C1-c4 Alkane Removal Patents (Class 208/351)
  • Patent number: 10989469
    Abstract: A system for processing a gas stream can include a physical solvent unit, an acid gas removal unit upstream or downstream of the physical solvent unit, and an LNG liquefaction unit downstream of the acid gas removal unit. The physical solvent unit is configured to receive a feed gas, remove at least a portion of any C5+ hydrocarbons in the feed gas stream using a physical solvent, and produce a cleaned gas stream comprising the feed gas stream with the portion of the C5+ hydrocarbons removed. The acid gas removal unit is configured to receive the cleaned gas stream, remove at least a portion of any acid gases present in the cleaned gas stream, and produce a treated gas stream. The LNG liquefaction unit is configured to receive the treated gas stream and liquefy at least a portion of the hydrocarbons in the treated gas stream.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: April 27, 2021
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Jacob Thomas
  • Patent number: 10744447
    Abstract: The method includes the introduction of a feed flow into a first flask, the dynamic; expansion of the gaseous flow issuing from the flask in a turbine, then its introduction into a first purification column. It comprises the production at the head of the first column of a purified gas and the recovery at the bottom of the first column of a liquefied bottom gas, which is introduced, after expansion, into a second column for elimination of the C5+ hydrocarbons. The purified head natural gas issuing from the first column is heated in a first heat exchanger by thermal exchange with a feed gas. The method includes the compression of the gaseous head flow of the second column in a compressor before its introduction into a second separator flask.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: August 18, 2020
    Assignee: TECHNIP FRANCE
    Inventors: Henri Paradowski, Sylvain Vovard
  • Patent number: 10677524
    Abstract: A system for liquefying production gas from a gas source containing a fluid having C1-C12 entrained gases includes a first phase separator for separating the C1-C12 gases from the fluid from the gas source. The first phase separator has an inlet in fluid communication with the gas source, a gas outlet and at least one alternative outlet. A first cryogenic liquefaction vessel has an inlet and an outlet. The inlet is in fluid communication with the gas outlet of the first phase separator. The first cryogenic liquefaction vessel cools the C1-C12 gases to liquefy the C3-C12 petroleum gases. A second phase separator is provided for separating the C3-C12 liquefied gases from the C1-C2 gases. The second phase separator has an inlet, a liquid outlet and a gas outlet. The inlet is in fluid communication with the outlet of the first cryogenic liquefaction vessel.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: June 9, 2020
    Inventor: Geoff Rowe
  • Patent number: 9982516
    Abstract: A system and method for the on-site separating and treating of a hydrocarbon liquid stream at an oil and gas production site is disclosed. The system comprises an oil and condensate distillation unit and a vapor recovery unit. In one embodiment, the oil and condensate distillation unit operates at low pressure or vacuum conditions to reduce the vapor pressure above the column of oil within the tubing, thereby increasing the production of oil and condensate and capturing entrained natural gas otherwise lost or burned off. The system further functions to improve the quality and volume of recovered natural gas and to decrease air pollution, in addition to increasing oil and condensate production at the well site.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: May 29, 2018
    Assignee: KATA SYSTEMS LLC
    Inventor: Joseph A. Ricotta
  • Patent number: 8093440
    Abstract: An improved process for separating a hydrocarbon bearing feed gas containing methane and lighter, C2 (ethylene and/or ethane), and heavier components into a fraction containing predominantly methane and lighter components and a fraction containing predominantly C2 and heavier hydrocarbon components including the steps of cooling and partially condensing and delivering the feed stream to a separator to provide a first residue vapor and a first liquid containing C2, directing a first part of the first liquid containing C2 into a heavy-ends fractionation column wherein the liquid is separated into a second hydrocarbon bearing vapor residue and a second liquid product containing C2; further cooling the second part of the first liquid containing C2 and partially condensing the second hydrocarbon bearing vapor residue; combining the cooled second part of the first liquid and partially condensed second hydrocarbon-bearing vapor residue and directing them to a second separator effecting a third residue and a third li
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: January 10, 2012
    Assignee: Linde Process Plants, Inc.
