Processes Patents (Class 209/214)
  • Patent number: 10799881
    Abstract: Method for separating first type particles from a mixture of at least first type particles and second type particles, the method comprising contacting in a dispersion medium first type particles and second type particles with magnet type particles, so that in the dispersion medium first type particles agglomerate to magnet type particles to obtain magnetic agglomerates, separating magnetic agglomerates from second type particles by applying a magnetic field; wherein during step an amount of energy is transferred into a mixture of the dispersion medium, first type particles, second type particles and magnet type particles.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: October 13, 2020
    Assignee: BASF SE
    Inventors: Gerardo Incera Garrido, Rodrigo Ivan Serna Guerrero, Igor Shishkov, Reinhold Rieger, Lars Vicum
  • Patent number: 10732178
    Abstract: The present invention is directed to novel assays for detecting target molecules. The assays employ small size, detectably labeled, magnetic nanoparticles associated with a capture molecule. The detection assay is accelerated by applying magnetic field during the assay. The assays of the invention can be used to enhance the efficiency of the detection step in dot blot, Western blot and ELISA.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: August 4, 2020
    Assignee: BIO-RAD HAIFA LTD.
    Inventors: Shai Nimri, Vered Bronner
  • Patent number: 10543581
    Abstract: A system and method for grit recycling includes a first stage and a second stage. The first stage includes a first apparatus adapted to coarsely separate reusable grit from waste material. The second stage is positioned adjacent the first stage such that the coarsely separated reusable grit from the first outlet of the first stage is automatically input to the second stage. The second stage includes a second apparatus adapted to finely separate the reusable grit from the waste material.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: January 28, 2020
    Assignee: Sandblast Solutions, Inc.
    Inventor: Tom J. Sulkowski
  • Patent number: 10500594
    Abstract: The disclosure discloses an apparatus for continuous preparation of carbon nanotubes, comprising a main reactor, a separator and a return pipe, wherein the main reactor comprises a raw gas inlet, a return feed inlet, a protective gas inlet and a reaction material outlet; the separator is fluid communicated with the reaction material outlet of the main reactor at a top of the separator; a magnetic separating unit is arranged in the top of the separator at a side proximal to the main reactor; a product outlet and a material recycling port are arranged at a bottom of the separator respectively; the product outlet is located at a side distal to the main reactor; the recycling port is located at a side proximal to the main reactor; one end of the return pipe is fluid communicated with the material recycling port of the separator, and the other end is fluid communicated with the return feed inlet of the main reactor; the apparatus further comprises a tail gas outlet.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: December 10, 2019
    Assignee: Shandong Dazhan Nano Materials Co., LTD
    Inventors: Yan Li, Sijiao Xu, Zhenhua Lv, Lei Geng
  • Patent number: 10449550
    Abstract: The present invention provides a sorting device and a sorting method for sorting a magnetically attractable substance and a non-magnetically attractable substance from a sorting target using a high gradient magnetic separator.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: October 22, 2019
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tatsuya Oki, Tomohiro Noguchi, Taeko Hazumi
  • Patent number: 10441903
    Abstract: An anti-counterfeiting mechanism for a filter element to specifically, and preferably uniquely, identify a filter with a conductive pattern or path of conductive materials preferably either embedded (thin film circuit) under the surface, or over molded on, a portion of the filter. The conductive materials are preferably positioned at the filter end cap. The resistance of the filter element is an identifier that is preferably associated with the OEM manufacturer's labeling (such as product number) and/or other branding of the component. This electrical resistance signature permits rapid identification of counterfeit filters.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 15, 2019
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Mark V. Holzmann, J. Bruce Schelkopf
  • Patent number: 10427167
    Abstract: A device for separating weakly magnetic first particles, for example hematite particles, from mixture (912) comprising the first particles (913) and less magnetic second particles (914) is presented. The device comprises first magnetizing equipment (901) for producing magnetic field and for moving the mixture so that mutually opposite polarity portions (N, S) of the magnetic field sweep the mixture in a sweeping direction and thereby deflect the direction of movement of the first particles towards the sweeping direction and away from the direction of movement of the second particles.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: October 1, 2019
    Assignee: Magsort Oy
    Inventors: Tommi Ropponen, Niklas Törnkvist
  • Patent number: 10413847
    Abstract: An apparatus for collecting mineral particles in a slurry or the tailings is disclosed. The apparatus may take the form of a filter, a conveyor belt or an impeller to be used in a processor to collect mineral particles in the slurry, or in a tailings pond to collect mineral particles in the tailings. The filter, conveyor belt or impeller has a collection area made of or coated with a polymer or a polymer-coated material having a functional group, either anionic or cationic to attach to the mineral particles. Alternatively, the synthetic material has hydrophobic molecules to render the collection area hydrophobic. When the mineral particles in the slurry or tailings are combined with collector molecules, the mineral particles also become hydrophobic. The hydrophobic mineral particles are attracted to the hydrophobic collection area. The filter, conveyor belt and impeller may have a plurality of passage ways in order to increase the contacting surfaces.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 17, 2019
    Assignee: CiDRA Corporate Services Inc.
