Metal Containing Patents (Class 210/500.25)
  • Patent number: 11939266
    Abstract: Disclosed herein is a dual density disc comprising a dense outer tube comprising alumina having a purity of greater than 99%; and a porous core comprising alumina of a lower density than a density of the dense outer tube; wherein the porous core has an alumina purity of greater than 99%. Disclosed herein too is method comprising disposing in a dense outer tube a slurry comprising alumina powder and a pore former; heating the dense outer tube with the slurry disposed therein to a temperature of 300 to 600° C. to activate the pore former; creating a porous core in the dense outer tube; and sintering the dense outer tube with the porous core at a temperature of 800 to 2000° C. in one or more stages.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: March 26, 2024
    Assignee: MOTT CORPORATION
    Inventors: Jeffery Caswell, Piyush Kar, Alex Hill, Alfred M. Romano, Aravind Mohanram
  • Patent number: 11931739
    Abstract: Provided are methods, devices, and kits for the isolation and detection of one or more analytes of interest from a biological sample using microslit filter membranes. In various examples, the methods use capture particles and binding agents for specific recognition of one or more analytes of interest.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: March 19, 2024
    Assignees: SiMPore Inc., University of Rochester
    Inventors: James A. Roussie, James L. McGrath, Richard E. Waugh, Kilean S. Lucas, Joshua J. Miller
  • Patent number: 11931698
    Abstract: A thin film composite gas separation membrane comprising a polyether block amide copolymer coating layer and a nanoporous asymmetric support membrane with nanopores on the skin layer surface of the support membrane and gelatin polymers inside the nanopores on the skin layer surface of the support membrane. A method for making the thin film composite gas separation membrane is provided as well as the use of the membrane for a variety of separations such as separations of hydrogen sulfide and carbon dioxide from natural gas, carbon dioxide removal from flue gas, fuel gas conditioning, hydrogen/methane, polar molecules, and ammonia mixtures with methane, nitrogen or hydrogen and other light gases separations, but also for natural gas liquids recovery and hydrogen sulfide and carbon dioxide removal from natural gas in a single step.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: March 19, 2024
    Assignee: UOP LLC
    Inventors: Xueliang Dong, Chunqing Liu, Howie Tran
  • Patent number: 11834380
    Abstract: A preparation method of an alumina ceramic valve core ceramic chip and a product thereof. The alumina ceramic valve core ceramic chip is obtained by the steps of mixing alumina, a sintering aid and a toughening agent according to a raw material ratio, ball-milling, drying, cold isostatic pressing, sintering and the like. The alumina ceramic valve core ceramic chip is prepared by adopting nano alumina and zirconium oxide as the sintering aid, so that the material has excellent bending strength, fracture toughness, hardness and low wear rate, the bending strength can reach 357.8-360.06 MPa, the fracture toughness is 4.32-4.56 MPa1/2, the Vickers hardness is 1592.7-1614.8 MPa, the wear rate is 0.04-0.09%, and the alumina ceramic valve core ceramic chip is an ideal material for preparing a faucet valve core.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: December 5, 2023
    Assignee: Xinxing Electronic Ceramics Co., Ltd
    Inventors: Jianping Cao, Peifu Cao, Jianhui Cao, Ping Liu
  • Patent number: 11832503
    Abstract: A display device includes a base, a light emitting device on a first surface of the base, and a plate-like inorganic layer on a second surface of the base, the plate-like inorganic layer including a first plate-like inorganic particle with a first size and a second plate-like inorganic particle with a second size different from the first size.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: November 28, 2023
    Assignee: SAMSUNG DISPLAY CO. LTD.
