Integral Or Coated Layers Patents (Class 210/490)
  • Publication number: 20130327701
    Abstract: A separation membrane including a polymer having a structural unit represented by the following Chemical Formula 1, and a water treatment device including a separation membrane, are useful for desalination.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Applicant: IUCF-HYU (Industry-university Cooperation Foundation Hanyang University)
    Inventors: Jung Im HAN, Sung Soo HAN, Soon Chul KWON, Ho-Bum PARK, Young Hoon CHO
  • Patent number: 8603340
    Abstract: A process for preparing a reverse osmosis membrane that includes (A) providing a polyamine, a polyfunctional acid halide, and mono-hydrolyzed trimesoyl chloride; (B) combining the polyamine, polyfunctional acid halide, and mono-hydrolyzed trimesoyl chloride on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acyl halide on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the mono-hydrolyzed trimesoyl chloride.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 10, 2013
    Assignee: NanoH2O, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8596465
    Abstract: There is provided a ceramic filter provided with a ceramic porous membrane having few defects, small and uniform membrane thickness, and high resolution performance. The ceramic filter includes: a porous substrate which is a microfiltration membrane (MF membrane), a titania UF membrane which is an ultrafiltration membrane (UF membrane) formed on the porous substrate and has an average pore size of 2 to 20 nm and an average thickness of 0.1 to 1.0 ?m, and a silica membrane which is formed on the titania UF membrane and a ceramic porous membrane a part of which has penetrated into pores of the titania UF membrane or into pores of the UF membrane and the porous substrate.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: December 3, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tatsuya Hishiki, Ichiro Wada
  • Patent number: 8597518
    Abstract: In one embodiment, a membrane comprises: a nonporous, hydrophobic selective layer configured to be on a feed solution side of the membrane and polyethylene layer configured to be on a permeate side of the membrane, wherein the membrane is configured to selectively separate an organic component from an aqueous solution. In some embodiments, the method for separating an organic component from an aqueous stream can comprise: contacting a nonporous, hydrophobic selective layer of a membrane with the aqueous stream comprising the organic component, creating a vacuum on the side of the membrane comprising the support layer, permeating the organic component through the membrane into an exit chamber, and removing the organic component permeate from the exit chamber.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: December 3, 2013
    Assignee: The University of Connecticut
    Inventors: Richard S. Parnas, Si-Yu Li
  • Publication number: 20130313185
    Abstract: A forward osmosis membrane (10) and method (50) of forming the forward osmosis membrane (10) are provided. The forward osmosis membrane (10) has an integral hydrophilic asymmetric layer (12). The integral hydrophilic asymmetric layer (12) includes a first sublayer (18) having a plurality of first elongated pores (20) extending along a depth of the first sublayer (18) and a second sublayer (22) having a plurality of second elongated pores (24) extending along a thickness of the second sublayer (22). The first elongated pores (20) are dimensionally smaller than the second elongated pores (24). A polyamide layer (14) is formed over a surface of the integral hydrophilic asymmetric layer (12).
    Type: Application
    Filed: February 13, 2012
    Publication date: November 28, 2013
    Inventors: Tai-Shung Chung, Kaiyu Wang
  • Patent number: 8590712
    Abstract: Disclosed are modular filter-in-filter elements, namely an outer filter element and an inner filter element which may be assembled to form a filter cartridge for use in separation methods and systems. The outer filter element typically functions as a coalescing element and the inner element typically functions as a particulate filter element. The disclosed filter cartridges may be structured for separating water from a hydrocarbon-based liquid fuel as the fuel moves through the cartridge from outside to inside.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 26, 2013
    Assignee: Cummins Filtration IP Inc.