    Inventor: Paul J. Rothman
  • Patent number: 10370271
    Abstract: The present invention is related to a high aspect ratio column thickener and a process thereof useful for dewatering of iron ore tailings. The column thickener has been developed with multiple feed inlet points and an auxiliary inlet point for water to clear the jam of high concentration slurry, if required. The column also consists of a conical portion at the bottom. Magnetic field has been applied using induced magnetic coil just above the conical portion of column thickener. Iron ore tailings slurry is fed into the column thickener and particles are allowed to settle in axial direction with and without the application of magnetic field.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 6, 2019
    Assignee: Council of Scientific and Industrial Research
    Inventors: Alok Tripathy, Surendra Kumar Biswal, Ashok Kumar Sahu
  • Patent number: 10202577
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: February 12, 2019
    Assignee: The General Hospital Corporation
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
  • Patent number: 10107829
    Abstract: The present invention is to present an analyzing method for analyzing a target substance contained in a sample using a reagent containing magnetic particles. The method comprises steps of: (a) magnetically capturing magnetic particles in a container with a first magnetic force generating member arranged on a lower side of the container accommodating a liquid specimen containing the magnetic particles; (b) transferring the container to a target substance separating section after the step (a); and (c) in the target substance separating section, discharging a cleaning liquid into the container and aspirating a liquid in the container while magnetically capturing the magnetic particles in the container with a second magnetic force generating member.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 23, 2018
    Assignee: Sysmex Corporation
    Inventors: Hiroto Toyoshima, Kazunori Mototsu
  • Patent number: 10046334
    Abstract: A process and system for the separation of materials from electrochemical cells is disclosed. Electrode materials are removed from electrochemical cells and separated into constituent active materials using magnetic separation.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 14, 2018
    Assignee: RSR TECHNOLOGIES, INC.
    Inventors: Timothy W. Ellis, Joshua A. Montenegro
  • Patent number: 10048258
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 14, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, John Lewis Emerson Campbell
  • Patent number: 9994964
    Abstract: A process to extract metal ions and potentially other hazardous species present in solution to levels low enough to make it suitable for use and/or to quantify the levels of these contaminants in the solution. The process involves the use of functionalized magnetic particles to bind with metal ions. The process occurs in a three-chambered cell and utilizes a magnet to agglomerate the magnetic particles bound with metal ions to an electrode, and by altering the pH of the solution within the cell using gases produced by a solid state electrolyzer or from the air, encourages the plating of the metal ions on the electrode and the pushing out of the metal-free solution out of the cell.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 12, 2018
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Daniel Scherson, Anna Cristina Samia, Zhange Feng
  • Patent number: 9933422
    Abstract: The invention is to devices and method for rapid determination of analytes in liquid samples by various assays including immunoassays incorporating a sample dilution feature for forming a diluted sample for analysis. The devices and methods also include a dilution verification feature for verifying the degree of dilution of the diluted sample. The devices preferably are capable of being used in the point-of-care diagnostic field is provided.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: April 3, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, Graham Davis, Michael Zelin
  • Patent number: 9919316