    Inventors: Hee Kyun Shin, Seung Jun Moon, Byung Hoon Kang, Min Woo Lee, Woo Jin Cho
  • Patent number: 11772053
    Abstract: A carbon molecular sieve (CMS) membrane having improved separation characteristics for separating olefins from their corresponding paraffins is comprised of carbon with at most trace amounts of sulfur and a group 13 metal. The CMS membrane may be made by pyrolyzing a precursor polymer devoid of sulfur in which the precursor polymer has had a group 13 metal incorporated into it, wherein the metal is in a reduced state. The pyrolyzing for the precursor having the group 13 metal incorporated into it is performed in a nonoxidizing atmosphere and at a heating rate and temperature such that the metal in a reduced state (e.g., covalently bonded to carbon or nitrogen or in the metal state).
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: October 3, 2023
    Assignees: Dow Global Technologies LLC, Georgia Tech Research Corporation
    Inventors: Yu-Han Chu, William J. Koros, Liren Xu, Mark K. Brayden, Marcos V. Martinez
  • Patent number: 11701608
    Abstract: A filter element (100) that is to be mounted in a housing (102) has at least one substantially hollow cylindrical filter bellows (10, 20) designed to separate liquid from aerosol, and two cover elements (30, 40) designed to cover axial end regions (12, 14, 22, 24) of the filter bellows (10, 20). The axial end portions (12, 14, 22, 24) of the at least one filter bellows (10, 20) are pressed against the cover element (30, 40) by an axial compressing force. The at least one filter bellows (10, 20) is secured in the axial direction, and one respective sealing zone (16, 18, 26, 28) is formed between each filter (10, 20) and each cover element (30, 40).
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 18, 2023
    Assignee: MANN+HUMMEL GmbH
    Inventors: Andreas Panni, Klemens Dworatzek, Janine Schmelzle, Frank Vogt, Goekhan Evcuemen
  • Patent number: 11596905
    Abstract: Disclosed are a heterogeneous zeolite membrane and a method of preparing the same, and more particularly a heterogeneous zeolite membrane that has CHA and DDR zeolite structures by growing seed particles into a crystal structure different from that of the zeolite membrane and can thus separate CO2/N2 and CO2/CH4 even under wet conditions, a method of preparing the same, and a method of capturing and removing carbon dioxide using the membrane.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: March 7, 2023
    Assignee: Korea University Research and Business Foundation
    Inventors: Jungkyu Choi, Kwan Young Lee, Yang-Hwan Jeong
  • Patent number: 11492578
    Abstract: The present disclosure provides a membrane separation method of a cell suspension which can appropriately separate cells from debris, and a cell culture device. That is, membrane separation processing of the cell suspension is performed using a filtration membrane which includes an inlet-side opening formed on one surface and an outlet-side opening, which is formed on the other surface and communicates with the inlet-side opening, and in which the inlet-side opening and the outlet-side opening are disposed at positions deviated in a direction parallel to the surfaces of the membrane.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 8, 2022
    Assignee: FUJIFILM CORPORATION
    Inventors: Hideaki Kagawa, Yoichi Nagai, Shinichi Nakai, Souichi Kohashi, Toshiki Takei
  • Patent number: 11474021
    Abstract: Disclosed is a system for measuring mass transfer in a membrane and solutions. The system includes: a membrane module 10 including a feed solution reservoir 11 accommodating a feed solution f, a draw solution reservoir 13 accommodating a draw solution d whose osmotic concentration is higher than that of the feed solution f, and a holder 15 supporting a semipermeable membrane m arranged between the feed solution reservoir 11 and the draw solution reservoir 13 and whose performance is to be measured; a feed solution storage tank 20 storing the feed solution f; and a feed solution supply pump 30 supplying the feed solution f from the feed solution storage tank 20 to the feed solution reservoir 11 at a fixed flow rate corresponding to a water flux WF across the membrane m such that the water flux WF is maintained constant.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 18, 2022
    Assignee: Korea University Research and Business Foundation
    Inventors: Dae Ryook Yang, Yoon Hyuk Jang, Kiho Park, Ji Woong Chang
  • Patent number: 11306416
    Abstract: A functional regenerated cellulose fiber includes a graphene structure and non-carbon non-oxygen elements. The non-carbon non-oxygen elements includes elements of Fe, Si, and Al. The elements of Fe, Si, and Al account for 0.018 wt % to 0.8 wt % of the regenerated cellulose fiber.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 19, 2022
    Assignee: JINAN SHENGQUAN GROUP SHARE HOLDING CO., LTD.
