Additive Is Specified Catalyst Or Liquid Solvent Or Dispersant Patents (Class 208/435)
  • Patent number: 5489377
    Abstract: An improved process for recovering hard acids and soft bases used to decompose coal in which finely divided coal particles are contacted with a hard acid in the presence of a soft base at temperatures of from 0.degree. to 100.degree. C., said hard acid being characterized by a heat of reaction with dimethylsulfide of from 10 kcal/mol to 30 kcal/mol and said soft base being characterized by a heat of reaction with boron trifluoride of from 10 kcal/mol to 17 kcal/mol, followed by extracting the decomposed coal to remove said hard acid and soft base wherein the improvement comprises performing said extraction at a temperature of about 0.degree. to about 50.degree. C. using dimethylcarbonate as the extraction solvent, and wherein following said dimethylcarbonate extraction, said coal is extracted with water at a temperature of from about 60.degree. to 275.degree. C., and wherein following said water extraction, said coal is soxhlet extracted in sulfolane at a temperature of about 25.degree. to about 350.degree.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: February 6, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Andres M. Fraga
  • Patent number: 5454934
    Abstract: A method for converting solid carbonaceous materials to liquid products. The solid carbonaceous material is first treated with a aqueous composition of a metal carbonate or bicarbonate. This results in the metal being atomically dispersed in the carbonaceous material. The treated solid carbonaceous material is then subjected to liquefaction conditions. The preferred metal is iron.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: October 3, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Stephen D. Reynolds, Claude C. Culross, Stephen D. LeViness, John W. Larsen
  • Patent number: 5368723
    Abstract: Waste plastics are heated so as to be thermally decomposed and produce a vapor product containing oil and gas components. The vapor product is brought into contact with a solid acid catalyst containing a hydrochloric acid as a decomposing activator to be cracked so as to recover a low boiling point hydrocarbon oil.
    Type: Grant
    Filed: February 10, 1993
    Date of Patent: November 29, 1994
    Assignee: Mazda Motor Corporation
    Inventors: Toshiki Takahashi, Yoshio Tanimoto
  • Patent number: 5360537
    Abstract: A continuously operable combustion-type retort apparatus includes an insulated retort. A preheater is preferably associated with the retort for preheating incoming material, and means are preferably provided for injecting acetic acid and steam into the incoming material. Heat is supplied from a combustion zone arranged near the bottom of the retort, wherein means are provided for combusting spent shale to provide the heat necessary for retorting. Means for injecting acetic acid and water are arranged above the combustion zone for preventing the combustion from spreading into the material being retorted. The invention also comprises a method of retorting to produce a very high quality oil from shale and having a 7:1 ratio of carbon to hydrogen, along with the production of valuable nitrogen related chemicals, activated lignin and cement.
    Type: Grant
    Filed: February 3, 1993
    Date of Patent: November 1, 1994
    Assignee: Georgia Oil & Gas Co., Inc.
    Inventor: Louis Strumskis
  • Patent number: 5338442
    Abstract: The invention is a process for the aqueous conversion and upgrading of organic resource materials carried out by contacting organic resource materials selected from the group consisting of coal, shale, coal liquids, shale oil, and bitumen with liquid water in the absence of externally supplied hydrogen or reducing agents, controlling the temperature in the range from above about 200.degree. C. to below the critical temperature of water to maintain water in a liquid phase, wherein the pressure is the corresponding vapor pressure (autogenous pressure) of the system, for a time sufficient to effect the conversion and upgrading process. Additionally, the contacting may be conducted in the presence of a catalyst selected from the group consisting of a brine catalyst, clay catalyst and mixtures thereof.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: August 16, 1994
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael Siskin, Alan R. Katritzky, Glen B. Brons
  • Patent number: 5336395
    Abstract: This invention is directed to a staged process for producing liquids from coal or similar carbonaceous feeds combining a pretreatment stage and a liquefaction stage. In the process, the feed is reacted with carbon monoxide and water at an elevated temperature and pressure. The so pretreated coal is sent to a liquefaction reactor, wherein the coal is reacted at a somewhat higher temperature in the presence of hydrogen and catalyst to produce valuable liquid fuels or feedstocks.