    Abstract: A method of creating a zone of high-gradient magnetic field in a Kittel open domain structure is disclosed. The method is based on a magnetic system of an open domain structure type and is embodied in the form of two substantially rectangular constant magnets which are mated by the side faces thereof, whose magnetic field polarities are oppositely directed and the magnetic anisotropy is greater than the magnetic induction of the materials thereof. The magnets are mounted on a common base comprising a plate which is made of a non-retentive material and mates with the lower faces of the magnets, thin plates which are made of a non-retentive material, are placed on the top faces of the magnets and forms a gap arranged above the top edges of the magnets mated faces. A nonmagnetic substrate for separated material is located above the gap.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: March 20, 2018
    Assignee: Giamag Technologies AS
    Inventors: Vladimir Alexandrovich Glebov, Alexey Vladimirovich Glebov, Evgeny Ivanovich Ilyashenko, Arne Torbjørn Skjeltorp, Tom Henning Johansen
  • Patent number: 9790571
    Abstract: The present invention describes a process for removing uranium from a copper concentrate by magnetic separation (low and high field) to reduce the uranium content to commercially acceptable levels.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 17, 2017
    Assignee: VALE S.A
    Inventors: Antonio Euclides Jaques Marques, Wesley José Da Silva, Mauricio Guimarães Bergerman, Wendel Johnson Rodrigues, Keila Lane de Carvalho Gonçalves
  • Patent number: 9739768
    Abstract: Methods, apparatus and compositions for separating a desired or undesired population or subpopulation from a biological sample are disclosed herein. The selection procedure is based on ferromagnetic, dense particles in a preferred size range from about 0.8 to about 1.2 microns. Specific binding agents are bound to the particles that recognize and bind to specific molecules on the targeted population or subpopulation, and the particles are mixed with the sample in such a way as to promote movement of the particles relative to the sample, promoting binding to the targeted population or subpopulation without non-specifically binding to non-targeted populations in the sample. Because of the large particle density, the bound population is separated from the fluid sample by gravity.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 22, 2017
    Assignee: Russell Biotech, Inc.
    Inventors: Thomas R. Russell, Pauline McGann, Mike Musick, Michael Ciocci
  • Patent number: 9573139
    Abstract: Methods and systems for processing incineration byproduct from waste incinerators, ash purification and recovery of materials and metals. High levels of aggregate and metals recovery and ash purification are achieved for residual ash with reduced environmental contaminants.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: February 21, 2017
    Assignee: PURE RECOVERY GROUP, L.P.
    Inventor: John Vandemierden
  • Patent number: 9550978
    Abstract: The invention relates to a method for tagging, identifying and isolating a target cell, wherein the cell is contacted with a capture compound comprising a small molecule moiety, for example a pharmaceutical drug molecule, capable of selectively binding with the cell surface of the target cell, and a function that is capable to covalently or quasi-covalently bind to a surface as a marker or tagging function. In some embodiments the capture compound also includes a photoactivatable reactivity function. The capture compound attaches to a particle that mediates identification or isolation of the tagged cell.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 24, 2017
    Assignee: CAPROTEC BIOANALYTICS GMBH
    Inventors: Mathias Dreger, Thomas Lenz, Christian Dalhoff, Michael Joachim Sefkow
  • Patent number: 9463469
    Abstract: A re-processing method for isolating a marketable free iron product and a non-metallic co-product from small-particulate metal production by-product is provided. The re-processing method may be adapted so that the resulting free iron product is marketable granules of various sizes and properties. The method may include refining the metal production by-product into a suitably sized and spaced feedstock. The feedstock may be fed into the system and, through exposure to a first magnetic field, isolated into a first free iron product and a first co-product. The first free iron product may continued through the system so as to further isolate into a second free iron product and a second co-product through exposure to a second magnetic field. The second free iron product may be the marketable granules of free iron product, while the first co-product and the second co-product may be combined and further isolated in the marketable non-metallic co-product.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: October 11, 2016
