Cyclic Patents (Class 210/500.28)
  • Patent number: 10851241
    Abstract: Multicomponent copolymers including two or more types of repeat units is presented. In one example, the multicomponent copolymer includes at least one repeat unit AC having a structure (I), at least one repeat unit DC having a structure (II), and at least one repeat unit BC having a structure (III) or (V). The multicomponent copolymer may be cross-linked via a cross-linking agent. A polymer blend including the multicomponent copolymer or a cross-linked copolymer and a second polymer is also provided. The multicomponent copolymer may be a random or a block copolymer. The structural units of the multicomponent copolymers provide improved, tunable properties, such as improved biocompatibility and hydrophilicity, protein fouling, and mechanical properties, to the copolymers and/or the membranes fabricated from the copolymers.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: December 1, 2020
    Assignee: Cytiva Sweden AB
    Inventors: David Moore, Matthew Jeremiah Misner, Hongyi Zhou, Patrick McCloskey, Matthew Rainka
  • Patent number: 10434479
    Abstract: The present invention relates to a composite membrane for gas separation and/or nanofiltration of a feed stream solution comprising a solvent and dissolved solutes and showing preferential rejection of the solutes. The composite membrane comprises a separating layer with intrinsic microporosity. The separating layer is suitably formed by interfacial polymerization on a support membrane. Suitably, at least one of the monomers used in the interfacial polymerization reaction should possess concavity, resulting in a network polymer with interconnected nanopores and a membrane with enhanced permeability. The support membrane may be optionally impregnated with a conditioning agent and may be optionally stable in organic solvents, particularly in polar aprotic solvents. The top layer of the composite membrane is optionally capped with functional groups to change the surface chemistry. The composite membrane may be cured in the oven to enhance rejection.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: October 8, 2019
    Assignee: IP2IPO Innovations Limited
    Inventors: Andrew Guy Livingston, Maria Fernanda Jimenez Solomon
  • Patent number: 10357747
    Abstract: A method for producing a spiral wound separation membrane element includes preparing a composite semipermeable membrane having a skin layer on the surface of a porous support. The method further includes forming on the skin layer a protective layer containing 35 mg/m2 or more of an anionic polyvinyl alcohol to prepare a protective layer-equipped composite semipermeable membrane, preparing an unwashed spiral wound separation membrane element from the protective layer-equipped composite semipermeable membrane, and passing wash water through the unwashed spiral wound separation membrane element to remove the protective layer on the skin layer.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 23, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Shinya Nishiyama, Taisuke Yamaguchi, Takahisa Konishi, Hiroki Fujioka, Takashi Kamada, Shinichi Inoue
  • Patent number: 10352833
    Abstract: A microextraction capsule holding a sol-gel coating or monolithic bed with an affinity for one or more target analytes infused in a porous tube that can be placed in a sample matrix containing the target analytes. The microextraction capsule can include a magnetic wire to allow the capsule to be spun in the presence of the matrix to increase the rate of absorption of the target analytes. The microextraction capsule can be formed by infusing a sol solution into the porous tube and forming a metal oxide or hybrid inorganic-organic sorbent comprising gel from the sol within the pores of the porous tube or by forming a gel by sol-gel condensation with water followed by grinding the gel to a particulate gel and infusing the particles into a porous tube.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 16, 2019
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Abuzar Kabir, Kenneth G. Furton
  • Patent number: 10124297
    Abstract: A thin film nanocomposite nanofiltration membrane or TFC-NF membrane includes an ultrafiltration support membrane coated with a trimesic acid coating layer. The trimesic acid coating layer is formed or self-assembled on the ultrafiltration support membrane by pouring an aqueous solution of a water soluble tertiary amine on the support membrane to form a first coating layer and then applying a solution of trimesolychloride on the first coating layer. In other words, the trimesic acid coating layer can be formed as a result of the liquid-liquid interface of the water soluble tertiary amine and the trimesolychloride. A total thickness of the TFC-NF membrane can be about 150 ?m. The thin film nanocomposite nanofiltration membrane can be free from MPD monomers.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 13, 2018