    Inventors: Yilin Tang, Jinzhu Zhang, Shuangcheng Wang, Ripeng Xu, Ding Liu
  • Patent number: 11247266
    Abstract: [Object] There is provided a porous sintered body has a uniform porosity, a high level of freedom in body formation which allows formation into varieties shapes and various levels of porosity, and a very large surface area. [Solution] The porous sintered body includes: hollow cores which follow a vanished shape of an interlaced or otherwise structured fibriform vanisher material; sintered walls 226 which extend longitudinally of the cores and obtained by sintering a first sintering powder held around the cores; and voids formed between the sintered walls. The cores and the voids communicate with each other via absent regions formed in the sintered walls. The sintered walls have surfaces formed with a sintered microparticulate layer 232 made from a material containing a second sintering powder which has a smaller diameter than the first sintering powder, and has predetermined pores 231.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: February 15, 2022
    Assignee: TAISEI KOGYO CO., LTD.
    Inventors: Shigeo Tanaka, Yasuhiro Kanoko
  • Patent number: 11097226
    Abstract: Systems, devices and methods for molecular separation including a molecular separation device comprising at least a polycrystalline metal-organic framework (MOF) and a nanocrystalline, zeolite MFI, wherein the MOF forms a polycrystalline membrane with zeolite MFI nanoparticles dispersed therein, and the MOF membrane matrix contacting and surrounding the zeolite MFI nanoparticles form a permselective nanoporous structure.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: August 24, 2021
    Assignees: Phillips 66 Company, Georgia Tech Research Corporation
    Inventors: Sankar Nair, Christopher W. Jones, Fereshteh Rashidi, Ali Asghar Rownaghi
  • Patent number: 10850239
    Abstract: A filter medium is provided. A filter medium according to an embodiment of the present invention comprises: a fiber web layer of a three-dimensional network structure including nanofiber; and a hydrophilic coating layer which covers at least a part of the outer surface of the nanofiber. According to this, a flow rate can be remarkably increased due to the improved hydrophilicity of the filter medium. Also, as the improved hydrophilicity is maintained for a long period of time, the lifespan can be remarkably prolonged. Furthermore, since the modification of a porous structure of the filter medium is minimized during the process of hydrophilization so that the initially designed physical properties of the filter medium can be exhibited in its entirety, the filter medium having chemical resistance, excellent water permeability and durability can be variously applied in the water treatment field.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 1, 2020
    Assignee: AMOGREENTECH CO., LTD.
    Inventors: Ui Young Jeong, In Yong Seo
  • Patent number: 10836640
    Abstract: The present invention relates to a composite having a carbon nanostructure, comprising graphene, amorphous carbon and a non-carbon non-oxygen element, wherein the non-carbon non-oxygen element is in an amount of 0.5 wt %-6 wt % of the composite. The present invention discloses controlling the content of the non-carbon non-oxygen element in the composite to obtain excellent far-infrared effect and antibacterial and bacteriostatic effects, wherein the normal emissivity in the far-infrared performance reaches 0.85 or more, and the antibacterial rate reaches 95% or more. The composite having a carbon nanostructure of the present invention is applied to macromolecular materials to modify macromolecular materials under the circumstance that the addition amount is relatively low. The composite having a carbon nanostructure can achieve notable far-infrared performance and antibacterial and bactericidal performances without any pre-modification and activation treatment.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: November 17, 2020
    Assignee: JINAN SHENGQUAN GROUP HOLDING CO. LTD.
