Carbonate Patents (Class 210/500.4)
  • Patent number: 10463993
    Abstract: The invention in at least one embodiment includes a system for treating water having an intake module, a vortex module, a disk-pack module, and a motor module where the intake module is above the vortex module, which is above the disk-pack module and the motor module. In a further embodiment, a housing is provided over at least the intake module and the vortex module and sits above the disk-pack module. In at least one further embodiment, the disk-pack module includes a disk-pack turbine having a plurality of disks having at least one waveform present on at least one of the disks.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 5, 2019
    Assignee: QWTIP LLC
    Inventor: Whitaker Ben Irvin, Sr.
  • Publication number: 20150144552
    Abstract: With the subject invention, a method is provided for preparing a filter membrane including the steps of dispersing a liquid which is generally hydrophobic into the pores of a porous membrane, and applying a solution containing lipids onto at least a first surface of the porous membrane containing the liquid. Advantageously, the subject invention allows for filter membranes to be prepared which can be stored for periods of time without degradation in performance. The subject invention may have applicability in various contexts, but is well-suited for preparing filter membranes for permeability screening, particularly Parallel Artificial Membrane Permeability Assay (PAMPA).
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: XIAOXI (KEVIN) CHEN, CHARLES L. CRESPI
  • Patent number: 8820540
    Abstract: Method for preparing a filtration membrane and a filtration membrane prepared by the method. According to one embodiment, the method involves casting a polymer solution onto a porous support to form a coated support. The coated support is then quenched to form a membrane/support composite, and the membrane/support composite is then dried. Next, a first end of a first piece of adhesive tape is applied to the membrane side of the composite, and the second end of the first piece of adhesive tape is applied to a first rotatable winder. In addition, a first end of a second piece of adhesive tape is applied to the support side of the composite, and the second end of the second piece of adhesive tape is applied to a second rotatable winder. The two winders are then rotated so as to pull apart the membrane from the support.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 2, 2014
    Assignee: Woongjin Chemical Co., Ltd.
    Inventors: Ja-Young Koo, Doowon Lee, Sungpyo Hong
  • Publication number: 20140151288
    Abstract: Technologies are generally described for composite membranes which may include a porous graphene layer in contact with a porous support substrate. In various examples, a surface of the porous support substrate may include at least one of: a thermo-formed polymer characterized by a glass transition temperature, a woven fibrous membrane, and/or a nonwoven fibrous membrane. Examples of the composite membranes permit the use of highly porous woven or nonwoven fibrous support membranes instead of intermediate porous membrane supports. In several examples, the composite membranes may include porous graphene layers directly laminated onto the fibrous membranes via the thermo-formed polymers. The described composite membranes may be useful for separations, for example, of gases, liquids and solutions.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Empire Technology Development LLC
    Inventors: Seth Adrian Miller, Gary L. Duerksen
  • Publication number: 20140048478
    Abstract: A polymeric membrane for separating oil from water has a pore size of 0.005 ?m to 5 ?m, a thickness of 50 ?m to 1,000 ?m, a water contact angle of 0° to 60°, an oil contact angle of 40° to 100°. The membrane contains a hydrophobic matrix polymer and a functional polymer that contains a hydrophobic backbone and side chains. The side chains each have an oleophobic terminal segment and a hydrophilic internal segment. The weight ratio of the matrix polymer to the functional polymer is 99:1 to 1:9. Also disclosed is a method of making the above described membrane.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 20, 2014
    Inventors: Renbi Bai, Xiaoying Zhu
  • Patent number: 8651284
    Abstract: A hydrophilic semipermeable hollow-fiber membrane for blood treatment, with an integrally asymmetric structure based on a synthetic polymer. The hollow-fiber membrane possesses on its inner surface a separating layer and an adjoining open-pored supporting layer, and has an ultrafiltration rate in albumin solution of 5 to 25 ml/(h·m2·mmHg). The hollow-fiber membrane is free from pore-stabilizing additives and has a maximum sieving coefficient for albumin of 0.005 and a sieving coefficient for cytochrome c that satisfies the equation SCCC?5·10?5·UFRAlb3?0.004·UFRAlb2+1.081·UFRAlb?0.25.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: February 18, 2014
    Assignee: Membrana GmbH
    Inventors: Friedbert Wechs, Arne Gehlen, Bodo von Harten, Richard Kruger, Oliver Schuster
  • Patent number: 8550256
    Abstract: A method of photo-grafting onto a separation membrane a copolymer includes at least one of: and; For example, in Structure 1A, x1?2 and y1?1; R1 and R2 are independently selected from the group consisting of CH3 and H; R3 is independently selected from the group consisting of poly(oxyalkylene), quaternary ammonium salts, pyridinium salts, sulfonium salts, sulfobetaines, carboxybetaines, alcohols, phenols, tertiary amines, aryl groups; linear, branched and cyclic alkylenes; linear, branched and cyclic heteroalkylenes; linear, branched and cyclic fluoroalkylenes; and siloxyl; R4 is independently selected from the group consisting of linear, branched, and cyclic alkylenes; linear, branched and cyclic hetroalkylenes; linear, branched and cyclic fluoroalkylenes; phenyl; and siloxyl; and Z1 is 0 or 1.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jacquana T. Diep, Young-Hye Na, Ankit Vora
