Including Burning Of Feed Or Product Patents (Class 208/427)
  • Patent number: 11124723
    Abstract: The invention relates to a material and/or solid fuel which is produced from biomass. The material and/or fuel can be produced according to an apparatus and system for producing a fuel from a solid-liquid mixture of water and feed material with a carbon containing component, wherein the biomass forming the solid-liquid mixture is treated at a temperature of 160-300° C. at a pressure of at least 5 bar for a treatment duration of at least 2 hours and water formed by the chemical reaction is withdrawn from the reactor by a solid-liquid separation filtration device to increase a carbon fraction of the fuel.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 21, 2021
    Assignee: ANTACOR LTD.
    Inventor: Dominik Peus
  • Patent number: 10876048
    Abstract: Methods for liberating organic carbonaceous products from mineral matrices such as oil shale and the products liberated by the present methods inter alia, the invention in a preferred embodiment subjects oil shale to resonance disintegration including inter alia rapid pressure and directional changes to essentially instantaneously vary forces acting thereon. Oil shale processed by non-impact processing according to the invention liberates kerogen from the mineral matrix to permit subsequent conversion to shale oil or other utilization.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: December 29, 2020
    Assignee: Micronizing Technologies, LLC
    Inventors: James P. Yates, Charles A. Arnold, Christopher A. Arnold, William E. Hahn, Melva Hahn
  • Patent number: 9714394
    Abstract: A method for producing an ashless coal includes a slurry preparation, an extraction, a separation, an ashless coal acquirement, and a by-product acquirement. In the by-product acquirement, a solvent used in the slurry preparation is evaporated and separated from a solid-content concentrated liquid separated in the separation, and then, a by-product coal is acquired. The by-product coal is used as a fuel for heating a slurry obtained in the slurry preparation.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 25, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Shigeru Kinoshita, Noriyuki Okuyama, Takuya Yoshida, Koji Sakai
  • Patent number: 8920639
    Abstract: The invention provides a combustion process using comminuted fuel solids from a steam-driven shear field, with controlled water content and optionally coated with a combustion catalyst. The method allows fuel solids to burn for energy production at low temperatures. The lower temperatures avoid emissions of nitrogen oxides, and the process also yields a clean, friable ash that has economic value.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: December 30, 2014
    Assignee: Hydrocoal Technologies, LLC
    Inventor: David Walker Taylor
  • Patent number: 8673135
    Abstract: The invention described herein relates to a novel process for reducing the carbon dioxide emissions from a coal and/or biomass liquefaction facility by utilizing a steam methane reformer unit in the complex designed to produce additional hydrogen which can be thereafter utilized in the process, as required for the plant fired heaters (including the SMR furnace), and for the production of plant steam. The plant light ends (C1, C2, etc.), which are normally utilized as fuel gas streams are the primary feeds to the SMR Unit along with the tail gas purge from a gasification complex within the facility.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: March 18, 2014
    Assignee: Axens
    Inventors: James J. Colyar, James B MacArthur, Michael Peluso
  • Patent number: 8479814
    Abstract: An enhanced oil recovery method is provided. This method includes; introducing a first essentially pure oxygen stream into a subterranean hydrocarbon-bearing formation traversed by at least one injection well and at least one production well, and initiating and sustaining in-situ combustion in the vicinity of the injection well. This method also includes introducing a second essentially pure oxygen stream and a hydrocarbon-containing fuel gas stream into the combustion device of a power generation system, wherein the combustion device produces an exhaust gas stream comprising water and carbon dioxide. This method also includes separating the exhaust gas stream into a stream of essentially pure water, and a stream of essentially pure carbon dioxide, and introducing at least a portion of the essentially pure carbon dioxide stream into the subterranean hydrocarbon-bearing formation prior to initiating the in-situ combustion.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 9, 2013
    Assignee: American Air Liquide, Inc.
    Inventor: Errico De Francesco
  • Patent number: 8002972
    Abstract: A system for producing petroleum products from oil shale includes one or plural kiln lines made up of plural series-connected, indirect-fired, inclined rotary kilns. Plural kiln lines are operated for parallel processing. Oil shale is advanced through kilns in succession and exhausted from each kiln line substantially free of hydrocarbons. Successive kilns along the advancement of oil shale are maintained at successively higher temperatures. A fuel distinct from hydrocarbons in oil shale, such as syngas from a gasifier or hydrogen gas from a separator, drives pyrolysis to extract hydrocarbons. A refining unit located proximate to the kiln lines upgrades extracted hydrocarbons into petroleum products and separates the petroleum products by criteria. A heat extraction unit recovers heat from exhausted oil shale for reuse in kilns. A method involves drying oil shale followed by heating dry oil shale in successively hotter pyrolysis environments.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: August 23, 2011
    Assignee: EnShale, Inc.