    Inventors: Yilin Tang, Jinzhu Zhang, Yingfu Zheng, Xiaomin Liu, Ding Liu
  • Patent number: 10833308
    Abstract: A composite membrane including ion conductive inorganic particles; and a polymer layer, wherein the ion conductive inorganic particles penetrate the polymer layer. Also, a preparation method thereof, and a lithium-air battery including the composite membrane.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: November 10, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Won-sung Choi, Dong-min Im
  • Patent number: 10811656
    Abstract: A composite membrane including ion conductive inorganic particles; and a polymer layer, wherein the ion conductive inorganic particles penetrate the polymer layer. Also, a preparation method thereof, and a lithium-air battery including the composite membrane.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 20, 2020
    Assignee: SAMSUNG ELECTRONICS CO; LTD.
    Inventors: Won-sung Choi, Dong-min Im
  • Patent number: 10722945
    Abstract: A piece of flexible porous metal foil is a sheet made of porous metal material using solid solution alloy, face-centered cubic metal simple substance or body-centered cubic metal simple substance as matrix phase. The thickness of the sheet is 5 to 200 micrometers, the average aperture thereof is 0.05 to 100 micrometers, the porosity thereof is 15-70%, and the sheet is made by sintering a homogeneous film. The preparation method for the flexible porous metal foil comprises: (1) preparing thick turbid liquid with raw material powder forming the metal porous material by using dispersing agent and binding agent; (2) injecting the turbid liquid into a mold cavity of a film manufacturing fixture, and drying the turbid liquid to form a piece of homogeneous film; (3) putting the film into a sintering manufacturing fixture matching with the film in shape, then sintering the film, and taking the film out after sintering and obtaining the flexible porous metal foil.
    Type: Grant
    Filed: October 31, 2015
    Date of Patent: July 28, 2020
    Assignee: Intermet Technologies Chengdu Co., Ltd.
    Inventors: Lin Gao, Tao Wang, Tao Wang, Bo Li
  • Patent number: 10525398
    Abstract: Air filters formed from mats of protein-containing nanowires are provided. The nanowires are formed into a mat with pores that allow air to pass through while physically filtering particulate matter. The protein in the protein-containing nanowires also serves to chemically filter polluted air passed through the filter. Specifically, chemical functional groups from the many amino acids that comprise the protein of the protein-containing nanowire react with certain chemical pollutants (e.g., carbon monoxide and formaldehyde) in order to capture or otherwise neutralize the pollutant. Accordingly, the single nanofiber mat performs two filtering functions. Methods of filtering air using the provided air filters are also disclosed, as well as methods for making the air filters from protein-containing nanofibers.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 7, 2020
    Assignee: Washington State University
    Inventors: Wei-hong Zhong, Hamid Souzandeh, Yu Wang
  • Patent number: 10450192
    Abstract: Disclosed is a process for the catalytic thermal decomposition of ammonia into hydrogen and nitrogen by contacting ammonia at a temperature of at least 500° C. with a porous ceramic layer which comprises nickel. Also disclosed is a reactor for carrying out the process.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 22, 2019
    Assignee: Gencell Ltd.