    Inventors: Richard Morris, Robert Stephen Watt
  • Patent number: 9416035
    Abstract: A device for sewage treatment, including: a reactor and a magnetic field generator. The reactor includes a stirrer, an aerator, an activated sludge zone, an upper end including a water inlet, a side wall including a water outlet, and a bottom including a sludge outlet. The magnetic field includes magnets and iron plates. The activated sludge zone is disposed inside the reactor. The stirrer and the aerator are disposed within the activated sludge zone. The aerator is arranged beneath the stirrer. The magnetic field generator is disposed outside the reactor. The magnets and the iron plates are symmetrically disposed on two sides of the reactor, respectively, and each of the magnets is disposed on the inner side of the corresponding iron plate. The magnets disposed on both sides of the reactor produce magnetic fields having the same direction.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 16, 2016
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Chuan Niu, Jinju Geng, Ke Xu
  • Patent number: 9334548
    Abstract: The present invention provides a method of separating and recovering iron from a waste non-ferrous slag, generated in a process for smelting of non-ferrous metals, including copper, zinc and lead, in which a reducing agent and a reaction catalyst are added to the crushed waste non-ferrous slag, and the mixture is subjected to a reduction reaction, thereby converting amorphous iron oxides, bound to alumina, calcium oxide, magnesium oxide, silica, and the like in the waste non-ferrous slag, to crystalline iron (Fe) and iron carbide (Fe2C); the resulting material is crushed to separate iron and iron carbide obtained by the reduction reaction from components such as alumina, calcium oxide, magnesium oxide, silica, and the like; the crushed material is separated into fractions by particle size; and the fractions are subjected to wet magnetic separation and dry magnetic separation to separate and recover magnetic iron concentrates from the fractions.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 10, 2016
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Byung-Su Kim, Jae Chun Lee, Soo Bok Jeong, Doyun Shin
  • Patent number: 9023212
    Abstract: A device (10) is provided for separating magnetic or magnetizable particles from a liquid by using a magnetic field. The device includes a head piece (3) with one or more magnetizable bars (4) which is/are permanently or detachably connected with the head piece (3), as well as one or more permanent magnets (1) whose relative position with respect to the head piece can be changed by a predeterminable movement of the magnet(s) or/and by a predeterminable movement of the head piece.
    Type: Grant
    Filed: January 28, 2006
    Date of Patent: May 5, 2015
    Assignee: chemagen Biopolymer-Technologie AG
    Inventor: Lothar à Brassard
  • Patent number: 9016478
    Abstract: A magnetic drum separator (2), with a drum (6) rotatable about a rotational axis (4), a magnet arrangement (10) of a plurality of magnets (12) arranged in the interior (8) of the drum (6), a separation zone (18) in the exterior space (14) of the drum (6); a feed material (22) flows through the separation zone (18) and is there separable with the aid of a magnetic field (26) generated by the magnet arrangement (10), into a waste stream (30) and a recyclable material stream (28). A relative position (R) of at least one of the magnets (12) relative to the rotational axis (4) can be varied. A nominal magnitude (S) for a process value (78) on the drum separator (2) that is influenced by the separation behavior (32) is specified. At least one measurement device (74) detects an actual magnitude (I) of the process value (78), and a controller (82), which changes the relative position (R) of the at least one of the magnets (12), whereby the actual magnitude (I) is controlled to approach the nominal magnitude (S).