    Inventors: Mark T. Wieczorek, Terry Shults, William C. Haberkamp, Jonathan Sheumaker, Barry M. Verdegan, Christopher E. Holm, Brian W. Schwandt
  • Patent number: 8591741
    Abstract: Processes for manufacturing a thin film composite membrane comprising multi-walled carbon nanotubes include contacting under interfacial polymerization conditions an organic solution comprising a polyacid halide with an aqueous solution comprising a polyamine to form a thin film composite membrane on a surface of a porous base membrane; at least one of the organic solution and the aqueous solution further including multi-walled carbon nanotubes having an outside diameter of less than about 30 nm.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 26, 2013
    Assignee: General Electric Company
    Inventors: Hua Wang, Gary William Yeager, Joseph Anthony Suriano, Steven Thomas Rice
  • Patent number: 8584869
    Abstract: The present invention provides an absorbent which can remove cells present in blood including activated leukocytes such as granulocytes and monocytes, and cancer cells as well as can remove cytokines which facilitate the activation of the remaining cells, and further has no concern for pressure loss and has high configuration stability. That is, the present invention provides an absorbent which absorbs the granulocytes and the monocytes in blood, an absorbent for cancer therapy which absorbs an immunosuppressive protein and an absorbent having a bilayer structure of a net and a nonwoven fabric, having a zeta potential of ?20 mV or more, as well as a blood circulation column containing any of the absorbents filled therein.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 19, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Masaaki Shimagaki, Yasufumi Yamamura, Katsuhisa Sato, Kazuo Teramoto, Takeshige Oozeki, Shigehisa Wada
  • Patent number: 8584868
    Abstract: A filter medium for removing particles from a fluid flow has a pre-filter layer and a fine-filter layer joined to each other in the flow direction. A first supporting layer is attached to the unfiltered side of the pre-filter layer and a second supporting layer is attached to the filtered side of the fine-filter layer in order to absorb the longitudinal and transverse forces in the event of tensile loading. The traverse force absorbing layer has a greater bending stiffness in a traverse direction while the longitudinal force absorbing layer has a greater bending stiffness in a longitudinal direction.
    Type: Grant
    Filed: September 17, 2011
    Date of Patent: November 19, 2013
    Assignee: Mann+Hummel GmbH
    Inventors: Heiko Wyhler, Jochen Reyinger, Klaus Gehwolf
  • Patent number: 8567612
    Abstract: RO membranes using chlorinated water as a feed stream maybe protected from damage by the chlorine with a protective layer including reactive nitrogen which forms chloromines on the surface of the membrane that reduce chlorine penetration. This protective layer also provides substantial anti-fouling capabilities, whether used with a chlorinated or unchlorinated feed stream because the chloramines are anti-bacterial. Although chlorine is lost in use, the anti-fouling layer or coating can be recharged with additional chlorine without damaging the discrimination layer. The anti-fouling layer or coating may be advantageously used with Thin film composite, TFC, membranes for use in forward and reverse osmosis may include nanoparticles, monohydrolyzed and/or di-hydrolyzed TMC, and/or alkaline earth alkaline metal complexes or other additives.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 29, 2013
    Assignee: NanoH2O, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8567611
    Abstract: The invention discloses a filtration material for desalination, including a support layer, and a desalination layer formed on the support layer, wherein the desalination layer is a fiber composite membrane and includes at least one water-swellable polymer. The water-swellable polymer is made of hydrophilic monomers and hydrophobic monomers, and the hydrophilic monomers include ionic monomers and non-ionic monomers, and the ionic monomers include cationic monomers and anionic monomers.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: October 29, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Shu-Hui Cheng, Jong-Pyng Chen, En Kuang Wang, Yi-Chun Lo, Shan-Shan Lin
  • Patent number: 8562876
    Abstract: Membranes are made from polymers and heat treated so that they have at least two zones with pores of different sizes. Pores with a smaller size have a lower molecular weight cut off than pores with a larger size. Zones with pores of different sizes may also be made by coating portions of membranes with polymer coatings. Membranes with pores of different sizes may be used in dialyzers for hemofiltration, hemodiafiltration, and other hemodialysis procedures. The membranes may also be used in other separation processes.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 22, 2013
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventor: Shmuel Sternberg
  • Patent number: 8550256