    Assignee: KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH
    Inventors: Rajesha Kumar, Mansour Ahmed, Bhadrachari Garudachari, Jibu P. Thomas
  • Patent number: 9675941
    Abstract: The present invention relates to the synthesis of linear aromatic polyimides and the production of membranes for the separation of gases. Specifically, polyimides featuring in their chemical structure, in the part derived from a diamine, 4-fluoro-4?,4?-diaminotriphenylmethane, and an aromatic dianhydride derived from tetracarboxylic acid. Polyimides are soluble in amidic solvents such as N,N?-dimethylformamide, N,N?-dimethylacetamide, N-methyl-2-pyrrolidone, etc., which are processed as dense membranes by controlled evaporation of the solvent. The resulting membranes are capable of separating at least a gaseous mixture constituted by two components such as H2/CH4, He/N2, H2/CO2, O2/N2, CO2/CH4 and CO2/N2.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 13, 2017
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Diego Javier Guzman Lucero, Javier Guzman Pantoja, Jorge Froylan Palomeque Santiago
  • Patent number: 9647259
    Abstract: Methods of making a battery component are provided. The method comprises gas phase depositing a composition onto an electrode, the composition comprising a first component and a second component, and removing at least a portion of the second component to form a separator comprising a porous polymer film on the electrode. The first component is selected from the group consisting of polymers, dimers and monomers. In some embodiments, the second component is selected from the group consisting of polymers, dimers and monomers and is different from the first component. The first component and the second component each form separate polymer phases and together form a layer. In some embodiments, the second component is selected from the group consisting of by-products and remaining portions of the first component from the forming the first polymer.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 9, 2017
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Alexander Gorkovenko, Rabih Bachir Zaouk, William Hubert Schank, Jr.
  • Patent number: 9598598
    Abstract: Disclosed are methods of preparing antifouling coatings on reverse osmosis membranes with initiated chemical vapor deposition. The coatings enhance the stability and lifetime of membranes without sacrificing performance characteristics, such as permeability or salt retention.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: March 21, 2017
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and MInerals
    Inventors: Karen K. Gleason, Zafarullah Khan, Hafiz Zahid Shafi, Rong Yang
  • Patent number: 9513042
    Abstract: The heat exchangerless membrane system optimizes heat transfer between a set of two immiscible fluids such that the second of the two immiscible fluids having an additive, notably an additive that makes the second fluid corrosive, is infrequently in contact any heat exchangers that would make the heat exchanger subject to corrosion. This membrane system is capable of separating the two immiscible fluids downstream of the heat transfer process, such that heat transfer can repeat the cycle again in an energy efficient manner.
    Type: Grant
    Filed: September 7, 2014
    Date of Patent: December 6, 2016
    Inventor: Michael Gurin
  • Patent number: 9172075
    Abstract: A porous polymer battery separator is provided that includes variable porosity along its length. Such battery separators can increase the uniformity of the current density within electrochemical battery cells that may normally experience higher current density and higher temperatures near their terminal ends than they do near their opposite ends. By disposing a variable porosity separator between the electrodes of an electrochemical cell such that its terminal end has a lower porosity than its opposite end, the transport of ions, such as lithium ions, through the separator can be more restricted in normally high current regions and less restricted in normally low current regions, thereby increasing the overall uniformity of current density within the battery cell. Variable porosity battery separators may be produced by a modified solvent exchange process.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: October 27, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Hamid G. Kia, Xiaosong Huang, Mark W. Verbrugge
  • Patent number: 9156933