    Type: Grant
    Filed: March 29, 1993
    Date of Patent: August 9, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Joanne K. Pabst, William E. Winter, Jr., Stephen N. Vaughn, Claude C. Culross, Steve D. Reynolds
  • Patent number: 5298157
    Abstract: A process for depolymerizing coal at low temperatures by contacting finely divided coal with a hard acid and soft base.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: March 29, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Chang S. Hsu
  • Patent number: 5296133
    Abstract: A process for preparing a low ash coal wherein coal is depolymerized at low temperature by contacting finely divided coal with a hard acid and soft base, and extracting the depolymerized coal to remove mineral contaminants.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: March 22, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Daniel P. Leta, William A. Lamberti, Mark M. Disko, Sutinder K. Behal, Edwin R. Ernst
  • Patent number: 5294349
    Abstract: A process for hydroprocessing coal to hydrocarbon oils wherein coal is depolymerized at low temperatures by contacting finely divided coal with a hard acid and soft base. The depolymerized coal is then hydroprocessed to hydrocarbon oils by forming a mixture with a coal conversion catalyst or precursor thereof, and hydroprocessing the mixture at temperatures of from 250.degree. to 550.degree. C. and hydrogen partial pressures of from 2100 to 35000 kPa.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: March 15, 1994
    Assignee: Exxon Research and Enginnering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Chang S. Hsu, Gopal H. Singhal, Peter S. Maa
  • Patent number: 5277796
    Abstract: A process for pretreating oil shale prior to retorting by contacting with an organic acid, such as formic and acetic acids, at temperatures below about 100.degree. C. for a period of time sufficient to react at least a portion of the oil shale carbonates and separating the shale from the organic acid solution containing at least a major portion of the reaction products of the carbonates and organic acid. The process is preferably carried out in an aqueous solution of organic acid having a pH of 3 and less for a time of about 1/2 to about 4 hours and at ambient temperatures about 20.degree. to about 30.degree. C. Pretreatment of oil shale by this process prior to retorting results in higher liquid and aromatic product fractions being produced by conventional retorting.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: January 11, 1994
    Assignee: Institute of Gas Technology
    Inventor: Sherman S. Chao
  • Patent number: 5256278
    Abstract: An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: October 26, 1993
    Assignee: Energy and Environmental Research Center Foundation (EERC Foundation)
    Inventors: John R. Rindt, Melanie D. Hetland
  • Patent number: 5248413
    Abstract: A process for producing enhanced quality adsorbent carbons and environmentally acceptable materials for energy production from coal includes an initial step of physically cleaning the coal to remove organic sulfur and mineral tailings. Next, a coal slurry of feedstock and water is prepared. Phosphoric acid is then mixed into the water of the coal slurry to provide by volume 15-85% and more preferably 50-85% phosphoric acid. The slurry is then heated and held in a temperature range between 85.degree. and 230.degree. C. for a period of at least five minutes to allow the phosphoric acid to penetrate deeply into the coal. Then the coal slurry is carbonized at a temperature of between 200.degree.-700.degree. C. for at least five to sixty minutes. The processing produces unique products including a low ash content, low sulfur content carbon solid, a tar with a sulfur content of less than 0.05% of the original feedstock and a gas product having a hydrogen to methane ratio of at least 4:1.