    Inventors: Ronald D. Key, William G. Brown
  • Patent number: 7993435
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent, wherein the bottoms are maintained under conditions to effect at least partial visbreaking. The visbroken bottoms may be steam stripped to recover the visbroken molecules while avoiding entrainment of the bottoms liquid. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: August 9, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George J. Balinsky, James N. McCoy, Paul F. Keusenkothen
  • Patent number: 7973209
    Abstract: Processing schemes and arrangements for the catalytic cracking of a heavy hydrocarbon feedstock and obtaining light olefins substantially free of carbon dioxide via amine treatment and employing fractionation processing are provided.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, John P. Brady, William J. Lechnick, Michael A. Schultz
  • Patent number: 7956231
    Abstract: To decrease capital costs of crack gas treatment of the olefin plant, a method for separation of olefins reduces the units for catalytic hydrogenation. In the method, olefins having three carbon atoms are separated from olefins having four carbon atoms. Crude gas is precompressed (1), precooled and dried (2), and passed into a C3/C4 separation stage (6) comprising a C4 absorber, operating at full crude gas pressure, and a depropanizer, operated at a pressure of 8 to 12 bar. In the C3/C4 separation stage, the olefins are separated into a fraction having at most three carbon atoms (C3?), and a fraction having at least four carbon atoms (C4+). The fraction having at most three carbon atoms is completely compressed (1) and passed to the catalytic hydrogenation (4); the fraction having at least four carbon atoms is passed out for further processing (7).
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 7, 2011
    Assignee: Linde Aktiengesellschaft
    Inventor: Tuat Pham Duc
  • Patent number: 7820033
    Abstract: A process for increasing ethylene yield in a cracked hydrocarbon is provided. A hydrocarbon feed stream comprising at least 90% by weight of one or more C4-C10 hydrocarbons can be heated to provide an effluent stream comprising at least 10% by weight propylene. The effluent stream can be selectively separated to provide a first stream comprising heavy naphtha, light cycle oil, slurry oil, or any combination thereof and a second stream comprising one or more C4-C10 hydrocarbons. The second stream can be treated to remove oxygenates, acid gases, water, or any combination thereof to provide a third stream comprising the one or more C4-C10 hydrocarbons. The third stream can be selectively separated to provide a product stream comprising at least 30% by weight propylene. At least a portion of the product stream can be recycled to the hydrocarbon feed stream to increase ethylene yield in the effluent stream.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 26, 2010
    Assignee: Kellogg Brown & Root LLC
    Inventors: Curtis N. Eng, Yonglin Yang
  • Patent number: 7641870
    Abstract: Hydrocarbon feedstock containing resid is cracked by a process comprising: (a) heating the hydrocarbon feedstock; (b) mixing the heated hydrocarbon feedstock with steam and optionally water to form a mixture stream; (c) introducing the mixture stream to a flash/separation apparatus to form i) a vapor phase at its dew point which partially cracks and loses/or heat causing a temperature decrease and partial condensation of the vapor phase in the absence of added heat to provide coke precursors existing as uncoalesced condensate, and ii) a liquid phase; (d) removing the vapor phase as overhead and the liquid phase as bottoms from the flash/separation apparatus; (e) treating the overhead by contacting with a hydrocarbon-containing nucleating liquid substantially free of resid and comprising components boiling at a temperature of at least about 260° C. (500° F.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: January 5, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Nicholas G. Vidonic
  • Patent number: 7568363
    Abstract: A process for treating a crude containing natural gas comprising supplying the crude to a stabilization unit to obtain a gaseous stream and crude oil; supplying a compressed, gaseous stream at a low temperature to the bottom of a first column; partly condensing the first gaseous overhead stream, returning the liquid phase to the first column and supplying the methane-rich stream to a liquefaction plant; supplying an expanded bottom stream at a low temperature to the top of a second column; removing from the top of the second column a second gaseous overhead stream, and removing from the bottom of the second column a liquid bottom stream; vaporizing part of the bottom stream and introducing the vapor into the bottom of the second column; and introducing the remainder of the bottom stream into a crude oil stream at an appropriate point in or upstream of the stabilization unit, wherein the amount of heat removed from the first gaseous overhead stream is so adjusted that the concentration of C5+ in the first gase
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: August 4, 2009
    Assignee: Shell Oil Company
    Inventor: David Bertil Runbalk
  • Patent number: 7470359