    Abstract: A method of photo-grafting onto a separation membrane a copolymer includes at least one of: and; For example, in Structure 1A, x1?2 and y1?1; R1 and R2 are independently selected from the group consisting of CH3 and H; R3 is independently selected from the group consisting of poly(oxyalkylene), quaternary ammonium salts, pyridinium salts, sulfonium salts, sulfobetaines, carboxybetaines, alcohols, phenols, tertiary amines, aryl groups; linear, branched and cyclic alkylenes; linear, branched and cyclic heteroalkylenes; linear, branched and cyclic fluoroalkylenes; and siloxyl; R4 is independently selected from the group consisting of linear, branched, and cyclic alkylenes; linear, branched and cyclic hetroalkylenes; linear, branched and cyclic fluoroalkylenes; phenyl; and siloxyl; and Z1 is 0 or 1.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jacquana T. Diep, Young-Hye Na, Ankit Vora
  • Patent number: 8544658
    Abstract: The present invention relates to a method of preparing RAFT, ATRP or NMRP functionalized thin film composite (TFC) polyamide membranes on a microporous substrate. A further aspect of the invention is the subsequent modification of the thin film composite polyamide membrane by controlled free radical polymerization (CFRP) to yield membranes having new chemical and physical properties, e.g. antifouling and/or antibacterial properties. Further aspects of the invention are the functionalized thin film composite (TFC) polyamide membranes on the microporous substrate itself and the membranes modified by controlled free radical polymerization.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: October 1, 2013
    Assignee: Polymers CRC Limited
    Inventors: Marina H. Stenzel, Ricardo Godoy-Lopez, Simon Harrisson, Ezio Rizzardo
  • Patent number: 8544657
    Abstract: A filter system for removing contaminants from oil based industrial liquids and the like includes a support tube with a permeable sidewall through which the industrial liquid flows in an inside out direction. A multilayer coalescence media surrounds the support tube, and includes at least one layer of a non-woven fibrous material that is partially wettable by the dispersed water in the industrial liquid, and commences coalescence of the same to form small primary water droplets, and at least one sheet of a precisely woven monofilament fabric stacked on the downstream side of the non-woven material. The woven fabric is substantially wettable by the dispersed water, and has a fixed open mesh with uniformly sized and spaced apart pore openings which continue to coalesce the primary water droplets into large water drops which fall from the filter for collection along the bottom of the apparatus.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 1, 2013
    Assignee: Kaydon Custom Filtration Corporation
    Inventors: Ruijun Chen, William J. Martin
  • Patent number: 8540074
    Abstract: A reusable multi-functional pad/filtration device for providing an easy and unique way to absorb fluids from raw, thawed, or cooked foods. The device features two outer layers that sandwich two middle layers and an absorbent gasket. The gasket is positioned between the two middle layers. Borders are disposed on each side edge of the device. The device may be used in combination with a holding system that includes a base and a serving tray.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 24, 2013
    Inventor: Lewis Matthews, III
  • Publication number: 20130233788
    Abstract: A filtering membrane has a supporting structure comprising filaments and is coated with a dope to produce a polymeric membrane layer. Some or all of the filaments comprise a second polymer that is soluble or swellable in a solvent of the dope. The supporting structure may be braided with yarns. One or more yarns may comprise filaments comprising the second polymer. In one example, a braided tubular support is coated with a dope based on PVDF in NMP. Some or all of the yarns of the braid are made of bi-component core-sheath PET-PVDF filaments. With as few as 4% of the yarns in the braid made of the bicomponent filaments, peel strength and pull force of the membrane is improved relative to a braid made entirely of PET yarns. In experimental examples, unpeelable composite membranes were produced. The membrane may be used, for example, for water or wastewater filtration applications.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kristof VIZVARDI, Marcell MARSCHALL, Andras Gyorgy POZSGAY, Zoltan A. FEKETE
  • Publication number: 20130233789
    Abstract: High efficiency and high capacity glass-free filtration media include a blend of synthetic non-fibrillated staple fibers and fibrillated cellulosic staple fibers, wherein the fibrillated cellulosic fibers are present in the media in an amount to achieve an overall filtration efficiency at 4 microns of 95% or higher and a ratio of filtration capacity to media caliper of 0.5 mg/in2/mils and greater. The filtration media is made by forming a wet laid sheet from a fibrous slurry blend of the synthetic non-fibrillated staple fibers and fibrillated cellulosic staple fibers, followed by drying the sheet to obtain the filtration media. Optionally, the filtration media may be provided with a resin binder and may be grooved and/or pleated.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventor: Ina PARKER
  • Patent number: 8528746