    Type: Grant
    Filed: February 28, 1992
    Date of Patent: September 28, 1993
    Assignee: University of Kentucky Research Foundation
    Inventors: John M. Stencel, Francis J. Derbyshire
  • Patent number: 5200063
    Abstract: This invention is directed to a staged process for producing liquids from coal or similar carbonaceous feeds combining a pretreatment stage and a liquefaction stage. In the process, the feed is dispersed in an organic solvent and reacted with carbon monoxide at an elevated temperature and pressure. The so pretreated coal is sent to a liquefaction reactor, wherein the coal is reacted in the presence of hydrogen and catalyst to produce valuable liquid fuels or feedstocks.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: April 6, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: Dan R. Neskora, Stephen N. Vaughn, W. Neal Mitchell, Calude C. Culross, Steve D. Reynolds, Edward Effron
  • Patent number: 5151173
    Abstract: This invention is directed to a process for pretreating coal preliminary to a primary liquefaction or hydroconversion block. In the process, a coal feed, slurried in a solvent, is reacted with carbon monoxide in the presence of a chemical promoter at an elevated temperature and pressure. The promoter enhances the depolymerization and hydrogenation of the coal during pretreatment.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: September 29, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Stephen N. Vaughn, Michael Siskin, Alan Katritzky, Glen Brons, Steve N. Reynolds, Claude C. Culross, Dan R. Neskora
  • Patent number: 5128017
    Abstract: A process for the single-step coal liquefaction is disclosed, which comprises reacting coal in an aqueous suspension with carbon monoxide in the presence of a CO-conversion catalyst selected from the group consisting of an alkaline hydroxide and a carbonate, and in the presence of a hydrogenation catalyst selected from the group consisting of transition metals and compounds thereof, by operating at temperatures within the range of from 300.degree. to 450.degree. C. for a reaction time within the range of from 30 to 80 minutes.
    Type: Grant
    Filed: February 11, 1991
    Date of Patent: July 7, 1992
    Assignee: Eniricerche, S.p.A.
    Inventors: Alberto Delbianco, Ermanno Girardi
  • Patent number: 5110450
    Abstract: An improved process for the hydroconversion of coal, wherein coal is slurried in an organic solvent and subjected to pretreatment with carbon monoxide, followed by separation of a solvent-soluble phase comprising hydrocarbon material from the coal, and subsequently hydroconverting the extracted material in a hydroconversion reactor. The extracted material consists of a relatively hydrogen-rich material which is readily hydroconverted to valuable liquid products in high yield. The coal residue is relatively hydrogen deficient material which can be gasified to produce hydrogen and carbon monoxide for the hydroconversion and pretreatment stages, respectively.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: May 5, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Steve D. Reynolds
  • Patent number: 5091076
    Abstract: A kerogen-agglomerated oil shale is contacted with an acid-containing solution prior to economically upgrade the oil shale prior to retorting. The kerogen is agglomerated by contacting the oil shale with a two phase mixture of an organic liquid and water to form kerogen-rich agglomerates and mineral-rich particles. Acids suitable for use in this invention include any acid capable of forming a soluble metallic salt, preferably sulfurous acid.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: February 25, 1992
    Assignee: Amoco Corporation
    Inventors: Bernard Y. C. So, Terry L. Marker, Gene E. Tampa
  • Patent number: 5061363
    Abstract: In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: October 29, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Malvina Farcasiu, Charlene M. Smith
  • Patent number: 5017282
    Abstract: A process for the single-step coal liquefaction is disclosed, which comprises reacting coal in an aqueous suspension with carbon monoxide in the presence of a CO-conversion catalyst selected from the group consisting of an alkaline hydroxide and a carbonate, and in the presence of a hydrogenation catalyst selected from the group consisting of transition metals and compounds thereof, by operating at temperatures within the range of from 300.degree. to 450.degree. C. for a reaction time within the range of from 30 to 80 minutes.
    Type: Grant
    Filed: September 22, 1988
    Date of Patent: May 21, 1991
    Assignee: Eniricerche, S.p.A.
    Inventors: Alberto Delbianco, Ermanno Girardi
  • Patent number: 5015366
    Abstract: In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.
    Type: Grant
    Filed: April 10, 1990
    Date of Patent: May 14, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John A. Ruether, Theodore B. Simpson
  • Patent number: 5013428
    Abstract: Enhanced recovery of oil from an oil-containing particulate shale sludge is achieved by contacting the sludge with a light hydrocarbon solvent fraction, obtained from the processing of oil derived from the shale, in the presence of water to form an oil-solvent liquid phase which is separated from an aqueous phase containing oil-depleted shale. The oil-solvent liquid phase when introduced into a slurry of product oil and particulate contained within a shale retort provides several advantages, including lowering the viscosity of the product oil and enhanced separation of the product oil from the particulate shale.