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 28, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rudolf Böhnlein, Argun Gökpekin, Andreas Lekscha, Frank Schmidt, Ralph Oliver Schmidt, Bernd Zehentbauer
  • Patent number: 8991612
    Abstract: A method obtains non-magnetic ores from a suspension containing ore particle-magnetic particle agglomerates. The method involves dividing ore particle-magnetic particle agglomerates precipitated from the suspension into a mixture of separately present ore particles and magnet particles, separating the magnetic particles from the mixture, forming a first mass flow containing magnetic particles and a second mass flow containing ore particles. At least one information describing a measure of the content of ore particles in the first mass flow and being associated with the first mass flow and/or at least one information describing a measure of the portion of magnetic particles in the second mass flow and being associated with the second mass flow are determined in order to determine the efficiency of at least one of the separation processes described above.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Diez, Argun Gökpekin, Wolfgang Krieglstein
  • Patent number: 8991615
    Abstract: A method obtains non-magnetic ores from a suspension-like mass flow containing non-magnetic ore particles. The method involves mixing the mass flow with magnetic particles in a mixing device and forming ore particle-magnetic particle agglomerates, feeding the mass flow as a separator feed flow to a magnetic separator for separating the ore particle-magnetic particle agglomerates from the mass flow, forming a separator concentrate flow containing ore particle-magnetic particle agglomerates and a separator residual flow containing the remaining constituents of the mass flow, and separating the ore particles from the ore particle-magnetic particle agglomerates contained in the separator concentrate flow.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Diez, Argun Gökpekin, Wolfgang Krieglstein
  • Patent number: 8991611
    Abstract: A method of separating a powder mixture is disclosed. A first magnetic field is applied to the powder mixture which may contains a non-magnetic metal powder and a contaminant powder. A field strength of the first magnetic field magnetizes the non-magnetic metal powder and leaves the contaminant powder non-magnetized. A second magnetic field is applied to the powder mixture to separate the magnetized metal powder from the non-magnetized contaminant powder.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Raymond Joseph Stonitsch, George Albert Goller
  • Patent number: 8967385
    Abstract: An installation for clear separation in one cycle of a conglomerate of different metals into individual material components. The installation involves the conglomerate of different metals being comminuted in a machine for producing a homogeneous mixture of metals and being transported to a feeding device. The conglomerate is transported to a highly magnetic rotating drum that separates ferrous-magnetic materials together with fluff and then conveys remaining nonferrous materials to a slowly running conveyor belt, underneath the conveyor belt, slowly rotating discs are mounted in a row that carry on their outer surface area a plurality of permanent magnets of an alternating pol direction. The nonferrous materials include particles that are stripped into a collection bin.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 3, 2015
    Inventor: Alexander Koslow
  • Patent number: 8919566
    Abstract: A method of sorting particulate matter comprises creating an unconstrained monolayer feed stream of particulate matter moving with an initial first trajectory in a gaseous medium, and subjecting the monolayer feed stream while in the gaseous medium to a magnetic field of sufficient strength to influence the trajectory of at least some particles in the feed stream to cause a spread of particle trajectories from the first trajectory. The particles are subsequently sorted and/or collected on the basis of their trajectories.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Curtin University of Technology
    Inventor: Vladimir Arkadievich Golovanevskiy
  • Patent number: 8916049
    Abstract: The processing method for a mixture according to the present invention is a method for processing a mixture having first particles made of a magnetic material or a nonmagnetic material and second particles made of a magnetic material or a nonmagnetic material wherein the second particles are mixed in a fluid medium containing the first particles, and comprises a dispersion step of dispersing aggregates of the first particles and the second particles present in the mixture, and a magnetic separation step of providing the first particles and second particles with a magnetic force a of different magnitudes by applying a magnetic field to the mixture in parallel with or after the dispersion step, thereby separating the first particles and the second particles from each other.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: December 23, 2014
    Assignees: Osaka University, Ube Industries, Ltd.
    Inventor: Shigehiro Nishijima
  • Patent number: 8910794
    Abstract: A method for removing metal pieces contained in gypsum board wastes from the gypsum board wastes by means of a drum magnetic separator, wherein the method comprises the step of dropping cut pieces obtained by cutting the gypsum board wastes at fixed intervals “D” on the drum magnetic separator at a drop height “h”; and the drop height “h” is 0.8 to 3 times the interval “D”.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: December 16, 2014
    Assignee: Tokuyama Corporation
    Inventors: Shingo Hiranaka, Genji Taga
  • Publication number: 20140353218
    Abstract: The invention relates to analysis of photon upconversion luminescent inorganic lanthanide-doped nanomaterials and/or separation and/or purification of them from other materials such as biomolecules and/or chemicals used e.g. for bioconjugation in preparation of reagents based on upconverting lanthanide nanoparticles for bioanalytical assays. The invention utilizes a high gradient magnetic separator (HGMS) and it can be applied from large submicron materials to small nanoparticles just nanometers or tens of nanometers in diameter. It is also scalable from small analytical scale to preparative scale.