    Inventors: Robert D. Morris, Jr., Robert D. Morris, III
  • Publication number: 20100320120
    Abstract: Heat from nuclear reactor as a source of thermal energy is applied to the conversion of carbonaceous materials such as heavy petroleum crude oils, coals and biomass to liquid hydrocarbons. The heat is applied to provide at least a portion of the process heat used in the high temperature, short contact time hydropyrolysis of the carbonaceous material which is supplied with hydrogen generated by a high temperature process such as high temperature steam electrolysis, the sulfur-iodine cycle, the hybrid sulfur cycle, the zinc-zinc oxide cycle, a solid oxide fuel cell or by methane steam cracking. The heat from the nuclear reactor may be used to generate electricity to operate high temperature steam electrolysis used in generation of the hydrogen. By the use of nuclear thermal energy, hydrocarbon resource utilization for process heat is eliminated along with carbon dioxide evolution associated with burning of the hydrocarbon resource to generate process heat.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 23, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Ramesh VARADARAJ, Walter WEISSMAN, Mark A. GREANEY
  • Publication number: 20100282644
    Abstract: Systems and methods are provided for low emission (in-situ) heavy oil production, using a compound heat medium, comprising products of combustion of a fuel mixture with an oxidant and a moderator, mixed with steam generated from direct contact of hot combustion products with water, under pressure. The compound heat medium, comprising mainly CO2 and steam, is injected at pressure into a hydrocarbon reservoir, where steam condenses out of the compound heat medium releasing heat to the reservoir. The condensate is produced with the hydrocarbon as a hydrocarbon/water mixture or emulsion. Non-condensable gases, primarily CO2, from the compound heat medium may remains in the reservoir through void replacement, leakage to adjacent geological strata. Beneficially, any CO2 produced is recovered at pressure, for use in other processes, or for disposal by sequestration. Produced water is recovered and recycled as a moderator and steam generating medium.
    Type: Application
    Filed: December 19, 2008
    Publication date: November 11, 2010
    Inventors: Daniel J. O'Connor, Cameron Hardy
  • Publication number: 20100282643
    Abstract: A system for producing petroleum products (12) from oil shale (32) includes a kiln line (72,152) of plural series-connected, substantially horizontally-disposed kilns (90,94,104,170,180). Crushed oil shale (36) is advanced through kilns (90,94,104,170,180) in succession and exhausted from the kiln line (72,152) substantially freed of hydrocarbons. A heat extraction unit (80) recovers heat (82) from hot spent shale (78). Successive kilns (90,94,104,170,180) along the advancement of crushed oil shale (36) are maintained at successively higher temperatures (T94,T94,T104,T170,T180). Pyrolysis is indirectly-driven using kiln-surrounding roasting jackets (96,106,182), A fuel distinct from hydrocarbons in oil shale (32), such as natural gas (132), syngas (54) from a gasifier (48), or hydrogen gas (62) from a separator (60) provides heat. These combustible gasses are burned in roasting jackets (96,106,182) or converted by a burner (134) into hot flue gas (136) that passes through roasting jackets (96,106,182).