  • Patent number: 8506814
    Abstract: The invention relates to a process for membrane separation that makes it possible to separate linear hydrocarbons from branched hydrocarbons. The membrane that is used comprises a dense selective layer that consists of a polymer whose chemical structure contains at least one bis-phenyl-9,9-fluorene group.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 13, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Serge Gonzalez, Jacques Vallet, Arnaud Baudot, Helene Rodeschini
  • Patent number: 8496122
    Abstract: The present invention relates to a membrane being suitable for, for example, hemodialysis. Said membrane comprises at least one hydrophobic polymer and at least one hydrophilic polymer. According to the present invention the outer surface of the hollow fiber has pores in the range of 0.5-3 ?m and the numbers of said pores in the outer surface are in the range of 10,000 to 150,000 pores per mm2, preferably in the range of 18,000 to 100,000 pores per mm2, and most preferably in the range of 20,000 to 100,000 pores per mm2. The present invention further relates to a process for the preparation of said membrane and use of said membrane in hemodialysis, hemodiafiltration and hemofiltration, and in dialysis and filtration in general, for example in water purification or dehydration.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: July 30, 2013
    Assignee: Gambro Lundia AB
    Inventors: Hermann Göhl, Reinhold Buck
  • Publication number: 20130004454
    Abstract: Oligo- or polyurethane compounds of the formula (I) wherein k and n independently are numbers from 1 to 100, m is from the range 1-100, (X) is a block of formula (II) and (Y) is a block of the formula (III), (A) is a residue of an aliphatic or aromatic diisocyanate linker, (B) is a residue of a linear oligo- or polysiloxane containing alkanol end groups, and optionally further containing one or more aliphatic ether moieties, and (C) is an aromatic oligo- or polysulfone block, may advantageously be used as anti-adhesion additives in polymer compositions e.g. for membranes; related oligo- or polyurethanes wherein m is 0 are especially suitable for the preparation of antimicrobial water separation membranes.
    Type: Application
    Filed: March 1, 2011
    Publication date: January 3, 2013
    Applicant: POLYMERS CRC LTD.
    Inventors: Thomas Weiss, Jaleh Mansouri
  • Publication number: 20120292255
    Abstract: This disclosure provides methods to use nanoparticles as non-optical tags for detecting a change in mass. chemical sensing or bio-sensing events or reaction upon conjugation of nanoparticles onto a thermoresistor heat sensor. Particularly described is the use of metal nanoparticles in thermal sensors, thermal bio-sensors, and sensing pixel arrays for multiple analyte sensing. In addition, an asymmetric filter is disclosed that allows size separation of molecules from nanoparticles. The asymmetric filter is a porous membrane that is designed to have a small pore size in one size and a large pore size on the other side.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventor: Babak Nikoobakht
  • Patent number: 8141717
    Abstract: The present invention provides sintered polymeric materials and methods of making the same which are useful in a variety of applications. In one embodiment, the present invention provides a sintered polymeric material comprising at least one plastic and at least one elastomer.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 27, 2012
    Assignee: Porex Corporation
    Inventors: James P. Wingo, Michael E. Witover, Guoqiang Mao, Andre Maertens, Gerald Kunth, Daniel George Fullerton, Ike Iaokim Haldopoulos, Take Huat Tan, Deborah B. Reed
  • Patent number: 8132678
    Abstract: The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 13, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Publication number: 20120055867
    Abstract: Disclosed is a membrane surface modification method. The method is applicable to a variety of hydrophobic membranes by doping selected inorganic particles. One act of the method involves the in-situ embedment of the inorganic particles onto the membrane surface by dispersing the particles in a non-solvent bath for polymer precipitation. Further membrane surface modification can be achieved by hydrothermally growing new inorganic phase on the embedded particles. The embedment of particles is for the subsequent phase growth.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 8, 2012
    Applicant: THE UNIVERSITY OF HONG KONG
    Inventors: Kaimin Shih, Xiao-Yan Li, Xiao-Mao Wang, Tong Zhang
  • Patent number: 8127937
    Abstract: In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Patent number: 8127936
    Abstract: In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Publication number: 20110253621
    Abstract: A method of manufacturing a hydrophilic membrane and hydrophilic membranes having improved antifouling property using a supercritical fluid or a subcritical fluid. The method involves combining a coating solution from a hydrophilic group-containing monomer, an initiator, a cross-linking agent and a supercritical fluid or subcritical fluid in a high pressure solution vessel and transferring the coating solution to a membrane in a high pressure coating vessel, coating the surfaces and micropores of the membranes through cross-linking polymerization reactions. Non-reacted coating material is returned to the high pressure solution vessel. The membranes are removed from the coating vessel, cleaned and dried. The hydrophilic membrane manufactured by the present invention is excellent in properties of hydrophobic membranes such as thermal stability, chemical stability and mechanical strength, and surfaces and micropores of the membranes are uniformly coated.