    Abstract: A method of manufacturing a hydrophilic membrane and hydrophilic membranes having improved antifouling property using a supercritical fluid or a subcritical fluid. The method involves combining a coating solution from a hydrophilic group-containing monomer, an initiator, a cross-linking agent and a supercritical fluid or subcritical fluid in a high pressure solution vessel and transferring the coating solution to a membrane in a high pressure coating vessel, coating the surfaces and micropores of the membranes through cross-linking polymerization reactions. Non-reacted coating material is returned to the high pressure solution vessel. The membranes are removed from the coating vessel, cleaned and dried. The hydrophilic membrane manufactured by the present invention is excellent in properties of hydrophobic membranes such as thermal stability, chemical stability and mechanical strength, and surfaces and micropores of the membranes are uniformly coated.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: September 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Jaehoon Kim, Young Haeng Lee, Jae-Duck Kim, Jong Min Park, Jongsoo Jurng
  • Patent number: 8529814
    Abstract: A hollow fiber membrane is made by covering a tubular supporting structure with a membrane dope and converting the membrane dope into a solid porous membrane wall. Optionally, a textile reinforcing structure in the form of a circular knit may be added around the supporting structure before it is covered in dope. The reinforcing structure thereby becomes embedded in the membrane wall. The supporting structure may be soluble in a non-solvent of the membrane wall, for example water, and may be removed from the membrane. Alternatively, the supporting structure may be porous. A porous supporting structure may be made by a non-woven textile process, a sintering process within an extrusion machine, or by extruding a polymer mixed with a second component. The second component may be a soluble solid or liquid, a super-critical gas, or a second polymer that does not react with the first polymer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Attila Palinkas, Marcell Marschall, Robert Szabo
  • Patent number: 8528744
    Abstract: The invention relates to hydrophilic membranes which are supplemented or treated with a non-ionic surfactant and processes for preparing such membranes. The membranes are particularly suitable for plasma separation or for haemodialysis and haemodiafiltration, but can also advantageously be used in other applications. Accordingly, the invention is further directed to the use of such membranes for plasma separation, plasma filtration, micro filtration, plasma therapy, haemodialysis and haemodiafiltration or cell filtration applications, respectively. The treated hydrophilic membranes show excellent biocompatibility, such as reduced platelet drop and decreased TAT levels.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 10, 2013
    Assignee: Gambro Lundia AB
    Inventors: Bernd Krause, Markus Hornung, Silvia Koch, Doris Deppisch
  • Publication number: 20130228529
    Abstract: The present invention is directed to microfiltration membranes comprising a microporous material, said microporous material comprising: (a) a polyolefin matrix present in an amount of at least 2 percent by weight, (b) finely divided, particulate, substantially water-insoluble silica filler distributed throughout said matrix, said filler constituting from about 10 percent to about 90 percent by weight of said microporous material substrate, wherein the weight ratio of filler to polyolefin is greater than 4:1; and (c) at least 35 percent by volume of a network of interconnecting pores communicating throughout the microporous material. The present invention is also directed to methods of separating suspended or dissolved materials from a fluid stream such as a liquid or gaseous stream, comprising passing the fluid stream through the microfiltration membrane described above.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 5, 2013
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Carol L. Knox, Raphael O. Kollah, Justin J. Martin, Timothy A. Okel, Daniel E. Rardon, Christine Gardner, Shantilal M. Mohnot
  • Patent number: 8517185
    Abstract: A water separator and particulate filter with a first or outer stage configured to coalesce water from fluid such as fuel, and a second or inner stage configured to separate coalesced water from the fluid and also remove fine solid contaminants from the fluid. The coalescing stage includes a pleated cylinder of polymeric media. The pleated cylinder has pleat valleys and downstream pleat tips, and release sites defined at the downstream pleat tips. The separator stage includes a non-pleated cylinder of polymeric media surrounding and in contact with outer pleat tips of a multi-layer pleated cylinder.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 27, 2013
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Mark Wieczorek, Terry Shults, William Haberkamp, Jonathan Sheumaker, Barry M. Verdegan, Christopher E. Holm, Brian W. Schwandt
  • Patent number: 8505743