    Inventors: Gennadi Finkelshtain, Michael Lerner, Ziya Ramizovich Karichev, Leonid Titelman
  • Patent number: 10279291
    Abstract: Fiber webs that may be used as filter media are provided. In some embodiments, the filter media may include multiple layers. Each layer may be designed to have separate functions in the filter media. For example, a first layer may be provided for improving dust holding capacity, a second layer for improving efficiency, and a third layer for providing support and strength to the media. By designing the layers to have separate functions, each layer may be optimized to enhance its function without negatively impacting the performance of another layer of the media.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: May 7, 2019
    Assignee: Hollingsworth & Vose Company
    Inventors: Máté Nagy, Siqiang Zhu
  • Patent number: 10259723
    Abstract: Stabilized surfactant-based membranes and methods of manufacture thereof. Membranes comprising a stabilized surfactant mesostructure on a porous support may be used for various separations, including reverse osmosis and forward osmosis. The membranes are stabilized after evaporation of solvents; in some embodiments no removal of the surfactant is required. The surfactant solution may or may not comprise a hydrophilic compound such as an acid or base. The surface of the porous support is preferably modified prior to formation of the stabilized surfactant mesostructure. The membrane is sufficiently stable to be utilized in commercial separations devices such as spiral wound modules. Also a stabilized surfactant mesostructure coating for a porous material and filters made therefrom. The coating can simultaneously improve both the permeability and the filtration characteristics of the porous material.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: April 16, 2019
    Assignee: ZNANO LLC
    Inventors: Adrian Brozell, Arian Abed-Amoli
  • Patent number: 10099072
    Abstract: Disclosed are adsorbent materials that comprise a porous material having a continuous silica phase coated with a carbon layer, and a water-insoluble precipitate comprising a metal cation and an anion disposed substantially evenly throughout the adsorbent material. In some examples, the plurality of pores can have an average characteristic dimension of from 0.1 ? to 100 ?. The water-insoluble precipitate can be formed in the plurality of pores of the porous material by contacting the porous material with a first aqueous solution comprising a metal cation; and contacting the porous material with a second aqueous solution comprising an anion; wherein the metal cation and the anion combine to form the water-insoluble precipitate in the plurality of pores of the porous material, thereby forming the adsorbent material.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 16, 2018
    Assignee: Vanderbilt University
    Inventors: Martin Douglas LeVan, Jr., Dushyant Barpaga
  • Patent number: 10039999
    Abstract: A process for separating ethanol from a mixture including ethanol and water comprises contacting the mixture with a sorbent or membrane including one or more zeolites having a high adsorption selectivity toward ethanol over water, wherein at least a fraction of the ethanol from the mixture is adsorbed by the sorbent or membrane and an unadsorbed portion of the mixture forms a raffinate having a lower concentration of ethanol than the mixture. The process further includes releasing adsorbed ethanol from the sorbent or membrane as a retentate or a permeant to produce an ethanol extract having a higher concentration of ethanol than the mixture.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: August 7, 2018
    Inventors: Joern Ilja Siepmann, Peng Bai, Michael Tsapatsis
  • Patent number: 9925500
    Abstract: A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer including the steps of applying a polyfunctional amine monomer and a combination amine-reactive compounds to a surface of the porous support and reacting the constituents to form a thin film polyamide layer, wherein the amine-reactive compounds include: i) a polyfunctional amine-reactive monomer including two to three amine-reactive moieties selected from acyl halide, sulfonyl halide and anhydride, ii) a polyfunctional amine-reactive monomer including at least four amine-reactive moieties selected from acyl halide, sulfonyl halide and anhydride, and iii) an acid compound including at least on carboxylic acid moiety or salt thereof and at least one amine-reactive moiety selected from acyl halide and sulfonyl halide.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 27, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Mou Paul, Tina L. Arrowood, Robert C. Cieslinski, Steven D. Jons, Steven Rosenberg, Abhishek Roy, Ian A. Tomlinson
  • Patent number: 9911957
    Abstract: A composite membrane including ion conductive inorganic particles; and a polymer layer, wherein the ion conductive inorganic particles penetrate the polymer layer. Also, a preparation method thereof, and a lithium-air battery including the composite membrane.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: March 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Won-sung Choi, Dong-min Im
  • Patent number: 9403128
    Abstract: A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: August 2, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin C. O'Brien, Jeffery J. Haslam, William L. Bourcier, William Clary Floyd, III
  • Patent number: 9309164
    Abstract: The present invention provides a method for purifying organic chemical-containing contaminated substances by which various organic chemicals (contaminants) can be readily and sufficiently decomposed in a short time, the method comprising the steps of adding a metal salt and a transition metal ionic compound to water or soil that contains organic chemicals, decomposing the organic chemicals by irradiating with light, and separating/collecting the detoxified organic chemicals.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: April 12, 2016
    Assignees: OSAKA UNIVERSITY, ESRI CO. LTD.