    Abstract: The application describes a method of preparing a polymer that includes: mixing in an aqueous solution comprising water and a water-soluble alcohol: a vinyl-based monomer having a sulfonic acid functional group, a bifunctional vinyl-based cross-linking agent, and a polymerization initiator, to form a reaction solution, where the monomer and the cross-linking agent are soluble in the reaction solution; and polymerizing the monomer and cross-linking agent to form the polymer. The application further describes a polymer that includes a polymer backbone comprising sulfonic acid functional groups; and crosslinks comprising alcohol functional groups.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: October 13, 2015
    Assignee: General Electric Company
    Inventors: Chakravarthy S. Gudipati, Russell James MacDonald
  • Publication number: 20150053610
    Abstract: Described herein are mixed matrix filtration membranes and related, compositions, methods and systems and in particular mixed matrix filtration membranes with an embedded polymer network and/or embedded polymeric micro/nanoparticles functionalized with a functionalization polymer covalently and/or non covalently linked to the micro/nanoparticles and related compositions, methods, and systems.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 26, 2015
    Inventors: Mamadou S. DIALLO, Madhusudhana Rao KOTTE
  • Publication number: 20150021262
    Abstract: A polymeric membrane on a support, wherein the polymeric membrane includes a crosslinked polymer covalently bound to a molecular cage compound. An interfacial polymerization method for making the polymeric membrane is also disclosed.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 22, 2015
    Inventors: Jacquana T. Diep, Young-Hye Na, Ratnam Sooriyakumaran, Ankit Vora
  • Patent number: 8887927
    Abstract: A method of preparation for polyimine self-supported dynamic polymeric membranes (called “dynameric” membranes) is provided along with their use in separation processes, especially for separating gaseous species.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 18, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Gihane Nasr, Mihail-Dumitru Barboiu, Christophe Charmette, José Gregorio Sanchez Marcano
  • Publication number: 20140319047
    Abstract: The disclosure provides a filtration material and a method for fabricating the same. The filtration material includes a supporting layer, and a composite layer, wherein the composite layer includes an ionic polymer and an interfacial polymer. Particularly, the ionic polymer and the interfacial polymer are intertwined with each other, resulting from ionic bonds formed between the ionic polymer and the interfacial polymer.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hui CHENG, Wei-Cheng TSAI, Shan-Shan LIN, Yu-Chuan HSU, Yin-Ju YANG
  • Publication number: 20140299538
    Abstract: Disclosed are methods of preparing antifouling and chlorine-resistant coatings on reverse osmosis membranes with initiated chemical vapor deposition. The coatings enhance the stability and lifetime of membranes without sacrificing performance characteristics, such as permeability or salt retention.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Rong Yang
  • Publication number: 20140284270
    Abstract: Synthetic RNA molecules having a pore, compositions including RNA molecules having a pore, where the compositions are capable of filtering metal ions, filtering molecular ions, performing size exclusion chromatography, performing ion specific chromatography, reversible metal ion and molecular ion binding, ion selective membranes, ion selective channels, ion selective/specific sensors, electrical conduits, battery components, etc., and devices and methods for making and using same. The RNAs used may be modified to improve stability. For example, by for example, a methyl group may be attached to the 2? OH of the ribose.
    Type: Application
    Filed: September 23, 2013
    Publication date: September 25, 2014
    Inventors: George Fox, Quyen Tran, Mario Rivas-Medrano
  • Publication number: 20140284269
    Abstract: The present invention relates to a porous ABPBI (phosphoric acid doped poly (2, 5-benzimidazole)) membrane and process of preparing the same. A stable porous ABPBI (Phosphoric Acid Doped Poly (2, 5-benzimidazole)) membrane stable to acids, bases, solvents and autoclaving is disclosed. The membrane finds use for separation of solutes in solution in acids, bases and solvents.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: Council of Scientific and Industrial Research
    Inventors: Ulhas KHARUL, Harshada LOHOKARE
  • Publication number: 20140284267
    Abstract: A filtration membrane (1) is provided that includes a porous support (4) and a membrane layer having a first and a second zone (2, 3). The first zone (2) has a thickness of 5 to 15 ?m and an average pore opening size of smaller/equal 0.4 and the second zone (3) has a thickness of 5 to 40 ?m and an average pore opening size of 0.5 to 5.0 ?m. The filtration membrane (1) is produced by forming a single- or -double-layer coating on the porous support (4).