    Type: Application
    Filed: January 29, 2013
    Publication date: December 4, 2014
    Applicant: KAIVOGEN OY
    Inventor: Tero Soukka
  • Patent number: 8865000
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material, at least one second material and magnetic particles, which comprises the following steps (A) at least partial removal of the magnetic particles by application of a magnetic field gradient, optionally in the presence of at least one dispersing medium, to give a mixture comprising at least one first material and at least one second material and a reduced amount of magnetic particles, (B) contacting of the mixture comprising at least one first material and at least one second material from step (A) with magnetic particles so that the at least one first material and the magnetic particles agglomerate, (C) separation of the agglomeration product from the mixture from step (B) by application of a magnetic field gradient and (D) dissociation of the agglomeration product separated off in step (C) in order to obtain the at least one first material and the magnetic particles
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: October 21, 2014
    Assignees: BASF SE, Siemens AG
    Inventors: Alexej Michailovski, Imme Domke
  • Patent number: 8858801
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material, at least one second material and at least one third material, which comprises at least the following steps: (A) contacting of the mixture comprising at least one first material, at least one second material and at least one third material with at least one hydrocarbon in an amount of from 0.01 to 0.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: October 14, 2014
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga
  • Publication number: 20140299518
    Abstract: A magnetic drum for magnetic separation of iron particles from iron sands, which includes an outer body or hollow cylindrical casing; two side covers, one for each end of the casing; and an inner body or core which includes sheet-metal discs, evenly distributed and connected to a central shaft, and at least 18 straight magnetic plates which are positioned radially on the outer surface of the core and which are supported by the discs. The invention also describes the magnetic separation system for the magnetic separation of iron particles from iron sands, which includes a magnetic drum such as described above, two boxes with the corresponding support and rotation bearings thereof, positioned at either end of the drum, two gear motors with the corresponding shafts and cog belts, two metal delivery boxes; an electrical panel having variable frequency drives, a loading bin and a flow regulator.
    Type: Application
    Filed: December 29, 2011
    Publication date: October 9, 2014
    Inventor: Luis Cavero Rosales
  • Patent number: 8844731
    Abstract: Methods, systems, and apparatus are provided for automated isolation of selected analytes, to which magnetically-responsive solid supports are bound, from other components of a sample. An apparatus for performing an automated magnetic separation procedure includes a mechanism for effecting linear movement of a magnet between operative and non-operative positions with respect to a receptacle device. A receptacle holding station within which a receptacle device may be temporarily stored prior to moving the receptacle to the apparatus for performing magnetic separation includes magnets for applying a magnetic field to the receptacle device held therein, thereby drawing at least a proton of the magnetically-responsive solid supports out of suspension before the receptacle device is moved to the magnetic separation station. An automated receptacle transport mechanism moves the receptacle devices between the apparatus for performing magnetic separation and the receptacle holding station.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Gen-Probe Incorporated
    Inventors: Christopher B. Davis, Norbert D. Hagen, James T. Tuggle
  • Patent number: 8807344
    Abstract: An adjustable magnetic separator and method is provided herein to process aggregate material including magnetic material into a magnetic portion having a predetermined magnetic susceptibility, and a non-magnetic portion. The method and system include configuring an adjustable magnet to provide an effective magnetic field at a separating surface of the magnetic separator corresponding to the predetermined magnetic susceptibility of the magnetic portion to be separated. The strength or intensity of the effective magnetic field may be varied by mechanically adjusting the position of the magnet array included in the adjustable magnet relative to a separating surface defined by the magnetic separator.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 19, 2014
    Assignee: Mid-American Gunite, Inc.