    Inventors: Hiroyasu Nagase, Kazuhisa Miyamoto, Kazumasa Hirata, Hiroshi Saito
  • Publication number: 20150129489
    Abstract: The invention provides an organic-inorganic porous membrane which includes metal organic silica nano-particles impregnated in a polymer. The polymer includes a property of generating porous membrane using a phase inversion technique. The invention also provides a method for preparing the organic-inorganic porous membrane.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: King Abdul Aziz City for Science and Technology (KACST)
    Inventors: Nezar Hassan Mohamed Khdary, Mamdouh Abdelsalam
  • Patent number: 9022228
    Abstract: A domestic appliance filter for use in a laundry treatment device includes a basic filter material with a hydrophobic coating for filtering out matter from a process water duct or a process air duct. The basic filter material includes a material which is resistant to temperatures of 160° C. or more and the hydrophobic coating on the basic filter material effects a surface energy of less than 35 mN/m.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 5, 2015
    Assignee: BSH Bosch und Siemens Hausgeräte GmbH
    Inventor: Klaus Grunert
  • Publication number: 20150101986
    Abstract: Disclosed are mixed matrix polymeric membranes comprising a plurality of metal-organic frameworks (MOFs), or in some aspects a zeolitic imidazolate frameworks (ZIFs), and a polymeric matrix, wherein the plurality of MOFs are attached to the polymeric matrix through covalent or hydrogen bonds or Van der Waals interaction.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 16, 2015
    Inventors: Ihab Nizar ODEH, Yunyang LIU
  • Publication number: 20150096935
    Abstract: Membranes including functionalized carbon nanotubes, nanodiamonds and/or graphene oxide immobilized in or on the membranes are disclosed. The membranes including the immobilized nanocarbons increase interactions with water vapor to improve desalination efficiency in membrane distillation. The membranes may be deployed in all modes of membrane distillation such as air gap membrane distillation, direct contact membrane distillation, vacuum membrane distillation and other separations.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Somenath Mitra, Sagar Roy, Madhulina Bhadra
  • Patent number: 8999168
    Abstract: A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 7, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Ramesh R. Bhave, Melanie M. DeBusk, Guillermo D. DelCul, Laetitia H. Delmau, Chaitanya K. Narula
  • Patent number: 8980096
    Abstract: The present invention relates to a method for the modification of metal hydroxide and/or metal oxide surfaces of an inorganic matrix with an organometallic reagent for obtaining an organic functionalized matrix suitable for filtration processes. The method involves the direct covalent binding of organic functional groups by allowing a pre-treated matrix to react with organometallic reagents in the present of a suitable solvent. The present invention further relates to an organic functionalized matrix obtainable or obtained by carrying out a method according to the invention. The invention also provides various uses of a surface-modified matrices as described herein in various industrial applications, including for instance in filtration and/or adsorption and/or separation processes, or as support, e.g. for catalyst systems or for enzyme systems.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 17, 2015
    Assignees: Vito NV, Universiteit Antwerpen
    Inventors: Anita Buekenhoudt, Kenny Wyns, Vera Meynen, Bert Maes, Pegie Cool
  • Publication number: 20150068978
    Abstract: The disclosure is directed to an intermediate filtering membrane comprising: a filtering membrane having a charged or polar surface; and a transiently coupled charged compound, wherein the charged compound has an opposite charge to the membrane charge. Likewise, provided herein are methods and kits utilizing the intermediate membrane for various filtering membranes operations.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 12, 2015
    Inventors: Gilad Lando, Dikla Zadaka-Amir, Andrew Norman Shipway, Steve Daren
  • Publication number: 20150068972
    Abstract: The nanocomposite membrane includes a composite of carbon nanotubes coated or chemically bonded with metal oxide nanoparticles. This composite is embedded within a polymeric matrix via interfacial polymerization on a polysulfone support. The metal oxide particles are selected to exhibit catalytic activity when filtering pollutants from water in a water treatment system, or for separating a gas from a liquid, or for selectively separating particles or ions from solution for reverse osmosis (e.g., for desalination systems), or other filtration requirements. A method of fabricating the nanocomposite membrane is also included herein.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: TAWFIK ABDO SALEH AWADH