    Abstract: The present invention relates to surface modification of reverse osmosis membranes to introduce antifouling properties without compromising the separation properties of the original membranes. This approach utilizes: providing a coated membrane surface having enhanced hydrophilic characteristics that prevents the biofoulants from settling; have a surface that consists of hydrophilic brushes that unsettle any biofoulants that get through; and having antimicrobial ions present in the membrane coatings and able to remove or minimize any remaining biofoulants without leaching into the permeate. These coatings are made using dendritic polymers such as hyperbranched polymers or dendrimers.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: August 13, 2013
    Assignee: Michigan Molecular Institute
    Inventors: Abhijit Sarkar, Petar R. Dvornic, Peter I. Carver, Joseph L. Rousseau
  • Patent number: 8506807
    Abstract: Disclosed herein is a spiral wound type filter cartridge and more specifically, a spiral wound type filter cartridge in which activated carbon fiber is provided. The inside of spiral wound type filter cartridge is capable of serving as a carbon filter in a water purifier, thus eliminating the necessity of the use of any carbon filter for pre- or post-treatment in the process of purifying raw water, reducing an overall size of the water purifier and considerably reducing costs associated therewith.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 13, 2013
    Assignee: Woongjincoway Co., Ltd.
    Inventors: Sun-Yong Lee, Doo-Won Han, Youn-Kook Kim, Hyoung-Jun Ahn, Eu-Jean Moon, Suk-Young Lee
  • Patent number: 8505745
    Abstract: The present application is generally directed towards polyacrylonitrile- (PAN-) based, amphophilic graft copolymers, for example, for the production of membranes for liquid filtration. In one aspect, the present invention provides systems and methods for preparing high flux, fouling resistant nanofiltration membranes whose pore size can be readily tuned. In some cases, microphase separation of a graft copolymer comprising a backbone comprising polyacrylonitrile (PAN) and hydrophilic side-chains is used. In some cases, nanochannels of tunable width are formed, which may give the membrane permselective properties and/or anti-fouling character. In some cases, a copolymer may be used as an additive in the immersion precipitation casting of ultrafiltration or microfiltration membranes. In certain instances, the additive can segregate to the membrane exterior and/or pore surfaces, e.g.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: August 13, 2013
    Assignee: Massachusetts Institute of Technology
    Inventor: Ayse Asatekin Alexiou
  • Publication number: 20130184503
    Abstract: The invention relates to a membrane having a pore-free separating laye including a polymer mixture for separating simple alcohols and water fr their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the invention, the polymer mixtu is composed of at least two polymer components which are taken from t group of polymer components which includes of the following polymer components: Polyvinyl alcohol, other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymer of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL), a terpolymer of DMAE, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or from vinyl chloride ethylene acrylic es or from vinyl acetate vinyl chloride acrylic ester. The invention further relates to the use and to a method for manufacturing a membrane in accordance with the invention.
    Type: Application
    Filed: July 6, 2011
    Publication date: July 18, 2013
    Applicant: SULZER CHEMTECH AG
    Inventors: Michael Frania, Andreas Huebner, Eva Maus
  • Patent number: 8485366
    Abstract: There are disclosed a ceramic porous membrane formed with less membrane formation times and having less defects, a small and uniform thickness and a high flux, and a ceramic filter. A silica membrane is formed on a titania UF membrane as an ultrafiltration membrane (a UF membrane) formed on a porous base member which is a microfiltration membrane (also referred to as an MF membrane) and having an average pore diameter smaller than that of the porous base member, and the silica membrane has an average pore diameter smaller than that of the titania UF membrane, and does not substantially permeates the titania UF membrane.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: July 16, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Manabu Isomura, Tatsuya Hishiki, Ichiro Wada
  • Patent number: 8475661
    Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 2, 2013
    Assignee: Nagare Membranes, LLC
    Inventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
  • Publication number: 20130146529
    Abstract: The invention relates to a filter material for fluids, in particular hydraulic fluids, comprising a single- or multi-layered filter medium (6) and a supporting structure which rests flatly on the at least one side thereof and consists of at least one individual fabric (10, 12) made of warp threads (28) and weft threads (32). Said filter material is characterized in that at least one set of warp threads (28) and/or weft threads (32) overlaps three or more adjacent warp threads (28) and/or weft threads (32) while forming a long-float weave.