    Type: Grant
    Filed: April 5, 1990
    Date of Patent: May 7, 1991
    Assignee: Union Oil Company of California
    Inventors: Ben A. Christolini, Kimanh T. Le, Mitchell J. Berndt, Steven E. Howe
  • Patent number: 5009770
    Abstract: A process of concurrently dedusting and upgrading particulate laden raw, whole retort oil is provided which comprises the steps of: retorting solid hydrocarbon-containing material such as oil shale to liberate an effluent stream of dust laden hydrocarbons; injecting the dust-laden retort effluent product stream into a catalytic hydrotreater; agitating the product stream in the hydrotreater to constantly maintain the particulates in suspension within the oil; catalytically hydrotreating the agitated product stream in the presence of a hydroprocessing gas at a pressure of from 500 to 3000 psi, a temperature of from 650.degree. to 850.degree. F. and a space velocity of from 0.1 to 6.0 hr.sup.-1, whereby the suspended particulates are agglomerated to facilitate solid-liquid separation and substantial amounts of sulfur and nitrogen contaminants are simultaneously removed from the resulting ungraded oil; and mechanically separating the agglomerated particulates from the upgraded whole oil.
    Type: Grant
    Filed: August 31, 1988
    Date of Patent: April 23, 1991
    Assignee: Amoco Corporation
    Inventors: Jeffrey T. Miller, Albert L. Hensley, Jr.
  • Patent number: 5009772
    Abstract: A solvent extraction process for separating a heavy hydrocarbon feedstock material into its various component parts. The process comprises the utilization of pressure reduction to enhance the separation and recovery of a deasphalted oil product comprising substantially the lower molecular weight hydrocarbon components present in the original heavy hydrocarbon feedstock material.
    Type: Grant
    Filed: February 27, 1989
    Date of Patent: April 23, 1991
    Assignee: Kerr-McGee Corporation
    Inventors: Stephen R. Nelson, Richard L. Hood
  • Patent number: 4954246
    Abstract: A process for slurry-phase gasification of carbonaceous feedstock materials is provided wherein feedstock materials are combined with a liquid to form a feedstock slurry. Product gases are formed from the feedstock slurry in a gasifier reaction vessel in the presence of elevated temperatures and pressures and ultrasonic energy. Gasification catalysts may be utilized to provide increased reaction rates. The process of the present invention provides enhanced conversion of carbonaceous solids feedstock to gaseous products comprising primarily methane and carbon dioxide with some higher organic liquids.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: September 4, 1990
    Assignee: Institute of Gas Technology
    Inventors: Dharamvir Punwani, Michael C. Mensinger
  • Patent number: 4909928
    Abstract: A process is provided wherein a carbonaceous material, such as oil shale, is coated with a hydrocarbon liquid, such as shale oil, prior to introduction of the carbonaceous material to a water containing, sealed system, through which the carbonaceous material is transferred to a high pressure vessel, i.e. a retort. The liquid hydrocarbon coating on the carbonaceous material effectively minimizes water absorption by the carbonaceous material in its passage through the water containing system.
    Type: Grant
    Filed: May 20, 1988
    Date of Patent: March 20, 1990
    Assignee: Phillips Petroleum Company
    Inventor: James Scinta
  • Patent number: 4839030
    Abstract: A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used.
    Type: Grant
    Filed: May 27, 1988
    Date of Patent: June 13, 1989
    Assignee: HRI, Inc.
    Inventors: Alfred G. Comolli, Joseph B. McLean
  • Patent number: 4828031
    Abstract: An improved method of recovering oil from diatomite is described. A solvent is injected into the diatomite followed by an aqueous surface active solution. The aqueous surface active solution contains a diatomite/oil water wettability improving agent and an oil/water surface tension lowering agent. The method may be supplemented by injection of water and/or steam into the diatomite.