  • Patent number: 8968965
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; and (v) non-curable salt; wherein the molar ratio of (i):(ii) is >0.10. The compositions are useful for preparing ion exchange membranes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Fujifilm Manufacturing Europe BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Patent number: 8968964
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; (iv) 0 to 10 wt % of free radical initiator; and (v) lithium and/or calcium salt. The compositions are useful for preparing ion exchange membranes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Fujifilm Manufacturing Europe BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Patent number: 8945390
    Abstract: A carbon membrane formed by carbonizing a phenol resin having at least one kind of atomic groups among a methylene bond, a dimethylene ether bond, and a methylol group, wherein the total mole content of the atomic groups is 100 to 180% with respect to the phenolic nuclei. A pervaporation separation method using the carbon membrane is also disclosed.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: February 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Akimasa Ichikawa, Kenji Suzuki, Naoto Kinoshita, Yoshinori Isoda, Takafumi Kimata
  • Patent number: 8940173
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 27, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Jason K. Holt, Sangil Kim
  • Patent number: 8939293
    Abstract: Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 27, 2015
    Assignee: Synkera Technologies, Inc.
    Inventors: Dmitri Routkevitch, Oleg G. Polyakov
  • Publication number: 20140360938
    Abstract: A zeolite membrane composite for use in separation of a highly-permeative component through permeation from a vapor mixture or a liquid mixture comprising multiple components, the zeolite membrane composite comprising an inorganic porous support and a zeolite membrane provided thereon, wherein the zeolite membrane contains zeolite of a CHA-type aluminosilicate, and in a X-ray diffraction pattern obtained through irradiation to the zeolite membrane surface with X-ray, a peak intensity at around 2?=17.9° has a value of less than 0.5 times a peak intensity at around 2?=20.8° and a peak intensity at around 2?=9.6° has a value of 2.0 times or more and less than 4.0 times a peak intensity at around 2?=20.8°.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Mikio Hayashi, Miki Yamada, Takahiko Takewaki
  • Publication number: 20140360939
    Abstract: A porous support-zeolite membrane composite comprising an inorganic porous support and a zeolite membrane provided on, wherein the zeolite membrane contains a zeolite having a microporous structure of 8-membered oxygen ring or less, and a molar ratio of SiO2/Al2O3 in the zeolite membrane surface is larger by at least 20 than a molar ratio of SiO2/Al2O3 in the zeolite membrane itself, or a water adsorption of the porous support-zeolite membrane composite at a relative pressure of 0.8, as determined from a water vapor adsorption isotherm of the porous support-zeolite membrane composite, is at least 82% of a water adsorption of the porous support-zeolite membrane composite under the same condition as above after one-week immersion of the porous support-zeolite membrane composite in an aqueous 90 mass % acetic acid solution at room temperature.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: MIKI YAMADA, Takahiko Takewaki, Mikio Hayashi, Naoko Fujita, Hidekazu Miyagi
  • Publication number: 20140353238
    Abstract: The invention provides a method of preparing a filter medium by thermally bonding silver-coated spunbonded nonwoven fabrics to a dirt-retaining membrane, a chemical-retaining membrane, a pathogen-retaining membrane, or a combination thereof. The invention also relates to the use of one or more silver-coated spunbonded nonwoven fabric layers as a component of a microorganism-killing membrane in filter media for a fluid filtration system. The filter media of the invention offers efficient disinfection effects, maintaining a low pressure drop and a high flow rate when in use. Further, the filter media is adhesive free and contains at least one thermal binding layer made of spunbonded nonwoven polymeric fabrics. The invention also features a water-purification cartridge and the use thereof in a potable water system.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventor: Jin Hu