    Type: Application
    Filed: May 27, 2011
    Publication date: June 13, 2013
    Inventors: Matthias Schwender, Andreas Schmitz, Edwin Koch
  • Publication number: 20130146538
    Abstract: The present invention is for high permeance and high selectivity blend polymeric membranes comprising poly(ethylene glycol) (PEG) and a highly permeable polymer selected from the group consisting of polymers of intrinsic microporosity (PIMs), tetrazole-functionalized polymers of intrinsic microporosity (TZPIMs), or mixtures thereof. The present invention also involves the use of such membranes for separations of liquids and gases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Patent number: 8460546
    Abstract: The present invention relates to bioartificial devices and systems that mimic kidney or nephron function and methods of making them.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 11, 2013
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Eli Weinberg, Jeffrey T. Borenstein
  • Patent number: 8460554
    Abstract: Forward osmosis membranes include an active layer and a thin support layer. A bilayer substrate including a removable backing layer may allow forward osmosis membranes with reduced supporting layer thickness to be processed on existing manufacturing lines.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: June 11, 2013
    Assignee: Oasys Water, Inc.
    Inventors: Robert McGinnis, Gary McGurgan
  • Patent number: 8443986
    Abstract: A reverse osmosis membrane that can maintain high permeability for a longer time, a reverse osmosis membrane apparatus, and a hydrophilic treatment method for a reverse osmosis membrane. A reverse osmosis membrane to which poly(vinyl alcohol) is absorbed, wherein the poly(vinyl alcohol) is an ionic poly(vinyl alcohol). Preferably, adsorption of a cationic PVA to the reverse osmosis membrane is followed by adsorption of an anionic PVA. More preferably, an ionic polymer other than PVA is also absorbed to the reverse osmosis membrane. A reverse osmosis membrane apparatus including the reverse osmosis membrane. A hydrophilic treatment method for a reverse osmosis membrane, involving bringing the reverse osmosis membrane into contact with an ionic poly(vinyl alcohol).
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 21, 2013
    Assignee: Kurita Water Industries Ltd.
    Inventors: Yu Tanaka, Masanobu Osawa
  • Publication number: 20130112619
    Abstract: The present invention relates to a composite membrane for nanofiltration of a feed stream solution comprising a solvent and dissolved solutes and showing preferential rejection of the solutes. The composite membrane comprises a thin polymeric film formed by interfacial polymerisation on a support membrane. The support membrane is further impregnated with a conditioning agent and is stable in polar aprotic solvents. The composite membrane is optionally treated in a quenching medium, where the interfacial polymerisation reaction can be quenched and, in certain embodiments, membrane chemistry can be modified. Finally the composite membrane is treated with an activating solvent prior to nanofiltration.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 9, 2013
    Applicant: IMPERIAL INNOVATIONS LIMITED
    Inventors: Andrew Guy Livingston, Yogesh Suresh Bhole, Maria Fernanda Jimenez Solomon
  • Publication number: 20130112621
    Abstract: A water filtration article has a filtration layer of thickness no larger than 10 microns including porous polytetrafluoroethylene coated with a hydrophilic coating comprising uncrosslinked ethylene-vinyl alcohol copolymer. Methods include water filtration using and manufacture of such a water filtration article.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Inventors: Lei Zheng, Guy Sbriglia
  • Publication number: 20130105383
    Abstract: There is provided a nanofiltration-type thin film composite forward osmosis membrane comprising a rejection layer including intrinsic separation properties; and a substrate for support of the rejection layer, the substrate comprising a porous sub-layer having long finger-like pores and a thin sponge-like skin layer. A method for synthesizing the nanofiltration-type thin film composite forward osmosis membrane is also provided.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 2, 2013
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventor: NANYANG TECHNOLOGICAL UNIVERSITY
  • Publication number: 20130105384
    Abstract: A two-layered osmosis membrane contains a support layer and a rejection layer. The support layer, in which a mesh is embedded, is made of a phase separation polymer and has a thickness of 50 to 200 ?m. The rejection layer, which adheres to the support layer, is made of a thin film composite polymer and has a thickness of 0.05 to 3 ?m. The mesh, which is embedded in the support layer, has an open area of 30 to 70%, a mesh size of 60-300 mesh, and a thickness of 45-150 ?m. Also disclosed is a method of making the above described membrane.