    Type: Application
    Filed: October 2, 2012
    Publication date: September 25, 2014
    Inventors: Gisela Jung, Andreas Bareth, Ulrich Meyer-Blumenroth
  • Publication number: 20140263024
    Abstract: A halogen resistant polyamide is formed from the reaction product of an amine monomer and an acid chloride monomer wherein the amino group of the starting amine monomer is separated from the aromatic amine ring system by an alkyl group and (i) minimizes halogenation on the amine and (ii) minimizes N-halogenation at a pH range of approximately 7 to approximately 10.5. A membrane is made from the polyamide for use, for example, in a reverse osmosis desalination unit.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Andrew Patrick Murphy, Robert Lee Riley, Yuliana Elvira Porras Mendoza
  • Publication number: 20140238939
    Abstract: The present invention discloses antimicrobial water treatment membranes, comprising a water treatment membrane, covalently attached to one or more antimicrobial polymers or derivatives thereof, either directly or via one or more tether molecules. There are also provided a process for preparing these antimicrobial membranes, and uses thereof in water treatment applications.
    Type: Application
    Filed: June 14, 2012
    Publication date: August 28, 2014
    Applicants: WISCONSIN ALUMNI RESEARCH FOUNDATION, BENIGURION UNIVERSITY OF THE NEGEV RESEARCH AND DEVELOPMENT AUTHORITY
    Inventors: Ron Kasher, Shani Avneri, Marina Yamit Lutsky, Jihua Zhang, Samuel Helmer Gellman, Shannon Stahl
  • Publication number: 20140224728
    Abstract: The present disclosure relates to a method of manufacturing a water treatment membrane having high chlorine resistance and high permeability, the method including: forming an aqueous amine solution layer on a porous support, using an aqueous amine solution including a fluorine compound having an epoxy group in a terminal thereof and an amine compound; and forming a polyamide layer containing the fluorine compound by bringing an organic solution containing acyl halide into contact with the aqueous amine solution layer, and a water treatment membrane manufactured using the same.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Jae-Hong KIM, Young-Hoon KO, Chong-Kyu SHIN
  • Patent number: 8778186
    Abstract: The invention provides a method of contacting a membrane having a highly cross-linked polydicyclopentadiene matrix with a feed solution having a) a first component with a molecular weight in the range of from about 100 g mol?1 to about 600 g mol?1 and a cross-sectional area of less than about 0.40 nm2 and b) a second component with a molecular weight in the range of from about 100 to about 600 grams g mol?1 and a cross-sectional area of greater than about 0.50 nm2 so that the feed solution is fractionated into a permeate comprising the first component and a retentate enriched in the second component.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 15, 2014
    Assignee: University of Iowa Research Foundation
    Inventors: Ned B. Bowden, Abhinaba Gupta, Tyler R. Long
  • Patent number: 8739977
    Abstract: Disclosed herein are a composite semipermerable membrane and a method for producing the same. The composite semipermeable membrane comprises a microporous support membrane and a separation functional layer provided on the microporous support membrane, wherein the separation functional layer contains a condensation product produced by condensation of at least one selected from the group consisting of ions of trialkoxysilanes each having an imidazolium group and a conjugated base of a polymer having at least one acidic group. The composite semipermeable membrane achieves excellent selective separation of divalent ions over monovalent ions, and is suitable for use in various water treatment fields such as seawater desalination and drinking water production.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 3, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Hiroki Minehara, Koji Nakatsuji
  • Publication number: 20140144833
    Abstract: The Invention relates to a membrane formed from a blend of high molecular weight polyvinylidene fluoride (PVDF) (>580,000 Mw) with low molecular weight PVDF (<580,000 Mw). Porous membranes of average pore size from 5 nm to 100 microns made from the blend show improved water permeability compared to membranes formed from a single Mw PVDF.
    Type: Application
    Filed: August 1, 2012
    Publication date: May 29, 2014
    Applicant: Arkema Inc.
    Inventor: Walter Kosar
  • Publication number: 20140110328
    Abstract: The forward osmosis membrane flow system (1) includes a high osmotic pressure fluid flow section (2) to which a high osmotic pressure fluid is supplied, a low osmotic pressure fluid flow section (3) to which a low osmotic pressure fluid with a lower osmotic pressure than that of the high osmotic pressure fluid is supplied, and a semipermeable membrane (4) that separates the high osmotic pressure fluid flow section and the low osmotic pressure fluid flow section from each other. A flow rate in the high osmotic pressure fluid flow section (2) is increased by an occurrence of fluid migration from the low osmotic pressure fluid flow section (3) into the high osmotic pressure fluid flow section (2) through the semipermeable membrane (4). The semipermeable membrane (4) is a composite semipermeable membrane with a polyamide-based skin layer formed on a porous epoxy resin membrane.