    Abstract: The method enables the antihydrate compounds contained in a condensed-hydrocarbon liquid feedstock arriving through pipe 1 to be extracted. The liquid feedstock is brought into contact, in zone ZA, with a non-aqueous ionic liquid having the general formula Q+ A31 , where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A31 designates an anion able to form a liquid salt. The antihydrate compounds in the liquid hydrocarbon feedstock evacuated through pipe 2 are eliminated. The ionic liquid charged with antihydrate compounds is evacuated through pipe 3, then introduced into evaporator DE to be heated in order to evaporate the antihydrate compounds. The regenerated ionic liquid is recycled through pipes 8 and 9 to zone ZA. The antihydrates are evacuated through pipe 7a.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: December 30, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Renaud Cadours, Fabrice Lecomte, Lionel Magna, Cécile Barrere-Tricca
  • Patent number: 7437891
    Abstract: A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: October 21, 2008
    Assignee: Ineos USA LLC
    Inventors: Rian Reyneke, Michael J. Foral, Guang-Chung Lee, Wayne W. Y. Eng, Iain Sinclair, Jeffery S. Lodgson
  • Publication number: 20080116116
    Abstract: The invention involves the optimization of the input and output systems for a high-performance chamber mixer, in which the actual decomposition of the residual substances in middle distillate and inorganic residues is effected.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 22, 2008
    Inventor: Christian F. Koch
  • Patent number: 7273542
    Abstract: The present invention relates to a process and apparatus for recovering product from reactor effluent of a reactor for a hydrocarbon feedstream. An indigenous C4 stream is used as lean oil in a demethanizer, which facilitates significant cost and operational savings. C4 bottoms from a downstream depropanizer is used as lean oil recycle.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David J. Duhon, John E. Asplin
  • Publication number: 20040182752
    Abstract: This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Inventors: Rian Reyneke, Michael Foral, Christos G. Papadopoulos, Jeffery S. Logsdon, Wayne W. Y. Eng, Guang-Chung Lee, Ian Sinclair
  • Publication number: 20040182751
    Abstract: An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Inventors: Rian Reyneke, Michael J. Foral, Guang-Chung Lee
  • Patent number: 6755965
    Abstract: A process for ethane extraction from a gas stream based on turboexpansion and fractionation with no mechanical refrigeration is provided. The feed gas is sweetened and dehydrated by a conventional amine process and by a molecular sieve unit, to remove carbon dioxide and water. After this pretreatment, the feed gas undergoes to a series of cooling steps through a cryogenic brazed aluminum heat exchanger and fed to a demethanizer column. A stream rich in methane is recovered from the top of this column and fed to a centrifugal compressor and subsequently routed to a booster/turboexpander. The temperature of the methane gas is greatly reduced by the expansion allowing the cooled methane stream to be a cooling source for cryogenic heat exchanger. Feed for a de-ethanizer column comes from the bottom liquids of the de-methanizer column. Ethane is recovered overhead at the de-ethanizer column.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: June 29, 2004
    Assignee: Inelectra S.A.
    Inventors: Filippo Pironti, Jorge Vincentelli
  • Patent number: 6723231
    Abstract: Process to separate propene from gaseous fluid catalytic cracking products by performing the following steps: a) separating a feed mixture comprising the gaseous products, propene and other saturated and unsaturated hydrocarbons obtained in a fluid catalytic cracking process into a hydrocarbon-rich liquid fraction and a hydrogen containing gaseous fraction, b) separating the hydrogen containing gaseous fraction into a hydrogen-rich gaseous fraction and a hydrocarbon-rich gaseous fraction by means of a membrane separation, c) supplying the hydrocarbon-rich gaseous fraction obtained in step (b) to an absorber section and obtaining in said absorber section a lower boiling fraction rich in gaseous products having a boiling point of ethane or below and supplying the hydrocarbon-rich liquid fraction obtained in step (a) to a stripper section and obtaining in said stripper section a higher boiling fraction comprising propene and hydrocarbons having a boiling point higher than ethane.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: April 20, 2004
    Assignee: Shell Oil Company
    Inventors: Eduard Rudolf Geus, John William Harris, Johan Jan Barend Pek
  • Publication number: 20030158458
    Abstract: A processing method and system for separating methane-rich and ethane-rich components from an LNG stream. The LNG stream is preheated against a distillation column overhead vapor stream and against an overhead vapor product prior to entering the column. The overhead vapor product is methane-rich. The LNG stream may further be preheated against the column bottoms and another heating medium. The method may also include compressing the methane-rich product, condensing it against the LNG stream, and pumping it. The system may also comprise third and fourth heat exchangers configured to preheat the LNG stream with the bottoms product and the heating medium. Further, the system may provide for compressing the overhead vapor product prior to the its exchanging heat with the LNG stream and a pump for pumping condensed overhead vapor product. Additionally, the system generates all of the required reflux by cross exchanging the column overhead with the incoming LNG stream.