    Inventors: Donald E. Keaton, Keith P. Masserant, Lawrence I. Masserant, Robert G. Harte
  • Patent number: 8800775
    Abstract: The invention relates to a method for treating materials containing a mixture of plastic materials and metal materials, said method including: —crushing the material to be treated; pyrolysis of the crushed material; a first magnetic separation performed on the pyrolysed material providing, on the one hand, a ferrous metal fraction and, on the other hand, non-ferrous residue; —a second magnetic separation performed on the non-ferrous residue providing, on the one hand, a non-ferrous metal fraction and, on the other hand, non-magnetic residue. The invention also relates to a facility for implementing said method.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 12, 2014
    Assignee: Terra Nova
    Inventors: Christian Thomas, Joël Menuet, Gervais Vanhelle
  • Publication number: 20140216988
    Abstract: A magnetic drum separator (2), with a drum (6) rotatable about a rotational axis (4), a magnet arrangement (10) of a plurality of magnets (12) arranged in the interior (8) of the drum (6), a separation zone (18) in the exterior space (14) of the drum (6); a feed material (22) flows through the separation zone (18) and is there separable with the aid of a magnetic field (26) generated by the magnet arrangement (10), into a waste stream (30) and a recyclable material stream (28). A relative position (R) of at least one of the magnets (12) relative to the rotational axis (4) can be varied. A nominal magnitude (S) for a process value (78) on the drum separator (2) that is influenced by the separation behavior (32) is specified. At least one measurement device (74) detects an actual magnitude (I) of the process value (78), and a controller (82), which changes the relative position (R) of the at least one of the magnets (12), whereby the actual magnitude (I) is controlled to approach the nominal magnitude (S).
    Type: Application
    Filed: July 30, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rudolf Böhnlein, Argun Gökpekin, Andreas Lekscha, Frank Schmidt, Ralph Oliver Schmidt, Bernd Zehentbauer
  • Patent number: 8765922
    Abstract: A method and associated device for enrichment of Neél-magnetic particles from a dispersion of Brown-magnetic particles and Neél-magnetic particles. The device and method use ferromagnetic separation particles having a mean diameter of 100 to 250 ?m located in a alternating magnetic field. The ferromagnetic separation particles have a magnetically and chemically inert coating.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: July 1, 2014
    Assignee: Miltenyi Biotec GmbH
    Inventors: Jürgen Schulz, Daniel Michalek, Dirk Merkel, Stefan Miltenyi
  • Publication number: 20140166788
    Abstract: A system and a method for separating rare earth element compounds from a slurry of mixed rare earth element compounds, comprising flowing the slurry of mixed rare earth element compounds through at least a first channel rigged with at least a first magnet along a length thereof and connected to at least a first output channel at the position of the magnet, and retrieving individual rare earth element compounds and/or groups of rare earth element compounds, separated from the slurry as they are selectively attracted by the magnet and directed in the corresponding output channel according to their respective ratio of magnetic susceptibility (??) to specific density (??).
    Type: Application
    Filed: August 15, 2012
    Publication date: June 19, 2014
    Inventors: Gary Pearse, Jonathan Borduas, Thomas Gervais, David Menard, Djamel Seddaoui, Bora Ung
  • Patent number: 8701893
    Abstract: A magnetic separation device is provided, including a first magnetic field unit and a first separation unit disposed at a side of the first magnetic field unit. The first magnetic field unit includes a first magnetic yoke having opposite first and second surfaces, and a plurality of first magnets respectively disposed over the first and second surfaces, wherein the same magnetic poles of the plurality of first magnets face the first magnetic yoke. The first separation unit includes a body made of non-magnetic materials and a continuous piping disposed in the body, including at least one first section and at least one second section, wherein at least one second section is perpendicular to at least one first section, and at least one second section is adjacent to, and in parallel to a side of the first magnetic yoke not in contact with the plurality of first magnets.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Mean-Jue Tung, Li-Kou Chen, Yu-Ting Huang, Hsin-Hsin Shen, Wei-Lin Yu, Yi-Shan Lin, Shinn-Zong Lin, Woei-Cherng Shyu, Hsiao-Jung Wang
  • Patent number: 8689981
    Abstract: Systems and methods for the manipulation of particles within channels such as microfluidic channels are provided. In one set of embodiments, magnets are positioned around a channel. As a fluid containing magnetic and non-magnetic particles flows through the channel, the magnetic field created by the magnets can be used to transport the magnetic and/or non-magnetic particles to desired locations within the channel, which may useful in some cases for causing some separation of the particles. For example, the magnetic field may be used to transport magnetic or non-magnetic particles from a core fluid to a surrounding sheath fluid. In some cases, the magnetic field is used to transport non-magnetic particles to a small volume within the channel (e.g., a single-file row within the channel).