    Type: Application
    Filed: June 8, 2012
    Publication date: April 24, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takao Doi, Osamu Hayashi, Masahiko Hirose, Makoto Kobuke, Yoshihide Kawaguchi, Noriaki Harada
  • Patent number: 8678203
    Abstract: Embodiments in accordance with the present invention provide forming polynorbornenes useful for forming pervaporation membranes, the membranes themselves and methods of making such membranes.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 25, 2014
    Assignee: Promerus, LLC
    Inventors: Brian Knapp, Edmund Elce, Brian Bedwell, Leah J. Langsdorf, Ryan Wilks
  • Publication number: 20140069862
    Abstract: The present invention is directed to microfiltration and ultrafiltration membranes comprising a microporous material. The microporous material comprises: (a) a polyolefin matrix present in an amount of at least 2 percent by weight, (b) finely divided, particulate, substantially water-insoluble silica filler distributed throughout said matrix, said filler constituting from about 10 percent to about 90 percent by weight of said coated microporous material substrate, (c) at least 20 percent by volume of a network of interconnecting pores communicating throughout the coated microporous material, and (d) at least one coating composition applied to at least one surface of the membrane to adjust the surface energy of the membrane.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Inventors: Qunhui Guo, Carol Knox, Shawn P. Duffy, Luciano M. Parrinello, Nicholas J. Parise, Brian K. Rearick
  • Publication number: 20140061121
    Abstract: A separation membrane includes a membrane comprising a polymer, characterized in that a functional layer is formed on the surface in one side of the membrane, the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface of the preceding functional layer is 0.1% (by atomic number) or more but not more than 10 (% by atomic number), and the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface opposite to the functional layer is not more than 10 (% by atomic number). A separation membrane module suffering from little sticking of organic matters, proteins, platelets and so on is provided with the separation membrane as a built-in membrane.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 6, 2014
    Applicant: Toray Industries, Inc.
    Inventors: YOSHIYUKI UENO, Masaki Fujita, Hiroyuki Sugaya
  • Publication number: 20140054227
    Abstract: The present invention provides a sugar-immobilized polymer substrate for removing a virus, the polymer substrate allowing efficient removal of a hepatitis virus or the like in a fluid, and a method for removing a virus. In particular, the present invention provides a sugar-immobilized polymer substrate for removing a hepatitis virus or the like, the polymer substrate allowing, in the case of an application to blood of a living body, reduction in the amount of blood taken out of the body, reduction in the removal amount of blood useful components, low invasiveness, and shortening of the operation cycle; and a method for removing a virus. A hollow fiber membrane according to the present invention can be used as a module having a function of effectively removing a virus and a function of not removing useful plasma components.