    Type: Application
    Filed: February 20, 2002
    Publication date: August 21, 2003
    Inventor: Eric Prim
  • Patent number: 6576805
    Abstract: The invention relates to a new process for more efficient separation and recovery of light olefins such as ethylene and propylene from a fluid catalytic cracking unit. The new process invention for recovering olefins from a mixture of cracked hydrocarbons from a fluid catalytic cracker comprises the steps of: (a) providing a mixture of cracked hydrocarbons including methane, ethylene, ethane, propylene, propane, butylene, butane and heavier hydrocarbons such as naphtha produced in a fluid catalytic cracker; (b) separating said mixture into (i) a first stream comprising substantially all of said ethane, ethylene, and methane and a major portion of said propane and propylene and (ii) a second stream comprising a portion of said butylene and butane, and a major portion of said heavier hydrocarbons; and (c) processing said first stream to recover the ethylene and propylene therefrom, and the details of such process described herein.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: June 10, 2003
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Ginger S. Keady, Juan Puerto, Berj Garbouchian
  • Publication number: 20030047492
    Abstract: A method for separating a high ethane-content product from a high methane-content feed stream including the steps of introducing a high methane-content feed stream into a first distillation column containing a plurality of vapor-liquid contact devices and generating a first bottoms stream, and introducing the first bottoms stream into a second distillation column containing a plurality of vapor-liquid contact devices and generating a second bottoms stream. Additional steps include recovering an additive stream from the second bottoms stream and injecting the additive stream into the first distillation column, and recovering a high ethane-content product from the second distillation column.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 13, 2003
    Inventor: Richard B. Hopewell
  • Publication number: 20020112993
    Abstract: A method of reducing the amount of energy required to fractionate a liquid hydrocarbon fraction is disclosed. Rather than use a single liquid feed point for a distillation column, the liquid feed is split into an upper feed portion and a lower feed portion. The lower feed portion is preheated to produce a vapor rich feed to a lower feed portion of the column, while charging, as a liquid, the remaining feed to an upper feed location at least one theoretical stage above the normal, single feed point location. Splitting the feed in this way reduces the total amount of heat required to reboil the column.
    Type: Application
    Filed: September 13, 2001
    Publication date: August 22, 2002
    Inventor: Frank Paul Puglisi
  • Patent number: 6358399
    Abstract: A process and a device for separating ethane and ethylene from a hydrocarbon steam-cracking effluent is described. Effluent (1) is absorbed in an absorption column (7) by a cooled solvent (9). At the bottom of the column, liquid phase (12) that contains the solvent and the C2+ hydrocarbons is recovered and hydrogenated (15). The hydrogenation effluent that contains the solvent is introduced into a first distillation column (70) where the solvent is regenerated. The solvent is cooled and recycled at the top of absorption column (7). The C2+ hydrocarbons are collected at the top, and a condensed liquid phase is distilled in a second distillation column (77) to recover a C2 fraction that consists of ethane and ethylene.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: March 19, 2002
    Assignee: Institute Francais du Petrole
    Inventors: Ari Minkkinen, Jean-Hervé Le Gal, Pierre Marache
  • Patent number: 6353144
    Abstract: For producing three effluents which are respectively rich in straight chain paraffins, in mono-branched paraffins, and in di-branched and tri-branched paraffins possibly with naphthenic and/or aromatic compounds, from C5-C8 cuts or intermediate cuts (C5-C7, C6-C8, C7-C8, C6-C7, C7 or C8), comprising paraffinic and possibly naphthenic and/or aromatic hydrocarbons, and in some cases olefinic hydrocarbons, a chromatographic separation process uses a separation zone operating by adsorption. The process of the invention is of particular application when coupled with a hydro-isomerization process, which selectively recycles straight chain and mono-branched paraffins, necessary for paraffins containing at least 7 carbon atoms.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: March 5, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Karine Ragil, Michel Bailly, Sophie Jullian, Olivier Clause
  • Patent number: 6340429
    Abstract: A process for separating ethane and ethylene from a hydrocarbon steam-cracking effluent is described. Effluent (1) is absorbed in an absorption column by a cooled solvent (9). At the bottom of the column, the liquid phase that contains the solvent and the C2+ hydrocarbons is recovered and hydrogenated (15). The hydrogenation effluent that contains the solvent is introduced into a first distillation column (16). Ethane-ethylene mixture (17) is drawn off laterally from the column, and a phase (19) that contains the solvent and hydrocarbons with at least 3 carbon atoms is drawn off at the bottom of the column. This phase (19) is separated in a second distillation column (22), and C3+ hydrocarbons and, at the bottom of the column, regenerated solvent (26) that is cooled and that is recycled (9, 52) in the absorption column are collected.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: January 22, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Ari Minkkinen, Jean-Hervé Le Gal, Pierre Marache
  • Publication number: 20010044565
    Abstract: The invention relates to a new process for more efficient separation and recovery of light olefins such as ethylene and propylene from a fluid catalytic cracking unit. The new process invention for recovering olefins from a mixture of cracked hydrocarbons from a fluid catalytic cracker comprises the steps of: (a) providing a mixture of cracked hydrocarbons including methane, ethylene, ethane, propylene, propane, butylene, butane and heavier hydrocarbons such as naphtha produced in a fluid catalytic cracker; (b) separating said mixture into (i) a first stream comprising substantially all of said ethane, ethylene, and methane and a major portion of said propane and propylene and (ii) a second stream comprising a portion of said butylene and butane, and a major portion of said heavier hydrocarbons; and (c) processing said first stream to recover the ethylene and propylene therefrom, and the details of such process described herein.