    Type: Application
    Filed: July 28, 2010
    Publication date: October 20, 2011
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jaehoon Kim, Young Haeng Lee, Jae-Duck Kim, Jong Min Park, Jongsoo Jurng
  • Patent number: 7882963
    Abstract: A multilayered modified membrane and method for making the same, comprising a modified discriminating layer that can have a fouling resistant surface, improved salt rejection, antimicrobial properties, and/or improved solute, and/or small organics rejection as compared to membranes with unmodified discriminating layers.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: February 8, 2011
    Assignee: Dow Global Technologies Inc.
    Inventors: William E. Mickols, Richard C. Krauss, Q. Jason Niu, Carleton L Gaupp
  • Publication number: 20100243556
    Abstract: A microporous asymmetrical membrane formed of one or more layers wherein the “tight” side of the membrane has an “opened” face or otherwise highly-porous reticulated surface is described. The microporous asymmetrical membrane has high throughput and high flux, even when used for filtering viscous materials, such as serum or plasma. The membrane's surface can be formed by ablation or solvation, or in a two or more layered structure, through an appropriate selection of casting dopes.
    Type: Application
    Filed: February 18, 2010
    Publication date: September 30, 2010
    Applicant: Millipore Corporation
    Inventors: Willem Kools, Claire Marie Goulding, Daniel Calnan, Timothy Dolan
  • Patent number: 7749385
    Abstract: The invention provides porous matrices that comprise one or more surfactants that can be used in non-aqueous environments.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: July 6, 2010
    Assignee: GE Osmonics Inc.
    Inventors: Steven D. Kloos, Brian Rudie, Leonard T. Hodgins
  • Patent number: 7681741
    Abstract: Membranes comprising functional polyarylether having structural units of formula II are useful for hemodialysis and hemofiltration: wherein X is selected from Br, NR4R5, OOCR6, OR7, NR4COR5, NR4CONR5R6, NR4COOR5R6 and combinations thereof; R1, R2 and R3 are independently at each occurrence H, X, halo, cyano, nitro, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; R4 and R5 are independently H, a C1-C10 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical, or a combination thereof; R6 is H, a C2-10 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; R7 is OCH2CH2(OCH2CH2)nOH or OOCCH2(OCH2CH2)nCH3; Q is a direct bond, O, S, CH2, alkenyl, alkynyl, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; Z is a direct bond, O, S, CH2, SO, SO2, CO, phenylphospinyl oxide, alkenyl, alkynyl, a C1-C12 aliphatic radic
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 23, 2010
    Assignee: General Electric Company
    Inventors: Yanshi Zhang, Daniel Steiger, Joseph Anthony Suriano, Gary William Yeager
  • Patent number: 7669720
    Abstract: Membranes comprising functional polyarylether having structural units of formula I are useful for hemodialysis and hemofiltration: wherein X is selected from Br, NR4R5, OOCR6, OR7, NR4CONR5R6, NR4COOR5R6 and combinations thereof; R1, R2 and R3 are independently at each occurrence CH2X, H, halo, cyano, nitro, a C1-C12aliphatic radical, a C3-C12cycloaliphatic radical, a C3-C12aromatic radical or a combination thereof; R4 and R5 are independently H, a C1-10 aliphatic radical, a C3-C12cycloaliphatic radical, a C3-C12 aromatic radical, or a combination thereof; R6 is H, a C2-10 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; R7 is OCH2CH2(OCH2CH2)nOH or OOCCH2(OCH2CH2)nCH3; Z is a direct bond, O, S, SO, SO2, CO, phenylphospinyl oxide, alkenyl, alkynyl, a C1-C12aliphatic radical, a C3-C12cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; a, b, and c are independently 1 or 2; and m, n and p are independently 0 or 1.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 2, 2010
    Assignee: General Electric Company
    Inventors: Yanshi Zhang, Daniel Steiger, Joseph Anthony Suriano, Gary William Yeager
  • Publication number: 20090188857
    Abstract: A membrane includes a porous base membrane and a hydrophilic coating. The coating comprises a hydrophilic additive and a hydrophilic polymer derivatized with an electron beam reactive group adapted to form a radical under high energy irradiation. In some embodiments, the membrane comprises a fluoropolymer. Also disclosed are processes for forming the membrane.