    Type: Application
    Filed: October 10, 2008
    Publication date: November 11, 2010
    Inventors: Robert D. Morris, JR., Robert D. Morris, III, Harry John Gatley, Roger Lee Peterson
  • Patent number: 7807049
    Abstract: The present invention relates to a method and apparatus for extracting kerogen oil from oil shale without adverse environmental impacts. A first plasma reactor is employed for creating a syngas from a carbon-based fuel. A turbine uses the syngas to produce electricity after the syngas' sensible heat passes through a heat exchanger to heat recycling gases used to pyrolyze the oil shale. A kiln receives the oil shale and heats the oil shale to a temperature at which hydrocarbons from the oil shale are released and captured. The hydrocarbons are sent to a distillation tower to produce a usable fuel. A second plasma reactor vitrifies the spent shale to produce an environmentally inert byproduct. The second plasma reactor is powered by electricity produced by the syngas turbine. Carbon dioxide generated by the process is captured and stored to prevent its release into the environment.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: October 5, 2010
    Inventor: Raymond L. Ridge
  • Patent number: 7767187
    Abstract: An apparatus for separating carbon products from used tires includes a decomposing chamber into which used tires are charged, a nitrogen gas supply device that supplies nitrogen gas into the decomposing chamber, one or more magnetrons that generate microwave of predetermined frequency and one or more phase shifters that removes interference between microwaves generated by the magnetrons, a receiving plate that is adapted to receive carbon black and iron cores generated by the decomposing process, a tire support that is adapted to support used tires, an opening and closing device that opens or closes a door on which used tires are placed, conveyor belt that moves carbon black and iron cores to a desired location after decomposition is complete, and a cooling plate that is provided in an upper portion of the apparatus and cools down gaseous oil that is generated by decomposition by microwave into liquid oil.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: August 3, 2010
    Inventor: Charlie Hong
  • Publication number: 20090266540
    Abstract: An enhanced oil recovery method is provided. This method includes; introducing a first essentially pure oxygen stream into a subterranean hydrocarbon-bearing formation traversed by at least one injection well and at least one production well, and initiating and sustaining in-situ combustion in the vicinity of the injection well. This method also includes introducing a second essentially pure oxygen stream and a hydrocarbon-containing fuel gas stream into the combustion device of a power generation system, wherein the combustion device produces an exhaust gas stream comprising water and carbon dioxide. This method also includes separating the exhaust gas stream into a stream of essentially pure water, and a stream of essentially pure carbon dioxide, and introducing at least a portion of the essentially pure carbon dioxide stream into the subterranean hydrocarbon-bearing formation prior to initiating the in-situ combustion.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Applicant: American Air Liquide, Inc.
    Inventor: Errico De Francesco
  • Publication number: 20090159506
    Abstract: An integrated process for extracting and refining bitumen comprises hydroconverting bitumen in a reactor to provide valuable products and light oil by-product; separating the light oil by-product from the valuable products; transporting the light oil to oil sands reserves; producing steam in steam generators at the oil sands reserves using a portion of the light oil transported to the oil sands reserves; extracting bitumen from the oil sands reserves using steam produced in the steam generators; blending bitumen extracted from the oil sands reserves and a portion of the light oil transported to the oil sands reserves to form a transport blend; and transporting the transport blend to the reactor.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventor: Bruce E. Reynolds
  • Patent number: 7419585
    Abstract: A process for upgrading a residua feedstock using a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. The residua feedstock is preferably atomized so that the Sauter mean diameter of the residua feedstock entering the reactor is less than about 2500 ?m. One or more horizontally disposed screws is preferably used to fluidize a bed of hot particles.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 2, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Peter S. Maa, Craig Y. Sabottke
  • Publication number: 20080135457
    Abstract: The present invention relates to a method and apparatus for extracting kerogen oil from oil shale without adverse environmental impacts. A first plasma reactor is employed for creating a syngas from a carbon-based fuel. A turbine uses the syngas to produce electricity after the syngas' sensible heat passes through a heat exchanger to heat recycling gases used to pyrolyze the oil shale. A kiln receives the oil shale and heats the oil shale to a temperature at which hydrocarbons from the oil shale are released and captured. The hydrocarbons are sent to a distillation tower to produce a usable fuel. A second plasma reactor vitrifies the spent shale to produce an environmentally inert byproduct. The second plasma reactor is powered by electricity produced by the syngas turbine. Carbon dioxide generated by the process is captured and stored to prevent its release into the environment.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 12, 2008
    Inventor: Raymond L. Ridge
  • Patent number: 7112311
    Abstract: A cooling method of a hydrotreating plant having a desulfurization section (1) including a furnace (12) for heating liquid to be processed, reactors (14, 15) for hydrotreating sulfur to generate hydrogen sulfide, a hydrogen sulfide absorber (19) for absorbing the hydrogen sulfide generated in the reactors (14, 15), and a compressor (21) for compressing and transferring fluid from the hydrogen sulfide absorber (19) toward the reactors (14, 15), the cooling method comprising the steps of gradually depressurizing the hydrotreating plant at the desulfurization section (1) to a pressure level at which reactor material does not embrittle and gas does not leak due to difference of mechanical thermal expansion in the plant after stopping supply of the liquid to be processed, operating the compressor (21) approximately at the maximum rotation number, and completely extinguishing burners (12A, 12B) in the furnace (12) during plant shutdown operation.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: September 26, 2006
    Assignees: Nippon Petroleum Refining Co., Ltd., Softard Industries Co., Ltd.