    Type: Application
    Filed: June 5, 2001
    Publication date: November 22, 2001
    Inventors: Ginger S. Keady, Juan Puerto, Berj Garbouchian
  • Patent number: 6291734
    Abstract: An integrated debutanizer and low pressure depropanizer column and process for separating a feed stream comprising C3's, C4's and C5+ is disclosed. A single shell houses a refluxed upper portion and a lower portion of the column. A generally vertical wall partitions the lower portion of the column into a debutanizer section and a depropanizer stripper section. The upper column portion is used as the absorption section of the depropanizer. The feed is supplied to an intermediate stage in the debutanizer, and the debutanizer is operated at a lower pressure (and correspondingly lower temperature) matching that of the low pressure depropanizer. The design allows the use of one slightly larger column in place of the two large columns previously used for separate debutanization and low pressure depropanization.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: September 18, 2001
    Assignee: Kellogg Brown & Root, Inc.
    Inventor: Karl Stork
  • Patent number: 6278035
    Abstract: An improved process for separating a hydrocarbon bearing feed gas containing methane and lighter, C2 (ethylene and/or ethane), and heavier components into a fraction containing predominantly methane and lighter components and a fraction containing predominantly C2 and heavier hydrocarbon components including the steps of cooling and partially condensing and delivering the feed stream to a separator to provide a first residue vapor and a first liquid containing C2, directing a first part of the first liquid containing C2 into a heavy-ends fractionation column wherein the liquid is separated into a second hydrocarbon bearing vapor residue and a second liquid product containing C2; further cooling the second part of the first liquid containing C2 and partially condensing the second hydrocarbon bearing vapor residue; combining the cooled second part of the first liquid and partially condensed second hydrocarbon-bearing vapor residue and directing them to a second separator effecting a third residue and a third li
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: August 21, 2001
    Inventors: Ronald D. Key, William G. Brown
  • Patent number: 6271433
    Abstract: The invention relates to a new process for more efficient separation and recovery of light olefins such as ethylene and propylene from a fluid catalytic cracking unit. The new process invention for recovering olefins from a mixture of cracked hydrocarbons from a fluid catalytic cracker comprises the steps of: (a) providing a mixture of cracked hydrocarbons including methane, ethylene, ethane, propylene, propane, butylene, butane and heavier hydrocarbons such as naphtha produced in a fluid catalytic cracker; (b) separating said mixture into (i) a first stream comprising substantially all of said ethane, ethylene, and methane and a major portion of said propane and propylene and (ii) a second stream comprising a portion of said butylene and butane, and a major portion of said heavier hydrocarbons; and (c) processing said first stream to recover the ethylene and propylene therefrom, and the details of such process described herein.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: August 7, 2001
    Assignee: Stone & Webster Engineering Corp.
    Inventors: Ginger S. Keady, Juan Puerto, Berj Garbouchian
  • Patent number: 6156950
    Abstract: For producing three effluents which are respectively rich in straight chain paraffins, in mono-branched paraffins, and in di-branched and tri-branched paraffins possibly with naphthenic and/or aromatic compounds, from C5-C8 cuts or intermediate cuts (C5-C7, C6-C8, C7-C8, C6-C7, C7 or C8), comprising paraffic and possibly naphthenic, aromatic and olefinic hydrocarbons, the separation process of the invention uses at least two separation units operating either by adsorption or by permeation. It is of particular application when coupled with a hydro-isomerization process, which selectively recycles straight chain and mono-branched paraffins, necessary with paraffins containing more than 7 carbon atoms.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: December 5, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Karine Ragil, Isabelle Prevost, Olivier Clause, Joseph Larue, Benoit Millot
  • Patent number: 6042715
    Abstract: A thermodynamic model is formed which allows determination of the temperature at which waxes or paraffins appear in petroleum fluids, and notably in crudes, as well as the solid fraction that precipitates when the temperature of the petroleum fluid falls below this critical value. A differentiation is established between n-paraffins, iso-paraffins, naphthenes and aromatics. The model utilizes an analytical representation of the fluids by pseudo-components, the physico-chemical parameters of most of them being determined by combination of the corresponding parameters of a certain number of pure hydrocarbons gathered in a database. The model takes account of the non-ideality of the solid, liquid, and gas phases. Two of the pseudo-constituents including the heaviest fractions are represented by two ficticious molecules, each being defined by a molar distribution among various groups which constitute them, and a group contribution method is used to calculate the thermodynamic properties thereof.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: March 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Sandra Calange, Veronique Ruffier-Meray, Emmanuel Behar
  • Patent number: 5880320
    Abstract: Gases and liquid products of the cracking zone of a ethylene production plant fractionated in a demethanizer to from a dilute ethylene stream containing about 5 to about 40 percent of the ethylene contained in the feed. The dilute ethylene is feed to an ethylbenzene plant and reacts with impure benzene. The product ethylbenzene is normally converted to styrene.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: March 9, 1999
    Inventor: David Netzer
  • Patent number: 5877384
    Abstract: An apparatus and process for separating propane and benzene from alkylation reaction products in cumene production. An integrated fractionation tower combines the functions of propane separation, recycle benzene recovery as well as system dewatering to eliminate the need for separate depropanizer and dehydration columns and thus save capital and operating expenses.