  • Publication number: 20140339148
    Abstract: The invention provides a novel method of preparing a filter media by thermally bonding silver-coated nanofiber fabrics to a dirt-retaining membrane, a chemical-retaining membrane, a pathogen-retaining membrane, or a combination thereof. The invention also relates to the use of silver-coated nanofiber fabric layer as a component of a microorganism-killing membrane in filter media for a liquid or air filtration system. The filter media of the invention offers efficient disinfection effects, maintaining a low pressure drop and a high flow rate when in use. Further, the filter media is adhesive-layer free and contains at least one thermal binding layer made of spunbonded nonwoven polymeric fabrics. The invention also features a water-purification cartridge and a portable water system thereof.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: GOODRICH CORPORATION
    Inventor: Jin Hu
  • Patent number: 8887926
    Abstract: Provided is a carbon nanostructure-metal composite nanoporous film in which a carbon nanostructure-metal composite is coated on one surface or both surfaces of a membrane support having micro- or nano-sized pores. A method for manufacturing a carbon nanostructure-metal composite nanoporous film, includes: dispersing a carbon nanostructure-metal composite in a solvent at the presence of a surfactant and coating the carbon nanostructure-metal composite on one surface or both surfaces of a membrane support; and fusing the metal on the membrane support by heating the coated membrane support. The metal in carbon nanostructure-metal composite nanoporous film melts at a low temperature since a size of a metal of the carbon nanostructure-metal composite is several nm to several-hundred nm.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 18, 2014
    Assignee: Bioneer Corporation
    Inventors: Han Oh Park, Jae Ha Kim, Myung Kuk Jin
  • Publication number: 20140332459
    Abstract: The invention provides a novel type of filter media that offers efficient disinfection effects, while achieving a low water pressure drop and a high water flow rate when in use. Specifically, the filter media of the invention comprises a microorganism-killing membrane containing electro spun nanofiber fabrics loaded with biocidal nano-particles. The filter media of the invention is adhesive-layer free and contains at least one thermal binding layer that are made of spunbonded nonwoven polymeric fabrics. The invention also provides a water-purification cartridge and a portable water system thereof.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: Goodrich Corporation
    Inventor: Jin Hu
  • Publication number: 20140326660
    Abstract: Embodiments of a filter device utilize a membrane comprising poly(amic) acid. The membrane has a porous structure with pores configured to filter nano-sized particles, e.g., less than 100 nm. In one embodiment, the filter device can comprises a substrate (e.g., filter paper) and the membrane disposed on the substrate. This configuration is useful to capture, isolate, and detect nano-particles.
    Type: Application
    Filed: March 7, 2014
    Publication date: November 6, 2014
    Applicant: The Research Foundation of Stale University of New York
    Inventors: Omowunmi Sadik, Nian Du
  • Publication number: 20140319047
    Abstract: The disclosure provides a filtration material and a method for fabricating the same. The filtration material includes a supporting layer, and a composite layer, wherein the composite layer includes an ionic polymer and an interfacial polymer. Particularly, the ionic polymer and the interfacial polymer are intertwined with each other, resulting from ionic bonds formed between the ionic polymer and the interfacial polymer.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hui CHENG, Wei-Cheng TSAI, Shan-Shan LIN, Yu-Chuan HSU, Yin-Ju YANG
  • Publication number: 20140299537
    Abstract: There are provided a reverse osmosis membrane comprising a porous support; a silver nanowire layer formed on the porous support; and a polyamide film formed on the silver nanowire layer, and a fabrication method of a reverse osmosis membrane, the method comprising coating a porous support with an aqueous amine solution including silver nanowires to form a silver nanowire layer; and bringing the silver nanowire layer into contact with an aliphatic hydrocarbide-based organic solution including acyl halide to form a polyamide film.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 9, 2014
    Inventors: Jae-Hong Kim, Phill Lee, Young-Ju Lee, Chong-Kyu Shin