    Type: Grant
    Filed: October 13, 1987
    Date of Patent: May 9, 1989
    Assignee: Chevron Research Company
    Inventor: Bruce W. Davis
  • Patent number: 4822481
    Abstract: Heavy crude oil is recovered from tar sand by treating the tar sand with a low concentration emulsion of a solvent in water containing 0.5 to 15% by volume of the solvent. Suitable solvents include hydrocarbons and halogenated hydrocarbons. Solvent-in-water emulsions are efficient in extracting bitumen with the major advantage of greatly reduced solvent: tar sand ratios.
    Type: Grant
    Filed: August 13, 1987
    Date of Patent: April 18, 1989
    Assignee: The British Petroleum Company p.l.c.
    Inventor: Alistair S. Taylor
  • Patent number: 4818374
    Abstract: A process for converting coal to an oil fraction, which comprises subjecting coal to a first hydrogenation reaction, deashing the reaction product of the first hydrogenation reaction and subjecting the deashed liquefied oil to a second hydrogenation reaction, wherein coal, a solvent and hydrogenation-treated heavy oil components are supplied for the first hydrogenation reaction; from the first hydrogenation reaction product, at least a part of the oil fraction is obtained; from the first hydrogenation reaction product, a substantial amount of preasphaltene components is removed simultaneously with or independently of the deashing operation, and the deashed liquefied oil containing heavy oil components and not greater than 20% by weight of preasphaltene components thereby obtained, is supplied for the second hydrogenation reaction; from the second hydrogenation reaction product, an oil fraction and heavy oil components are separated and the heavy oil components are recycled to the first hydrogenation reaction
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: April 4, 1989
    Assignees: Mitsubishi Chemical Industries Ltd., Kabushiki Kaisha Kobe Seiko Sho, Idemitsu Kosan Company Limited, Asia Oil Company Limited, Nippon Brown Coal Liquefaction Co., Ltd.
    Inventors: Nobuyoshi Hirokoh, Yoichi Kageyama, Yukio Nakako, Tetsuo Matsumura
  • Patent number: 4804459
    Abstract: A method for upgrading a concentrate of tar sands bitumen containing colloidal clay in which solvent-diluted bitumen is contacted for a short time in a riser with hot attrition-resistant substantially catalytically inert fluidizable microspheres, causing a selective vaporization of the lighter high hydrogen content components of the bitumen. A portion of the heavier asphaltenes and most of the components which contain metals, sulfur and nitrogen remain on the attrition-resistant microspheres. Colloidal clay in the bitumen feed also deposits on the microspheres instead of being carried over with the vaporized hydrocarbon product. The contact material, with deposit, is passed to a burner provided with high velocity air jets which attrites the colloidal clay away from the microspheres and the material removed by attrition is recovered. The heated microspheres are reintroduced into the riser for further contact with incoming diluted bitumen charge.
    Type: Grant
    Filed: June 25, 1987
    Date of Patent: February 14, 1989
    Assignee: Engelhard Corporation
    Inventors: David B. Bartholic, William J. Reagan
  • Patent number: 4798668
    Abstract: Hydrocarbon liquids are recovered from oil shale and other solids containing organic material by heating the solids to a temperature below about 900.degree. F., preferably between about 550.degree. F. and about 900.degree. F., in the absence of an added liquid organic solvent and then contacting the heated solids with a liquid organic solvent in such a manner that the solids and solvent do not form a slurry and under conditions such that hydrocarbons are extracted from the heated solids into the organic solvent. The extracted hydrocarbons are then recovered from the solvent by fractionation. Normally, the solids will be heated by contacting them with a hot, monoxidizing gas, preferably an oxygen-free flue gas generated within the process.
    Type: Grant
    Filed: September 2, 1987
    Date of Patent: January 17, 1989
    Assignee: Union Oil Company of California
    Inventor: Phillman N. Ho
  • Patent number: 4747938
    Abstract: A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.