    Type: Grant
    Filed: February 12, 1996
    Date of Patent: March 2, 1999
    Assignee: The M. W. Kellogg Company
    Inventors: Harold Edward Gimpel, Eric Wing-Tak Wong, Kourosh Faiz Ghassemi
  • Patent number: 5811621
    Abstract: A polymerizable grade of ethylene is recovered from an olefin-containing composition, prepared by the conversion of a methoxy compound to olefins, by a process which significantly reduces the requirements of the demethanizer distillation column through which hydrogen and methane are eliminated as impurities from the ethylene product without suffering economically unacceptable losses of ethylene to the hydrogen-methane fraction that is separated. The invention also provides for a C-2 splitter column of simplified requirements.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: September 22, 1998
    Inventor: Christiaan P. van Dijk
  • Patent number: 5456823
    Abstract: A process for the dehydration and/or desalination and simultaneous fractionation of a petroleum deposit effluent containing oil, associated gas and water which can be saline, which process comprises:(a) at least one step for separating the liquid and gaseous phases at the pressure P1 for removal of the gas, producing a gaseous fraction G1, on the one hand, which is removed and a liquid fraction L1, on the other hand, which is sent to step(b) at least one step for separating, at least partly, the two liquid phases mixed in the liquid fraction L1, the aqueous phase being partly removed and the oil phase containing a quantity of residual aqueous phase being sent to step (c);(c) at least one distillation step carried out at a pressure P2 which is less than, or at the most equal to, the pressure P1 in step (a), in a distillation zone C1, said distillation being carried out in the presence of the oil phase coming from step (b), said zone C1 comprising an internal heat exchange zone and a boiling zone, and enabling
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: October 10, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Lermite, Joseph Larue, Alexandre Rojey
  • Patent number: 5453177
    Abstract: An integrated three-column process for recovering hydrocarbon distillate products from a hydroprocessing or hydrocracking reactor effluent stream and a hydrocarbon distillate product recovery train are disclosed. According to the present recovery process, an effluent stream from the cracking reactor is cooled and separated into light and heavy phase streams. The heavy phase stream is depressurized and stripped of light end components in a steam stripping column. The light phase stream is further cooled to separate a liquid stream which is combined with the light ends from the stripper and fed to a debutanizer. A C.sub.4 -rich light end stream taken overhead from the debutanizer is condensed to produce LPG product stream(s). A C.sub.4 -lean heavy end stream removed from the bottoms of the debutanizer is combined with a heavy end bottoms stream from the stripper and fed to a fractionator for fractionation into product distillate streams such as light and heavy naphtha, jet fuel, diesel oil, and the like.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: September 26, 1995
    Assignee: The M. W. Kellogg Company
    Inventors: Kenneth W. Goebel, Michael G. Hunter
  • Patent number: 5435436
    Abstract: A thermomechanically integrated distillation column and method for the separation of ethylene from ethane and other close-boiling light hydrocarbons. The column has a plurality of sections operated at successively lower pressures from a high pressure subcritical section to a superatmosphere bottoms product zone. Bottoms liquid from the high pressure and intermediate sections are flashed in respective cooling loops to about the pressure of the section of next lower pressure, vaporized in heat exchange with an overhead condensing zone and introduced to the top stage of next lower pressure section. Vapor from the intermediate sections and the bottoms product zone are compressed in respective compression loops and fed to the bottom stage of the section of the next higher pressure. External refrigerant can be supplied to the overhead condensing zone for trim as needed for control purposes.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: July 25, 1995
    Inventors: David B. Manley, Dominic G. Greene
  • Patent number: 5389242
    Abstract: A description is given of a process for the fractionation of oil and gas on a petroleum deposit effluent, including:(a) a stage wherein the liquid and gaseous phases are separated at the gas evacuation pressure P1, producing a gaseous fraction G1, on the one hand, which is evacuated, and a liquid fraction L1, on the other hand, which is constituted at least partially of oil, sending the liquid fraction L1 to stage (b);(b) at least one distillation stage carried out at a pressure P2 which is less than or at least equal to the pressure P1 in stage (a), in a distillation zone C1 which has an internal heat exchange zone and a reboiling zone, and which permits a gaseous fraction G2 to be recovered, on the one hand, and a liquid fraction L2 to be recovered, on the other hand, which is sent to the internal exchange zone, then evacuated; and(c) at least one recompression stage at the pressure P1 of at least a part of the gaseous fraction G2 which is at least partly mixed with the gaseous fraction G2 and evacuated.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: February 14, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Lermite, Joseph Larue, Alexandre Rojey
  • Patent number: 5342509
    Abstract: A process flow sequence for the reduction of polymer fouling while maintaining efficient production levels wherein a dual pressure, dual column configuration is used to effect the reduction in polymer fouling. The dual pressure, dual column configuration of the invention uses a high pressure and a separate low pressure to isolate the desired fractions while effecting a reduction in the production of fouling polymers.
