contained in oils by forming a water-in-oil emulsion and utilizing solids.Type: GrantFiled: March 9, 2001Date of Patent: September 24, 2002Assignee: ExxonMobil Research and Engineering CompanyInventor: Ramesh Varadaraj
-
Publication number: 20020130062Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.Type: ApplicationFiled: December 13, 2000Publication date: September 19, 2002Applicant: DS2 Tech. Inc.Inventors: William Wismann, Santosh K. Gangwal
-
Patent number: 6428685Abstract: Particulate sorbent compositions which are suitable for the removal of sulfur from streams of cracked-gasoline or diesel fuel are provided which have increased porosity, improved resistance to deactivation through the addition of a calcium compound selected from the group consisting of calcium sulfate, calcium silicate, calcium phosphate or calcium aluminate to the support system comprised of zinc oxide, silica and alumina having thereon a promotor wherein the promotor is metal, metal oxide or metal oxide precursor with the metal being selected from the group consisting of cobalt, nickel, iron, manganese, copper, molybdenum, tungsten, silver, tin and vanadium or mixtures thereof and wherein the valence of such promotor has been substantially reduced to 2 or less. Process for the preparation such sorbent systems as well s the use of same for the desulfurization of cracked-gasolines and diesel fuels are also provided.Type: GrantFiled: May 24, 2001Date of Patent: August 6, 2002Assignee: Phillips Petroleum CompanyInventor: Gyanesh P. Khare
-
Patent number: 6402939Abstract: Fossil fuels are combined with a hydroperoxide in an aqueous-organic medium and subjected to ultrasound, with the effect of oxidizing the sulfur compounds in the fuels to sulfones. Due to their high polarity, the sulfones thus formed are readily removed from the fuels by polar extraction. The process is thus highly effective in removing sulfur compounds from the fuels.Type: GrantFiled: September 28, 2000Date of Patent: June 11, 2002Assignee: Sulphco, Inc.Inventors: Teh Fu Yen, Hai Mei, Steve Hung-Mou Lu