    Type: Application
    Filed: December 26, 2012
    Publication date: May 2, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventor: NATIONAL UNIVERSITY OF SINGAPORE
  • Patent number: 8431509
    Abstract: A process of producing a structure for molecular separations includes providing a plurality of template materials. The template materials are selected from biomolecules, biopolymers, polymers, or combinations thereof. A sieve material, suitable for producing a structure for molecular separations, is provided around the template materials. The template materials are positioned in an arrangement for leaving pores suitable for molecular separations. The template materials are removed to leave pores in the sieve material and produce the structure suitable for molecular separations.
    Type: Grant
    Filed: April 30, 2011
    Date of Patent: April 30, 2013
    Assignee: Cerahelix, Inc.
    Inventors: Karl D. Bishop, Tyler J. Kirkmann, Susan G. MacKay
  • Patent number: 8431508
    Abstract: A process of producing a structure for molecular separations includes providing a plurality of biopolymers. The biopolymers are selected from DNAs, RNAs, nucleic acid loops, nucleic acid hairpins, nucleic acid dumbbells, alkylated phosphonates, non-standard nucleobases, or combinations thereof. A sieve material, suitable for producing a structure for molecular separations, is provided around the biopolymers. The biopolymers are positioned in an arrangement for leaving pores suitable for molecular separations. The biopolymers are removed to leave pores in the sieve material and produce the structure suitable for molecular separations.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 30, 2013
    Assignee: Cerahelix, Inc.
    Inventors: Karl D. Bishop, Tyler J. Kirkmann
  • Patent number: 8424687
    Abstract: A support for a separation membrane includes a long-fiber nonwoven fabric composed of thermoplastic continuous filaments.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Ryoichi Hane, Jun Ogihara, Hiroyuki Matsuura, Yohei Nakano, Naoki Shibusawa, Tatsuya Kajino, Yoshikazu Yakake
  • Publication number: 20130092623
    Abstract: In a filter for microfiltration, a filtration layer is protected so as not to be damaged. A porous multi-layer filter, which is a laminated body of three porous stretched PTFE sheets that have been biaxially stretched in the longitudinal and transverse directions, includes a filtration layer as a middle layer, a protection layer stacked on one surface of the filtration layer on the liquid-to-be-treated inflow side, and a support layer stacked on another surface of the filtration layer, in which the one surface and the other surface of the filtration layer are fusion-bonded to the protection layer and the support layer at boundaries therebetween, pores of the protection layer and pores of the support layer three-dimensionally communicate with pores of the filtration layer, and the mean pore size of pores of the filtration layer is smaller than the mean pore size of pores of each of the protection layer and the support layer.
    Type: Application
    Filed: February 8, 2012
    Publication date: April 18, 2013
    Applicant: SUMITOMO ELECTRIC FINE POLYMER, INC.