    Type: Application
    Filed: February 29, 2012
    Publication date: February 27, 2014
    Applicant: DIC CORPORATION
    Inventors: Naoto Sakurai, Naoya Ikushima, Tetsuro Suzuki
  • Publication number: 20140048478
    Abstract: A polymeric membrane for separating oil from water has a pore size of 0.005 ?m to 5 ?m, a thickness of 50 ?m to 1,000 ?m, a water contact angle of 0° to 60°, an oil contact angle of 40° to 100°. The membrane contains a hydrophobic matrix polymer and a functional polymer that contains a hydrophobic backbone and side chains. The side chains each have an oleophobic terminal segment and a hydrophilic internal segment. The weight ratio of the matrix polymer to the functional polymer is 99:1 to 1:9. Also disclosed is a method of making the above described membrane.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 20, 2014
    Inventors: Renbi Bai, Xiaoying Zhu
  • Publication number: 20130334130
    Abstract: A conformal coating that resists fouling by waterborne contamination in aquatic environments, a method for fabricating the coating, and a filter having such a coating are disclosed. The coating comprises a hydrophilic polymer and a surfactant wherein the surfactant undergoes a phase change upon exposure to a saline solution. Also disclosed are in situ methods for regenerating anti-fouling filters having the fouling resistant coating.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Inventors: Rahul Ganguli, Vivek Mehrotra, Tony Ten-Luen Liao
  • Patent number: 8602221
    Abstract: [Problems] To provide a novel hydrophilized separation membrane for use in the treatment of a liquid, which comprises an aromatic ether polymer, is less likely to be degraded by sterilization with a high energy ray and has a controlled pore size and a high water permeability. [Means for Solving Problems] A porous separation membrane for use in the treatment of a liquid which is produced by a wet film formation process using an aromatic ether polymer and a hydrophilizing agent. The separation membrane can be used for medical purposes or in a pharmaceutical of food.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 10, 2013
    Assignee: Asahi Kasei Kabuhiki Kaisha
    Inventors: Hitoshi Mizomoto, Junichi Shishido, Shinya Hamasaki, Hirofumi Miura
  • Publication number: 20130306550
    Abstract: A reverse osmosis membrane includes a porous support, a polyamide active layer formed on the porous support, and a coating layer including a copolymer including an amphoteric ionic compound and glycidyl (meth)acrylate. The coating layer makes a chemical bond with the polyamide active layer. A method of manufacturing the reverse osmosis membrane also is disclosed.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 21, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Seung-Pyo JEONG, Chong-Kyu Shin
  • Patent number: 8550256
    Abstract: A method of photo-grafting onto a separation membrane a copolymer includes at least one of: and; For example, in Structure 1A, x1?2 and y1?1; R1 and R2 are independently selected from the group consisting of CH3 and H; R3 is independently selected from the group consisting of poly(oxyalkylene), quaternary ammonium salts, pyridinium salts, sulfonium salts, sulfobetaines, carboxybetaines, alcohols, phenols, tertiary amines, aryl groups; linear, branched and cyclic alkylenes; linear, branched and cyclic heteroalkylenes; linear, branched and cyclic fluoroalkylenes; and siloxyl; R4 is independently selected from the group consisting of linear, branched, and cyclic alkylenes; linear, branched and cyclic hetroalkylenes; linear, branched and cyclic fluoroalkylenes; phenyl; and siloxyl; and Z1 is 0 or 1.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jacquana T. Diep, Young-Hye Na, Ankit Vora
  • Publication number: 20130240437
    Abstract: The disclosed subject matter provides a filter that is modified by a polymer-carbon based nanomaterial nanocomposite intended to significantly enhance the performance of filtration, separation, and remediation of a broad variety of chemicals, heavy metal ions, organic matters, and living organisms. Polymeric materials, such as but not limited to poly-N-vinyl carbazole (PVK), are combined with (1) graphene (G) and/or graphene-like materials based nanomaterials and (2) graphene oxide (GO) chemically modified with a chelating agent such as but not limited to EDTA. The nanocomposite is homogenously deposited on the surface of the membrane.