    Type: Grant
    Filed: September 24, 1992
    Date of Patent: August 30, 1994
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Sheri R. Snider, David A. Bamford, Rimas V. Vebeliunas, Roy T. Halle, Robert D. Strack
  • Patent number: 5105041
    Abstract: A process for the production of alkylaromatic hydrocarbons uses a working fluid to reduce the costs of separating an unreacted aromatic feed substrate from aromatic hydrocarbon products. Unreacted aromatic substrate is combined with a light hydrocarbon, such as propane, to form a combined effluent stream. The combined effluent stream enters a flash separator where unreacted aromatic substrate is lifted overhead with the light hydrocarbon while heavier aromatic products are recovered below. The aromatic substrate and light hydrocarbon are easily separated in a simple separation zone. Lifting the aromatic substrate with the working fluid reduces the volume of aromatic substrate that remains with the aromatic product so that the more energy intensive separation of the aromatic substrate and aromatic product is performed on a reduced volume of material.
    Type: Grant
    Filed: September 10, 1990
    Date of Patent: April 14, 1992
    Assignee: UOP
    Inventors: Don L. Ferk, Eugene Schmelzer, Edward C. Haun
  • Patent number: 5090977
    Abstract: A process sequence for treating cracked gases of heavy feedstocks which preferentially produces propylene to the exclusion of propane, butanes and butenes. The process eliminates the need for a depropanizer with the attendant savings in capital and operating costs. In lieu of a conventional C3 splitter, the process features a depropylenizer, i.e. a distillation tower designed to separate propylene from propane, butanes and butenes. A hydrogenation unit to eliminate contaminants can be placed upstream of the depropylenizer or the depropylenizer can be split into two sections with the hydrogenation unit located between the two sections.
    Type: Grant
    Filed: November 13, 1990
    Date of Patent: February 25, 1992
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Robert D. Strack, Rimas V. Vebeliunas, David A. Bamford, Roy T. Halle
  • Patent number: 5030339
    Abstract: In the separation of a compressed multi-component hydrocarbon stream containing liquid and gas phases to produce a liquid product stream having a specified maximum vapor pressure and a gas product stream having a specified maximum cricondenbar, gas flaring can be reduced and other advantages obtained by the method of(i) separating the liquid and gas phases in one or more separation stages at progressively reduced pressures to produce said liquid product stream, and(ii) treating the recovered gas phase to obtain the gas product stream by partial condensation of the recovered gas phase and separation of the condensate so formed; wherein(iii) step (ii) includes the step of rectifying the recovered gas phase in a refluxing exchanger and separating the condensate so formed.
    Type: Grant
    Filed: October 13, 1989
    Date of Patent: July 9, 1991
    Assignee: Costain Engineering Limited
    Inventor: Bogdan A. Czarnecki
  • Patent number: 4976849
    Abstract: A fractionation process for gaseous hydrocarbon mixtures of high acid gas content is described, for separating at least a fraction containing ethane, propane and heavier hydrocarbons, a fraction containing essentially acid gases and a fraction containing essentially methane and possible inert gases, characterized by comprising the following stages:(a) feeding the gaseous hydrocarbon mixture after dehydration to a first distillation column to which a liquid hydrocarbon stream is fed, to obtain a gaseous overhead product stream containing methane, ethane, acid gases and possibly light inert gases, and a bottom product stream containing ethane and higher hydrocarbons;(b) feeding the overhead product of the first distillation column to a second distillation column to obtain a gaseous overhead product stream containing methane, the ethane-carbon dioxide azeotrope and possibly light inert gases, and a bottom product stream consisting essentially of acid gases;(c) feeding the overhead product of the second distillat
    Type: Grant
    Filed: September 20, 1988
    Date of Patent: December 11, 1990
    Assignee: Snamprogetti S.p.A.