    Inventors: Yuji Yoshizumi, Hidekatsu Honda, Masayuki Shoji, Toshihiko Nasu, Katsuhiko Kawakami, Junichi Takano
  • Patent number: 7070758
    Abstract: A process and apparatus for generating hydrogen from oil shale. Crushed oil shale may be placed in a chamber and combusted with carbon monoxide, oxygen and steam to form a gas stream of hydrogen and carbon monoxide. The hydrogen and carbon monoxide stream may be passed through a mechanism to produce hydrogen. In one embodiment, the hydrogen and carbon monoxide stream may be passed through a catalytic converter to produce hydrogen and carbon dioxide. The hydrogen and carbon dioxide may be cooled further and passed through a scrubber to remove the carbon dioxide such that hydrogen is produced. In another embodiment, the hydrogen and carbon monoxide may be passed through fluidized beds of magnetite to produce metallic iron, carbon dioxide and water. The metallic iron may then be conveyed to another chamber, where it may be treated with steam, producing magnetite and hydrogen.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: July 4, 2006
    Inventor: Oren V. Peterson
  • Patent number: 6852215
    Abstract: A method for upgrading a hydrocarbon in which an oxygen source and a hydrogen source are ignited and the resulting synthetic gas is used to initiate a predominantly gas phase heavy oil upgrade reaction. The upgrade reaction is quenched with an additional source of un-upgraded hydrocarbon.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: February 8, 2005
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael Y. Wen, Eric D. Nelson
  • Patent number: 6511937
    Abstract: The invention described herein is directed to (a) slurry hydroprocessing (SHP) of a feed under SHP conditions; (b) deasphalting, under deasphalting conditions the product obtained from said step (a) and recovering a solvent deasphalted oil and solvent deasphalted rock; (c) calcining said solvent deasphalted rock at a temperature of ≦about 1200° F. to produce an ash catalyst precursor; (d) recycling said ash catalyst precursor to said step (a).
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: January 28, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Roby Bearden, Jr., Zhiguo Hou, Martin Leo Gorbaty, David Thomas Ferrughelli, Ronald Damian Myers
  • Patent number: 6464860
    Abstract: A process and apparatus for extracting oil from oil shale. Crushed oil shale is transported into a combustion chamber, along with relatively pure oxygen and carbon monoxide which are combusted to heat the oil shale sufficiently to release petroleum hydrocarbons, leaving a retorted oil shale containing a carbon residue. The combustion phase combines with the carbon residue to generate a recurring combustion/reaction cycle in which the carbon monoxide and oxygen are combusted to form carbon dioxide while retorting the oil shale by heat, and the carbon dioxide reacts with the carbon residue in the retorted oil shale to regenerate a carbon monoxide by-product. The petroleum hydrocarbons are cooled and processed into useable oils. The carbon monoxide by-product can be re-routed back to the combustion area of the combustion chamber and reused, or used in some separate application. Heat from the released petroleum and carbon monoxide by-product can be transferred back to the combustion chamber and also reused.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: October 15, 2002
    Inventor: Oren V. Peterson
  • Patent number: 6054496
    Abstract: A method for producing a heavy crude oil from a subterranean formation through a wellbore, transporting the heavy crude oil to a market location and converting the heavy crude oil into a product distillate hydrocarbon stream and by-products such as heat, steam, electricity and synthesis gas by separating distillable components of the heavy crude oil by distillation and solvent deasphalting and converting the asphaltic residual portion of the heavy crude oil in a fluidized bed to at least one of heat, steam, electricity or synthesis gas. The method also produces diluent hydrocarbons useful as a separate product, a distillable hydrocarbon stream or a diluent for use in the production and transportation of the heavy crude oil.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: April 25, 2000
    Assignee: Atlantic Richfield Company
    Inventors: Steven D. Crane, Gary L. Beer, Harrison F. Blacker
  • Patent number: 5964985
    Abstract: A method of forming liquid hydrocarbons from solid coal. The coal is pulverized to provide a particulate coal feed, which is then extruded to provide a hollow tube of compressed coal supported inside of a support tube. A clay feed is extruded to provide a hollow tube of compressed clay supported inside of the coal tube and a combustible fuel is burned inside of the clay tube. The temperature of combustion is sufficient to fire the extruded clay and pyrolyze the extruded coal to produce hydrocarbon gases and coal char. The support tube has holes for releasing the hydrocarbon gases, which contain suspended particles formed during combustion. The suspended particles are removed from the hydrocarbon gases to provide clean gases, which are passed through an ionizing chamber to ionize at least a portion thereof. The ionized gases are then passed through a magnetic field to separate them from each other according to their molecular weight.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: October 12, 1999
    Inventor: William A. Wootten
  • Patent number: 5955375
    Abstract: A graphite of anisotrophy selected between substantially isotropic to highly anisotropic, or calcined coke graphitizable to such a graphite, or a pitch convertible into such a coke or graphite, is derived from bituminous coal. A first coal is extracted in NMP or like solvent to give a first extract that when carbonized alone produces a substantially isotropic coke. A second coal (the same or different as the first coal) is hydrogenated and similarly extracted to give a second extract. The extent of hydrogenation is controlled so that the second extract when carbonized alone produces a highly anisotropic coke. Test samples are prepared by combining the two extracts in differing ratios including one sample in a ratio at each range end of the range. The solids of each sample are recovered, carbonized into coke, and then optionally converted into graphite, and its degree of anisotrophy analyzed. Comparison of the analyzed degrees for the different coke or graphite samples gives an correlation (e. g.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: September 21, 1999