    Type: Application
    Filed: September 10, 2012
    Publication date: September 19, 2013
    Inventors: Debora F. Rodrigues, Rigoberto C Advincula, Fritz Claydon, Catherine M. Santos, Maria Celeste R. Tria
  • Publication number: 20130233791
    Abstract: The present invention relates to a separation membrane for water treatment having high water flux and membrane contamination preventing characteristics, and a manufacturing method thereof. The separation membrane for water treatment according to the present invention includes a nanofiber wherein the separation membrane has a surface electric charge. According to the present invention, a separation membrane for water treatment having high water flux and membrane contamination preventing characteristics, and a manufacturing method thereof may be implemented.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 12, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chong Min KOO, Kyung Youl BAEK, Seung Sang HWANG, Soon Man HONG, Ho Bum PARK, Ji Young JUNG, Jang Woo LEE, Young Hoon CHO, Seung Gun YU, Sang Hee PARK
  • Publication number: 20130213881
    Abstract: Described herein are filtration membranes and related, compositions, methods and systems and in particular filtration membranes with embedded polymeric micro/nanoparticles and related compositions, methods, and systems.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 22, 2013
    Applicants: Korea Advanced Institute of Science and Technology, California Institute of Technology
    Inventors: California Institute of Technology, Korea Advanced Institute of Science and Technology
  • Publication number: 20130213880
    Abstract: A separation membrane is provided containing hydrophilic molecules and having, as formed on at least one surface of a feed side and a permeate side thereof, a height difference of from 80 ?m to 2000 ?m, in which a weight of the hydrophilic molecules in a bone-dry separation membrane is from 0.1% to 40% based on a weight of the bone-dry separation membrane from which the weight of the hydrophilic molecules has been subtracted.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 22, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Hiroho Hirozawa, Masakazu Koiwa, Kentaro Takagi, Yutaro Suzuki, Katsufumi Oto, Masahiro Fimura
  • Publication number: 20130206694
    Abstract: A porous membrane can include a polyazole.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 15, 2013
    Applicant: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventor: King Abdullah University of Science and Technology
  • Patent number: 8506815
    Abstract: A method of removing water from fluid mixtures of the water with other compounds uses selective vapor permeation or pervaporation of the water, as the case may be, from the mixture through a membrane having an amorphous perfluoropolymer selectively permeable layer. The novel process can be applied in such exemplary embodiments as (a) removing water from mixtures of compounds that have relative volatility of about 1-1.1 or that form azeotropic mixtures with water, (b) the dehydration of hydrocarbon oil such as hydraulic fluid to concentrations of water less than about 50 ppm, (c) removing water byproduct of reversible chemical equilibrium reactions to favor high conversion of reactants to desirable products, (d) drying ethanol to less than 0.5 wt. % water as can be used in fuel for internal combustion engines, and (e) controlling the water content to optimum concentration in enzyme-catalyzed chemical reactions carried out in organic media.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 13, 2013
    Assignee: CMS Technologies Holdings Inc.
    Inventors: Stuart M. Nemser, Sudipto Majumdar, Kenneth J. Pennisi
  • Publication number: 20130184503
    Abstract: The invention relates to a membrane having a pore-free separating laye including a polymer mixture for separating simple alcohols and water fr their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the invention, the polymer mixtu is composed of at least two polymer components which are taken from t group of polymer components which includes of the following polymer components: Polyvinyl alcohol, other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymer of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL), a terpolymer of DMAE, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or from vinyl chloride ethylene acrylic es or from vinyl acetate vinyl chloride acrylic ester. The invention further relates to the use and to a method for manufacturing a membrane in accordance with the invention.
    Type: Application
    Filed: July 6, 2011
    Publication date: July 18, 2013
    Applicant: SULZER CHEMTECH AG
    Inventors: Michael Frania, Andreas Huebner, Eva Maus
  • Patent number: 8470944
    Abstract: Embodiments in accordance with the present invention provide forming polynorbornenes useful for forming pervaporation membranes, the membranes themselves and methods of making such membranes.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: June 25, 2013
    Assignee: Promerus, LLC
    Inventors: Brian Knapp, Edmund Elce, Brian Bedwell, Leah Langsdorf, Ryan Wilks
  • Publication number: 20130146538
    Abstract: The present invention is for high permeance and high selectivity blend polymeric membranes comprising poly(ethylene glycol) (PEG) and a highly permeable polymer selected from the group consisting of polymers of intrinsic microporosity (PIMs), tetrazole-functionalized polymers of intrinsic microporosity (TZPIMs), or mixtures thereof. The present invention also involves the use of such membranes for separations of liquids and gases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130112615
    Abstract: An organic/inorganic fouling resistant composite compound is disclosed, which includes a core of a polyhedron of polyhedral oligomeric silsesquioxane and at least one arm connected to a silicon atom of the polyhedral oligomeric silsesquioxane. The at least one arm includes a vinyl-based first structural unit including at least one ethylene oxide group at a side chain of the vinyl-based first structural unit and an oleophobic vinyl-based second structural unit including a silicon group at the side chain.