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 8, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Howard A. Stone, Mara G. Prentiss, Pierre Striehl, Efraim Feinstein
  • Patent number: 8678194
    Abstract: An apparatus for separating magnetic pieces of scrap-material of a first group from magnetic pieces of scrap-material of a second group, wherein a mixture of pieces of scrap-material from the first group and from the second group is collectively transported with a conveyor to a separating zone, in which separating zone the pieces or scrap-material are subjected to forces induced by a magnetic field and to gravitational forces.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: March 25, 2014
    Assignee: Technische Universiteit Delft
    Inventors: Peter Carlo Rem, Simon Peter Maria Berkhout
  • Patent number: 8646613
    Abstract: The present invention relates to a process for separating magnetic constituents from an aqueous dispersion comprising these magnetic constituents and nonmagnetic constituents by passing the aqueous dispersion through a reactor space in which the aqueous dispersion is separated by means of a magnet installed on the outside of the reactor space into at least one stream I comprising the magnetic constituents and at least one stream II comprising the nonmagnetic constituents, wherein the magnetic constituents in stream I are treated with a flushing stream, a reactor comprising a reactor space, at least one magnet installed on the outside of the reactor space, at least one inlet, at least one outlet for a stream I and at least one outlet for a stream II and at least one facility for treating stream I with a flushing stream, and also the use of this reactor in the process of the invention.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 11, 2014
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Reinhold Reiger, Juergen Oswald
  • Publication number: 20140021105
    Abstract: A flow enhanced method and system for flow non-linear magnetophoresis (F-NLM) is described. By tuning an external field frequency and the flow rate the migration velocities of different bead types may be caused to differ by several orders of magnitude over an extended range of frequencies to allow for separation of particles. Use of such efficiency in separation in bio-separation and similar assays is described.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 23, 2014
    Inventors: Gil Lee, Peng Li, Mark Platt, Gemma Cannon
  • Publication number: 20130334107
    Abstract: The present invention relates to an apparatus for separating magnetic particles from a dispersion comprising these magnetic particles and non-magnetic particles, comprising at least one loop-like canal forming 90 to 350° of a circular arc through which the dispersion flows, at least one magnet that is movable alongside the canal and which forces the magnetic particles into at least one first outlet, and at least one second outlet through which the non-magnetic particles are forced, wherein the apparatus further comprises at least one first means for treating the dispersion or a part of the dispersion with a hydrophilic liquid and at least one second means for treating the dispersion or a part of the dispersion with a hydrophobic liquid. In addition, the present invention relates to the use of the apparatus according to the present invention for separating magnetic particles from a dispersion, comprising these magnetic particles and non-magnetic particles.
    Type: Application
    Filed: May 3, 2013
    Publication date: December 19, 2013
    Applicant: BASF SE
    Inventors: Reinhold Rieger, Imme Domke, Alexej Michailovski, Piyada Charoensirisomboon, David F. Blackwood
  • Publication number: 20130327684
    Abstract: The present invention provides a method and an apparatus capable of continuously and accurately separating, by type, a mixture containing at least two types of particles, or capable of separating specific particles from the mixture, using a gradient magnetic field. In the present invention, a mixture containing at least two types of particles, particles of one type of which are made of a paramagnetic or diamagnetic substance, is treated. A magnetic field whose magnetic field gradient has a vertical component and a horizontal component is applied to a supporting liquid 21 stored in a separating tank 31. When the mixture is placed into the supporting liquid 21, the particles of the one type are guided such that they are positioned in the supporting liquid 21 at a predetermined height from a bottom face 39 of the separating tank 31 while horizontally traveling. Alternatively, the particles of the one type magnetically levitate at a liquid surface of the supporting liquid 21 and horizontally travel.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 12, 2013
    Applicants: UBE INDUSTRIES, LTD, OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Fumihito Mishima
  • Publication number: 20130313167
    Abstract: Methods and systems for incineration ash such as ash from municipal waste incineration plants, purification and recovery of materials and metals. Increased levels of aggregate and metals recovery and purification are achieved and production of residual ash with less environmental contaminants.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 28, 2013
    Inventor: John VANDEMIERDEN