    Inventors: John W. Zondlo, Peter G. Stansberry, Alfred H. Stiller
  • Patent number: 5935423
    Abstract: A method for producing a heavy crude oil from a subterranean formation via a wellbore, transporting the heavy crude oil to a market and producing a distillable hydrocarbonaceous stream from the crude oil, the method includes: producing the heavy crude oil from a subterranean formation via a wellbore, mixing the heavy crude oil with a diluent to form a mixture, transporting the mixture to a selected location and converting the heavy crude oil into a product distillate hydrocarbon stream and at least one of heat, steam, electricity and synthesis gas by separating distillable components of the heavy crude oil by distillation and converting the residual portion of the heavy crude oil in a fluidized bed to at least one of heat, steam, electricity or synthesis gas. The diluent is typically a hydrocarbonaceous distillate material which may be recovered as a separate product.
    Type: Grant
    Filed: April 12, 1997
    Date of Patent: August 10, 1999
    Assignee: Atlantic Richfield Company
    Inventors: Steven D. Crane, Gary L. Beer, Harrison F. Blacker
  • Patent number: 5929125
    Abstract: A method for producing a heavy crude oil from a subterranean formation through a wellbore and converting the heavy crude oil into a product distillate hydrocarbon stream and at least one of heat, steam, electricity and synthesis gas by separating distillable components of the heavy crude oil by distillation and converting the residual portion of the heavy crude oil in a fluidized bed to at least one of heat, steam, electricity or synthesis gas. The method also produces diluent hydrocarbons useful in the production and transportation of the heavy crude oil.
    Type: Grant
    Filed: April 12, 1997
    Date of Patent: July 27, 1999
    Assignee: Atlantic Richfield Company
    Inventors: Steven D. Crane, Gary L. Beer
  • Patent number: 5846385
    Abstract: The invention provide a process for energy recovering through waste classification and calcination and an apparatus therefor, comprises crushing and sorting various types of wastes and by means of a series of classification, calcination and recovering treatments, recovering and reusing efficiently fuel oil, fuel gas and residues as well as electric power and heat required for the apparatus in the self-supplying feedback system of the invention, and additionally, lowering successfully the possibility of secondary pollution from wastes disposal.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: December 8, 1998
    Inventor: Szu Jeng Chien
  • Patent number: 5843303
    Abstract: A residuum oil solvent extraction process is improved by using direct fired convection heaters for heating the asphaltene, the solvent-deasphalted oil phase, the deasphalted oil and the stripping steam, instead of hot oil heat exchangers. The convection heaters are fired using recirculated flue gas so that the hot flue gas supplied to the convection heaters has a temperature between 800.degree. F. and 1400.degree. F.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: December 1, 1998
    Assignee: The M. W. Kellogg Company
    Inventor: Ram Ganeshan
  • Patent number: 5584969
    Abstract: A thermal decomposition apparatus for plastics wherein plastics are melted and thermally decomposed, and the resulting decomposition gas is cooled for condensation and recovered in the form of a thermal decomposition oil. The apparatus comprises a thermal decomposition reactor for melting and thermally decomposing the plastics therein, an extraneous matter discharge duct having one end opened in a melt of plastics within the reactor, an extraneous matter collecting container connected to the other end of the discharge duct, and an aspirator for aspirating extraneous matter within the reactor together with the melt through the discharge duct into the container.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: December 17, 1996
    Assignee: Hitachi Zosen Corporation
    Inventors: Kenichi Nagai, Kenji Yasuda, Toshio Hama, Yoshitoshi Sekiguchi, Toshio Tachibana, Osamu Nakanishi, Tadashi Moriyama
  • Patent number: 5547548
    Abstract: A method for reducing the undesirable contaminants in process water produced in pyrolysis of low rank coal. The method uses the process water to quench and rehydrate a char produced by pyrolysis with the contaminants in the waster water being absorbed by the char.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: August 20, 1996
    Assignee: Tek-Kol
    Inventor: Mark A. Siddoway
  • Patent number: 5496465
    Abstract: A vibrating bed pyrolysis system has a vibrating bed which is supplied with hot solid particles. Dry coal particles are rapidly heated by the hot solid particles to drive off hydrocarbon vapors. The vapors are condensed in a jet condenser, and products are flowed to a header tank. A portion of the liquid product is stored at room temperature for later use. A small portion of the liquid product is pumped from the header tank and cooled to ambient temperature and is sprayed in the jet condenser, which is positioned above the vibrating pyrolysis bed. A dryer bed vibrated by the same vibrating machine which vibrates the pyrolysis bed is supplied with hot solid particles and the crushed coal. Moisture in the coal particles is evaporated, and water vapors entrain coal fines before the coal particles are passed to the pyrolysis bed. The hot solid particles are taken from a fluidized bed combustor and are returned to the combustor with the coal char particles by entrainment into the gas lift system.