    Inventor: Gian F. Soldati
  • Patent number: 4885424
    Abstract: A process for the production of alkylaromatic hydrocarbons uses a light hydrocarbon recycle to reduce the costs of separating an unreacted aromatic feed substrate from aromatic hydrocarbon products. Unreacted aromatic substrate is combined with a light hydrocarbon, such as propane, to form a combined effluent stream. The combined effluent stream enters a flash separator where unreacted aromatic substrate is lifted overhead with the light hydrocarbon while heavier aromatic products are recovered below. The aromatic substrate and light hydrocarbon are easily separated in a simple separation zone. Lifting the aromatic substrate with the light hydrocarbon reduces the volume of aromatic substrate that remains with the aromatic product so that the more energy intensive separation of the aromatic substrate and aromatic product is performed on a reduced volume of material.
    Type: Grant
    Filed: February 5, 1988
    Date of Patent: December 5, 1989
    Assignee: UOP
    Inventors: Don L. Ferk, Eugene Schmelzer, Edward C. Haun
  • Patent number: 4832830
    Abstract: A process and apparatus for separating selected C.sub.4 olefinic products from combinations thereof with lower boiling point compounds comprises partially condensing a stream containing said products and compounds, atmospherically separating said partially condensed stream to yield gas and liquid streams, stipping said liquid stream to yield stripper overhead gas and stripper bottoms liquids, and recovering said C.sub.4 olefinic and paraffinic products from said stripper bottoms liquid, all at selected temperatures and pressures adapted to produce a high recovered percentage of said desired C.sub.4 olefinic and paraffinic product.
    Type: Grant
    Filed: October 2, 1987
    Date of Patent: May 23, 1989
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Lee J. Howard
  • Patent number: 4702819
    Abstract: A process for separating gaseous or liquid hydrocarbons in first and second fractionation zones wherein the first fractionation zone employs a side reboiler discharging below the side draw point. A vapor sidestream is removed from the first fractionator below the side draw point and introduced to the second fractionator. The flow scheme permits control of the first fractionator bottoms temperature to match available low level waste heat which may therefore be used in fractionator reboiling duty.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: October 27, 1987
    Assignee: The M. W. Kellogg Company
    Inventors: Shanmuk Sharma, Donnie K. Hill, Charles A. Durr
  • Patent number: 4617404
    Abstract: Compounds of the formula I ##STR1## in which R.sub.1 and R.sub.2, independently, denote alkyl with 1 to 6 carbon atoms, cycloalkyl with 5 to 8 carbon atoms, allyl, methallyl, aralkyl with 5 to 9 carbon atoms, phenyl, 1- or 2-naphthyl, or alkaryl with 7 to 9 carbon atoms, R.sub.2 moreover also denotes hydrogen, R.sub.3 denotes hydrogen, alkyl with 1 to 6 carbon atoms, unsubstituted phenyl or phenyl substituted by one or two chlorine atoms and/or one or two methyl groups, B denotes a hetero atom, the group --OC(O)--, --OC(O)--CH.sub.2 CH.sub.2 -- or a direct bond, m is an integer from 0 to 6, and n is an integer from 1 to 6, are prepared by reaction of a thioglycerol derivative with a carboxylic acid containing the hindered phenol moiety in the presence of an acid and are used as antioxidants and thermal stabilizers for lubricating oils, plastics, resins and other organic substrates.
    Type: Grant
    Filed: September 9, 1985
    Date of Patent: October 14, 1986
    Assignee: Ciba-Geigy Corporation
    Inventors: David H. Steinberg, Frank Cortolano
  • Patent number: 4565623
    Abstract: This invention deals with a method for deasphalting heavy oils by mixing the oil with a completely miscible solvent at a low treat ratio and then subjecting the resulting one phase mixture to a gaseous antisolvent, such as carbon dioxide, to separate the mixture into two phases. The upper phase contains the majority of the miscible solvent and the product oil containing a significantly lower CCN then did the feedstock.
    Type: Grant
    Filed: August 20, 1984
    Date of Patent: January 21, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventor: Thomas A. Davis
  • Patent number: 4545895
    Abstract: Process and apparatus are provided for the recovery of low, medium and high boiling components from feed streams containing same wherein reboiler fouling, gumming and the like are minimized, via the control of fractionator reboiler temperatures.
    Type: Grant
    Filed: February 29, 1984
    Date of Patent: October 8, 1985
    Assignee: Phillips Petroleum Company
    Inventors: Michael J. Brand, Ricardo J. Callejas