    Type: Grant
    Filed: April 17, 1986
    Date of Patent: May 31, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: M. Rashid Khan
  • Patent number: 4703798
    Abstract: Hydrocarbons may be recovered from subterranean oil shale deposits by penetrating the deposit with a well, applying hydraulic and/or explosive fracturing to the portion of the formation adjacent the well to form a zone of rubberized and/or fractured oil shale material and then introducing it to the treated portion of the formation a hydrogen doner solvent, preferably tetralin, in a sufficient volume to essentially fill all of the void spaces in the formation within the rubberized and fractured portion of the formation, and then applying hydrogen to the well and maintaining the hydrogen at a pressure range of from 50 to 500 and preferably from 250 to 350 pounds per square inch for a period of time in the range of from 50 to 600 and preferably 250 to 350 days, which causes a disintegration of the oil shale minerals.
    Type: Grant
    Filed: June 30, 1986
    Date of Patent: November 3, 1987
    Assignee: Texaco Inc.
    Inventor: Robert H. Friedman
  • Patent number: 4695373
    Abstract: Hydrocarbon liquids are recovered from oil shale and other solids containing organic material by heating the solids to a temperature below about 900.degree. F., preferably between about 550.degree. F. and about 900.degree. F., in the absence of an added liquid organic solvent and then contacting the heated solids with a liquid organic solvent in such a manner that the solids and solvent do not form a slurry and under conditions such that hydrocarbons are extracted from the heated solids into the organic solvent. The extracted hydrocarbons are then recovered from the solvent by fractionation. Normally, the solids will be heated by contacting them with a hot, nonoxidizing gas, preferably an oxygen-free flue gas generated within the process.
    Type: Grant
    Filed: January 31, 1986
    Date of Patent: September 22, 1987
    Assignee: Union Oil Company of California
    Inventor: Phillman N. Ho
  • Patent number: 4692239
    Abstract: Hydrocarbons may be recovered from crushed oil shale by contacting the coarsely crushed oil shale material with a hydrogen doner solvent such as tetralin, alone or in combination with high pressure gaseous hydrogen for a period of time sufficient to cause disintegration of the oil shale lumps, after which the pretreated material is introduced into a vessel containing a free oxygen containing gas such as air in a fluid environment at a temperature range from 30.degree. to 43.degree. C. to remove organic fragments from the polymeric kerogen component of oil shale by oxidative scissions. The oxidation is conducted using a liquid phase solvent for the organic fractions removed from the kerogen. Preferred solvents are naphthalene, tetralin and phenanthracene. The solvent-organic fraction solution is then separated into solvent and organic fraction by sublimation with the solvent being recycled.
    Type: Grant
    Filed: June 30, 1986
    Date of Patent: September 8, 1987
    Assignee: Texaco Inc.
    Inventor: Robert H. Friedman
  • Patent number: 4673484
    Abstract: There is disclosed a process of oil recovery from tar sands or separation of hydrocarbons from a solid or viscous bitumen source wherein carboxylic acids or carboxylic acid mixtures are utilized as a solvent or diluent and are mixed with heavy crude oil, injected into an oil reservoir or mixed with tar sands in a surface vessel to reduce the viscosity of the crude oil and to increase the mobility of the oil. The process is characterized by the use of an amphiphilic phase separation induced by injection of isopropanol or other alcohol to facilitate the recovery of carboxylic acid diluent from the bitumen product, and another phase separation step may be employed to separate the carboxylic acid component from the alcohol. Sodium chloride or other brine solution is usually mixed with the alcohol and many embodiments combine a light hydrocarbon such as heptane with the carboxylic acid as an additional solvent. Carboxylic acids in the form of fatty acids with from 8 to 20 carbon atoms are preferred.
    Type: Grant
    Filed: November 19, 1986
    Date of Patent: June 16, 1987
    Assignee: Diversified Petroleum Recovery, Inc.