    Type: Grant
    Filed: April 22, 1993
    Date of Patent: March 5, 1996
    Inventor: Arthur P. Fraas
  • Patent number: 5426259
    Abstract: In a method for oil-extracting treatment of wastes for extracting oil by heating wastes contained in a waste containing chamber in a manner to be shut off from air, an inert gas is injected into the waste containing chamber after termination of thermal decomposition of the wastes to force out the combustible gas within said waste containing chamber and said waste containing chamber is then opened, so as to prevent an explosion due to mixing of the residual combustible gas within the waste containing chamber and air after the termination of thermal decomposition of the wastes.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: June 20, 1995
    Assignee: Hojo Co., Ltd.
    Inventors: Kazuharu Hojo, Toshio Koguchi
  • Patent number: 5372708
    Abstract: The invention relates to a process for the exploitation of oil shales wherein the two main constituents thereof, organic and inorganic moieties, are transformed into valuable products. It was found that oil shales which possess a high amount of inorganic constituents, as well as the mineral part resulted from the combustion of oil shales, have a catalytic effect on the cracking of a heavy fraction of fuel, producing valuable fractions of hydrocarbon fuel. According to the process, a mixture of oil shales which possess a low portion of organic moiety, is cracked at a temperature in the range of 350.degree. to 600.degree. C. with a fraction of heavy fuel having a boiling point of above 350.degree. C. From the gases going out from the cracking reactor, hydrocarbon fuel having a boiling point of up to 350.degree. C. is recovered. The residue resulted in said cracking is useful as a raw material in the chemical industry.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: December 13, 1994
    Assignee: A.F.S.K. Electrical & Control Engineering Ltd.
    Inventor: Moshe Gewertz
  • Patent number: 5368723
    Abstract: Waste plastics are heated so as to be thermally decomposed and produce a vapor product containing oil and gas components. The vapor product is brought into contact with a solid acid catalyst containing a hydrochloric acid as a decomposing activator to be cracked so as to recover a low boiling point hydrocarbon oil.
    Type: Grant
    Filed: February 10, 1993
    Date of Patent: November 29, 1994
    Assignee: Mazda Motor Corporation
    Inventors: Toshiki Takahashi, Yoshio Tanimoto
  • Patent number: 5364996
    Abstract: Scrap rubber automobile tires, oil soluble plastics, as well as waste motor oil are disposed of by the process of the subject invention without polluting the nation's environment. Further, useful product synthesis gas, reducing gas, or fuel gas is produced. The rubber from the rubber tires and/or oil soluble plastics are dissolved in the waste motor oil to produce a homogeneous pumpable tire-oil which is separated from undissolved tire belt material containing undissolved rubber and/or oily material, solid residue, and off-gas comprising light hydrocarbons having a maximum atmospheric boiling point of 850.degree. F., and H.sub.2 S. The undissolved tire belt material is coked to produce off-gas, inorganic materials and carbon black. Off-gas form the liquefaction and coking reactors is cooled to produce organic condensate. The tire oil, carbon black, and condensate are mixed together and introduce into a partial oxidation gas generator for the production of synthesis gas, reducing gas, or fuel gas.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: November 15, 1994
    Assignee: Texaco Inc.
    Inventors: Craig J. Castagnoli, Suk-Bae Cha, Hong P. Wang
  • Patent number: 5336395
    Abstract: This invention is directed to a staged process for producing liquids from coal or similar carbonaceous feeds combining a pretreatment stage and a liquefaction stage. In the process, the feed is reacted with carbon monoxide and water at an elevated temperature and pressure. The so pretreated coal is sent to a liquefaction reactor, wherein the coal is reacted at a somewhat higher temperature in the presence of hydrogen and catalyst to produce valuable liquid fuels or feedstocks.