    Type: Application
    Filed: June 12, 2012
    Publication date: May 9, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyo Kang, Sung Soo Han
  • Publication number: 20130048559
    Abstract: A substrate having compounds disposed thereon for immobilizing a functional molecule, each compound having a chain comprising: a moiety R that is chemically coupled to the substrate, said moiety R being selected from the group consisting of an ether, ester, carbonyl, carbonate ester, thioether, disulfide, sulfinyl, sulfonyl, and carbonothioyl; and an epoxide-containing moiety that is coupled to the moiety R by a linker comprising at least one nucleophilic group. Methods of preparing the substrate and use of the substrate are also disclosed.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 28, 2013
    Applicant: TEMASEK POLYTECHNIC
    Inventors: Christian Bluchel, Yanmei Wang
  • Patent number: 8378003
    Abstract: Provided are substantially flat membranes that include a block or graft co-polymer and a water transport protein, such as Aquaporin-Z, or a synthetic mimic of such proteins. Also provided are methods of removing contaminants from a liquid, by contacting the liquid with a substantially flat membrane that includes a block or graft co-polymer and a water transport protein or synthetic mimic thereof. Also provided are methods of making such membranes. Further provided are compositions that include at least one active ingredient and vesicles surrounding the active ingredient, where the vesicles include a block or graft copolymer and a water transport protein or synthetic mimic surrounding the active ingredient. Also provided are methods that include administering such compositions to patients.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 19, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kumar Manish, Clark Mark, Zilles L. Julie, Mariusz Grzelakowski, Rainer Nehring, WolfGang Meier
  • Publication number: 20130032530
    Abstract: Disclosed is a composite semipermeable membrane, which comprises a separation functional layer on a microporous support, and in which the separation functional layer is made of a condensation product of a polymer that has acidic groups and a trialkoxysilane groups having an imidazolium structure in side chains. The composite semipermeable membrane has excellent selective separation performance for divalent ions over monovalent ions, while exhibiting excellent long-term durability. Also disclosed is a method for producing the composite semipermeable membrane. The composite semipermeable membrane is suitable for uses in various water treatment fields such as the desalination of seawater and the production of drinking water. In addition, the composite semipermeable membrane does not deteriorate as much as conventional composite semipermeable membrane even in cases where the membrane is sterilized by having chlorine-containing raw water permeate therethrough continuously or intermittently.
    Type: Application
    Filed: March 28, 2011
    Publication date: February 7, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Hiroki Minehara, Koji Nakatsuji
  • Publication number: 20130026091
    Abstract: Described herein are thin film composite (TFC) membranes, for use in forward osmosis (FO) and pressure reduced osmosis (PRO) processes. The membrane is comprised of two layers: a composite layer combining a backing layer and a porous, polymer-based support into a single layer, and a rejection layer disposed on top of the composite layer. The membrane of the invention exhibits high water flux values for FO processes, is durable, may be readily manufactured using typical membrane manufacturing processes, such as spiral winding and plate and frame processes, and has sufficient mechanical stability to handle the final membrane product.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: HYDRATION SYSTEMS, LLC
    Inventors: Isaac V. Farr, Upen J. Bharwada, Tilak Gullinkala
  • Publication number: 20130004454
    Abstract: Oligo- or polyurethane compounds of the formula (I) wherein k and n independently are numbers from 1 to 100, m is from the range 1-100, (X) is a block of formula (II) and (Y) is a block of the formula (III), (A) is a residue of an aliphatic or aromatic diisocyanate linker, (B) is a residue of a linear oligo- or polysiloxane containing alkanol end groups, and optionally further containing one or more aliphatic ether moieties, and (C) is an aromatic oligo- or polysulfone block, may advantageously be used as anti-adhesion additives in polymer compositions e.g. for membranes; related oligo- or polyurethanes wherein m is 0 are especially suitable for the preparation of antimicrobial water separation membranes.
    Type: Application
    Filed: March 1, 2011
    Publication date: January 3, 2013
    Applicant: POLYMERS CRC LTD.
    Inventors: Thomas Weiss, Jaleh Mansouri