    Inventors: Robert E. Babcock, W. Hardey Beaver, F. Dianne Wood
  • Patent number: 4668380
    Abstract: A method for producing a kerogen concentrate from oil shale comprises treating shale with an aqueous caustic treating solution to produce a shale product of substantially transformed mineral content, and then treating the shale product with an aqueous acid solution to produce a kerogen concentrate. The acid solution extracts minerals from the shale product to lower the ash content of the kerogen concentrate. A spent acid solution containing the extracted minerals can be treated to recover minerals therefrom.
    Type: Grant
    Filed: October 13, 1983
    Date of Patent: May 26, 1987
    Assignee: Standard Oil Company (Indiana)
    Inventors: William F. Wolff, John D. McCollum
  • Patent number: 4663028
    Abstract: A process of preparing a donor solvent for coal liquefaction. Liquefied coal is distilled to separate the coal into a fraction having a boiling point less than about 350.degree. F. and a residue having a boiling point greater than about 350.degree. F. The residue from the distillation is deasphalted in a first solvent capable of substantially extracting from the residue a first oil comprising lower molecular weight compounds and saturated compounds. The residue from the first deasphalting step is then deasphalted in a second solvent capable of substantially extracting from the residue a second oil comprising concentrated aromatic and heterocyclic compounds and leaving in the residue asphaltenes and ash. The second oil can be used as a donor solvent. The second oil extracted in the second deasphalting step is preferably partially hydrogenated prior to use as a donor solvent for the liquefaction of coal.
    Type: Grant
    Filed: August 28, 1985
    Date of Patent: May 5, 1987
    Assignee: Foster Wheeler USA Corporation
    Inventor: John G. Ditman
  • Patent number: 4626342
    Abstract: An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.
    Type: Grant
    Filed: October 29, 1985
    Date of Patent: December 2, 1986
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Swaminathan Sunder
  • Patent number: 4617105
    Abstract: An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.
    Type: Grant
    Filed: September 26, 1985
    Date of Patent: October 14, 1986
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Robert N. Miller
  • Patent number: 4609455
    Abstract: A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.
    Type: Grant
    Filed: February 21, 1985
    Date of Patent: September 2, 1986
    Assignee: International Coal Refining Company
    Inventors: Robert F. Weimer, Robert N. Miller
  • Patent number: 4594141
    Abstract: A process for the conversion of high boiling saturated organic materials is described. The method comprises contacting said high boiling organic materials at a temperature of at least about 300.degree. C. and at a reaction pressure of at least about 2000 psi with an aqueous acidic medium containing at least one olefin, and a halogen-containing compound selected from the group consisting of a halogen, a hydrogen halide, a compound which can form a halide or a hydrogen halide in the aqueous acidic medium under the process conditions, or mixtures thereof whereby the high boiling organic material and aqueous acidic medium form a substantially single phase system. Optionally the process can be conducted in a reducing atmosphere. The process of the invention is useful for producing and recovering fuel range liquids from petroleum, coal, oil shale, shale oil, tar sand solids, bitumen and heavy hydrocarbon oils such as crude oil distillation residues which contain little or no carbon-carbon unsaturation.
    Type: Grant
    Filed: December 18, 1984
    Date of Patent: June 10, 1986
    Assignee: The Standard Oil Company
    Inventors: Stephen C. Paspek, Jr., Curtis D. Coker
  • Patent number: 4587004
    Abstract: Disclosed is a process for beneficiating oil-shale wherein the oil-shale is treated in a first stage with an aqueous ammonium salt solution and in a second stage and optionally a third stage in the presence of a solution containing ammonium ions/ammonia, or both. The pH of the first stage is from about 5 to 9, and the pH of the second and third stages are from about 0.5 to 5 or about 9 to 12 with the proviso that the pH of the second and third stage is not in the same range.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: May 6, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael Siskin, Glen Brons
  • Patent number: 4587005
    Abstract: Disclosed is a process for removing mineral matter from Rundle oil-shale by contacting the oil-shale with (a) an ammonium salt solution and (b) an organic solvent, at a temperature from about 0.degree. C. to about 300.degree. C. for a time which is sufficient to substantially separate at least about 80 wt. % of the carbonate mineral matter from the oil-shale.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: May 6, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael Siskin, Glen Brons