    Inventors: Hiroyuki Tsujiwaki, Atsushi Uno, Hajime Funatsu
  • Patent number: 8409444
    Abstract: A combination of acid zirconium phosphate and alkaline hydrous zirconium oxide are utilized as ion-exchange materials, for example, in sorbent dialysis. The combination provides for dialysate regeneration while maintaining constant and controlled levels of Na+, HCO3?, and pH.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 2, 2013
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Raymond June-Hin Wong
  • Patent number: 8409326
    Abstract: SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel. The Si/Al ratio of the synthesis gel can be from 0.3 to 0.15. SAPO-34 crystals are optionally applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 crystals may also form in the pores of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: April 2, 2013
    Assignee: The Regents of the University of Colorado
    Inventors: Shiguang Li, John L. Falconer, Richard D. Noble
  • Patent number: 8403152
    Abstract: In one embodiment, the present disclosure provides fail-safe mechanisms for final filters. The fail-safe mechanisms of the present disclosure include a prefilter that is essentially transparent or translucent to TOC contaminants and a microporous filter downstream from the prefilter that filters contaminants by means of size-exclusion, mechanical interception, coagulation, or a combination thereof, the filter being adapted to significantly reduce fluid flow and undergo blockage under a challenge by TOC contaminants.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 26, 2013
    Assignees: Pur Water Purification Products, Inc., 3M Innovative Properties Company
    Inventors: Hemang Patel, Keith Wesner, Thomas J. Hamlin, Robert A. Governal, Guillermo M. Vidal, Dimitris I. Collias, Jeannine R. Bahm
  • Patent number: 8393479
    Abstract: A method for producing tubular membranes creates a very inexpensive production method, while obtaining very high output rates for tubular membranes. A tubular member (10) is formed from several threads (12) in such a way that at least some of the threads (12) are tightly tied together along web-type connecting lines (14) that are composed of longitudinal threads. At least some of the threads (12) form a transversal connection (16) between adjacent longitudinal threads (14) in between the web-type connecting lines (14). A predefined membrane material (18) is applied to the tubular member (10).
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: March 12, 2013
    Assignee: X-Flow B.V.
    Inventors: Michael Kamleiter, Wilhelm N. Gudernatsch, Edith Gudernatsch
  • Patent number: 8393478
    Abstract: An inorganic membrane having an improved pore structure. The membrane has a mean pore size of up to about 100 nm and a mean particle size in a range from about 10 nm to about 100 nm. In one embodiment, the membrane comprises ?-alumina and is formed by providing a coating slip comprising ?-alumina; applying the coating slip to a support surface to form a coating layer; drying the coating layer; and firing the dried coating layer at a temperature of at least about 1000° C. to convert at least a portion of the ?-alumina to ?-alumina and form the inorganic membrane.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 12, 2013
    Assignee: Corning Incorporated
    Inventors: Curtis Robert Fekety, Wei Liu, Zhen Song, Joseph Marc Whalen
  • Publication number: 20130056420
    Abstract: A microfiltration membrane comprising (a) an asymmetric layer, (b) an isometric layer, and (c) an interface layer between the asymmetric layer and the isometric layer, the interface layer having a first portion contacting the asymmetric layer and a second portion contacting the isometric layer; wherein, (i) the asymmetric layer has a region contacting the first portion of the interface layer, the region including cells having a first porous structure; (ii) the isometric layer has a region contacting the second portion of the interface layer, the region including cells having a second porous structure; the first porous structure being larger than the second porous structure; and the first portion of the interface layer comprises cells having the first porous structure, and the second portion of the interface layer comprises cells having the second porous structure, and methods of making and using the membrane, are disclosed.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: Pall Corporation
    Inventors: I-Fan WANG, Richard Morris, Xuemei Liang
  • Publication number: 20130056428
    Abstract: A fluid purification system, comprising: a first fluid purification media comprising a rigid porous purification block, comprising: a longitudinal first surface; a longitudinal second surface disposed inside the longitudinal first surface; and a porous high density polymer disposed between the longitudinal first surface and the longitudinal second surface; a second fluid purification media, comprising a fibrous, nonwoven fabric disposed adjacent to the first surface of the first fluid purification media, the second surface of the first purification media, or both.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: SELECTO, INC.
    Inventor: Ehud Levy
  • Publication number: 20130043183
    Abstract: Versions of the invention include electron beam treated microporous halocarbon membranes, particularly fluoro-carbon membranes, and methods for treating one or more surfaces of a polymeric porous halocarbon membrane with electron beams. The modified porous membrane is stable, resists dewetting, and retains its mechanical properties and chemical inertness.
    Type: Application
    Filed: April 26, 2011
    Publication date: February 21, 2013
    Inventors: Jijun Ge, Wai Ming Choi