    Type: Grant
    Filed: March 29, 1993
    Date of Patent: August 9, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Joanne K. Pabst, William E. Winter, Jr., Stephen N. Vaughn, Claude C. Culross, Steve D. Reynolds
  • Patent number: 5324417
    Abstract: Distress feeds, such as refinery sludge and slop oils are upgraded over hot equilibrium catalyst (E-Cat) removed from an FCC regenerator. Hot E-Cat demetallizes and/or demulsifies slop and sludge streams in an auxiliary reactor without contaminating the FCC catalyst inventory. Waste streams are upgraded with a "waste" catalyst stream. The auxiliary reactor and FCC reactor may share a product fractionator.
    Type: Grant
    Filed: May 25, 1993
    Date of Patent: June 28, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Mohsen N. Harandi
  • Patent number: 5156734
    Abstract: A system and process for educing hydrocarbons from shale. The system comprises a retort vessel which has an integral apparatus for mixing raw and recycle shale that embodies raw shale pulverizing and has an integral apparatus for finally pulverizing the raw shale particulates that have descended through a fluidized bed. The system further comprises: a burner which generates process heat; heat transfer apparatus which extracts heat for use in the process; and means for recovering such heat. The process involves recovery of significant amounts of process energy including: the recovery of heat from retort vapors; the recovery of heat from spent shale; recovery and utilization of the heat of combustion; and recycling of gases for the operation of mechanical pulverizing apparatus.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: October 20, 1992
    Inventor: Vernon O. Bowles
  • Patent number: 5132007
    Abstract: A method for preparing coal-derived fuel compositions while simultaneously producing electricity by utilizing a novel co-generation configuration employing the hydrodisproportionation of coal. Hydrodisproportionation is the short residence time decomposition and volatilization of coal to produce liquid coproducts, minimizing char and gas production without utilization of external hydrogen, that is, hydrogen other than that contained in the coal feedstock. The char produced is gasified to simultaneously produce steam for electrical power generation and syngas to produce methanol in a once-through process. The methanol purge gas is used as a fuel gas for a gas-driven power generating turbine. The waste heat from the power generation is used as the process heat for hydrodisproportionation.
    Type: Grant
    Filed: May 25, 1990
    Date of Patent: July 21, 1992
    Assignee: Carbon Fuels Corporation
    Inventors: Lee G. Meyer, Gerald F. Cavaliere
  • Patent number: 5098481
    Abstract: Process and apparatus for near-zero discharge soil remediation, preferably in conjunction with an asphalt plant, comprising heating soil contaminated with up to about 30,000 ppm light hydrocarbons in an inclined, axially-fired rotating separator, and sampling the output soil to determine the remaining contaminants. If below 100 ppm (preferably 10 ppm) it may be reemplaced as clean fill. If it does meet D.O.T./CALTRANS standards and is below about 100 ppm it may be used as roadbed fill. If between about 1000 and 100 ppm and meets standards it may be used as aggregate, being mixed with hot oil to form asphalt. The separator offgases are condensed, the reclaimed liquid hydrocarbons separated and combined with the hot oil. The hot condenser offgases are supplied as secondary air to a main dryer, improving efficiency of operation. A dust/mud blow down system clears the heat exchange plenums with compressed air.
    Type: Grant
    Filed: March 6, 1991
    Date of Patent: March 24, 1992
    Assignee: Reed & Graham, Inc.
    Inventor: Kenneth J. Monlux
  • Patent number: 5066325
    Abstract: A process and arrangement are provided for the efficient generation of energy from coal, while at the same time providing for a relatively inexpensive step in processing of iron or steel, and the extraction of valuable materials such as oils from coal. An advantage to the process is that relatively low quality coals can be utilized, since the coal is pretreated before any burning operation. Generally, the process involves three interacting stages. In the First Stage, a coal liquefaction/pyrolysis procedure is utilized to drive off volatiles, and form a very low volatile char. The volatiles can be collected and utilized as a valuable oil product, such as for diesel fuel or the like. The char material is preferably pelletized and utilized as a reductant, in a Second Stage of iron reduction and melting.
    Type: Grant
    Filed: February 24, 1989
    Date of Patent: November 19, 1991
    Assignee: Northern States Power Company
    Inventor: John M. Lehto
  • Patent number: 5055131
    Abstract: A process and arrangement are provided for the efficient generation of energy from coal, while at the same time providing for a relatively inexpensive step in processing of iron or steel, and the extraction of valuable materials such as oils from coal. An advantage to the process is that relatively low quality coals can be utilized, since the coal is pretreated before any burning operation. Generally, the process involves three interacting stages. In the First Stage, a coal liquefaction/pyrolysis procedure is utilized to drive off volatiles, and form a very low volatile char. The volatiles can be collected and utilized as a valuable oil product, such as for diesel fuel or the like. The char material is preferably pelletized and utilized as a reductant, in a Second Stage of iron reduction and melting.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: October 8, 1991
    Assignee: Northern States Power Company
    Inventor: John M. Lehto
  • Patent number: 5045112
    Abstract: A process and arrangement are provided for the efficient generation of energy from coal, while at the same time providing for a relatively inexpensive step in processing of iron or steel, and the extraction of valuable materials such as oils from coal. An advantage to the process is that relatively low quality coals can be utilized, since the coal is pretreated before any burning operation. Generally, the process involves three interacting stages. In the First Stage, a coal liquefaction/pyrolysis procedure is utilized to drive off volatiles, and form a very low volatile char. The volatiles can be collected and utilized as a valuable oil product, such as for diesel fuel or the like. The char material is preferably pelletized and utilized as a reductant, in a Second Stage of iron reduction and melting.
    Type: Grant
    Filed: August 22, 1988
    Date of Patent: September 3, 1991
    Assignee: Northern States Power Company
    Inventor: John M. Lehto
  • Patent number: 5041209
    Abstract: A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.
    Type: Grant
    Filed: July 12, 1989
    Date of Patent: August 20, 1991
    Assignee: Western Research Institute
    Inventors: Chang Y. Cha, John E. Boysen, Jan F. Branthaver
  • Patent number: 5008005
    Abstract: A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: April 16, 1991
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Jer Y. Shang
  • Patent number: 4983278
    Abstract: A two step retorting process for pyrolyzing a solid feed selected from the group consisting of oil shale, tar sand, waste motor oil, and scrap tires to recover valuable products therefrom comprising retorting a mixture of the solid feed in heavy oil at a relatively low temperature, recycling the oil formed back to the first step, and completing the pyrolysis of the residue formed at a higher temperature in the absence of product oil recycling. Apparatus is provided including a means for feeding and soaking the solid feed, a HSPR, an IFBC, and means for handling product liquid and gas.
    Type: Grant
    Filed: April 3, 1989
    Date of Patent: January 8, 1991
    Assignee: Western Research Institute & ILR Services Inc.
    Inventors: Chang Y. Cha, Michael Duc, Curtis J. Hogan
  • Patent number: 4931171
    Abstract: A process for the pyrolysis of carbonaceous materials at an elevated temperature or an elevated temperature and an elevated pressure in which a fuel is burned in the presence of a combustion supporting material, in an amount sufficient to supply at least the stoichiometric amount of oxygen for combustion of all of the fuel, to produce an effluent containing significant amounts of nitrogen and carbon dioxide and having an elected temperature, passing the effluent to a pyrolysis zone, wihtout removal of components therefrom, to thereby create an elevated temperature within the pyrolysis zone and pyrolyzing the carbonaceous material in the pyrolysis zone in the presence of the effluent from the burning step and at an elevated temperature. The burning step may additionally be carried out at a high flame velocity to produce an effluent having an elevated pressure and the carbonaceous material may thus additionally be pyrolyzed at an elevated pressure.
    Type: Grant
    Filed: August 3, 1982
    Date of Patent: June 5, 1990
    Assignee: Phillips Petroleum Company
    Inventor: Douglas R. Piotter
  • Patent number: 4880528
    Abstract: A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.
    Type: Grant
    Filed: May 4, 1988
    Date of Patent: November 14, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: James D. Westhoff, Arnold E. Harak
  • Patent number: 4842692
    Abstract: A method and system of continually reforming sewage and other organic materials into liquid oils and gases by pyrolysis using the containing and entrained water in the inorganic and organic constituents of the sewage.
    Type: Grant
    Filed: July 29, 1985
    Date of Patent: June 27, 1989
    Inventor: David L. Baker
  • Patent number: 4797198
    Abstract: A process is disclosed for the working up of salvage oil, in which the salvage oil is subjected to an extraction under supercritical conditions. The halogen compounds contained in the produced extract are removed by catalytic hydrogenation. The extraction residue is eliminated by deposition or thermal treatment (gasification). In the case of a thermal treatment of the extraction residue, other residues can be simultaneously converted, so that the process is performed without yield of environmentally burdensome residues or by-products. Ethane in particular and/or propane is employed as solvent for the supercritical extraction.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: January 10, 1989
    Assignee: Krupp-Koppers GmbH
    Inventors: Rolf Wetzel, Hubert Coenen, Winfried Kreuch