    Type: Application
    Filed: November 21, 2008
    Publication date: July 30, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Roger Moore, Ryan Austin Hutchinson
  • Publication number: 20090184047
    Abstract: Functionalized nanopore membranes, apparatus and related methods, as can be used for selective analyte detection and/or separation.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 23, 2009
    Inventors: Sankaran Thayumanavan, Kothandam Krishnamoorthy, Elamprakash N. Savariar
  • Patent number: 7438193
    Abstract: Provided are a nanoporous membrane and a method of fabricating the same. The nanoporous membrane includes a support, and a separation layer including a plurality of nano-sized pores at a density of 1010/cm2 or greater and a matrix. The nanoporous membrane has a high flux and a high selectivity.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: October 21, 2008
    Assignees: Postech Foundation, Postech Academy-Industry Foundation
    Inventors: Seung Yun Yang, Jin Kon Kim, Min Soo Park, Incheol Ryu, Sung Key Jang, Hwang Yong Kim, Thomas P. Russell
  • Publication number: 20080251446
    Abstract: A pre-filled and sealed filter bag, is provided including calcium carbonate material having fine pores and two sheets of filter paper having substantially similar geometrical shape and dimensions and defining an outer periphery. The calcium carbonate material is selected from coral sand, oysters shells and/or crab shells. A peripheral joint extends along the outer periphery of the sheets of filter paper and joins the sheets together substantially overlapping one another to define an inner chamber within the interior of the bag in which the calcium carbonate material is enclosed. Each of the two sheets of filter paper define within the peripheral joint an air and water permeable filter area of a minimum of 900 mm2. The weight of the two sheets of filter paper material constitute more than 1/8 (12.5%) of the weight of the material contained within the filter bag.
    Type: Application
    Filed: May 19, 2005
    Publication date: October 16, 2008
    Applicant: AQUA PURO DANMARK A/S
    Inventors: Erling Vangedal-Nielsen, Rene Munch Kjaer, Georg Thorvald Gran
  • Publication number: 20080197081
    Abstract: Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.
    Type: Application
    Filed: April 25, 2006
    Publication date: August 21, 2008
    Applicant: The Regents of the University of California
    Inventor: Ashok Jagannth Gadgil
  • Patent number: 7347938
    Abstract: The present invention relates to the use of copolymers A containing a) from 50 to 99% by weight of at least one N-vinyllactam or N-vinylamine selected from the group consisting of N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinylimidazole, methylated N-vinylimidazole, and N-vinylformamide, and b) from 1 to 50% by weight of at least one monomer selected from the group consisting of b1) C8-C30-alkyl esters of monoethylenically unsaturated C3-C8 carboxylic acids; b2) N—C8-C30-alkyl-substituted amides of monoethylenically unsaturated C3-C8 carboxylic acids; b3) N,N—C8-C30-dialkyl-substituted amides of monoethylenically unsaturated C3-C8 carboxylic acids; b4) vinyl esters of aliphatic C8-C30 carboxylic acids; and b5) C8-C30-alkyl vinyl ethers to produce membranes.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: March 25, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Tanja Schneider, Frank Dietsche, Axel Sanner, Stefan Stein, Karin Neubecker
  • Publication number: 20070210004
    Abstract: The present invention provides a novel adsorbent carbon supported activated alumina (CSAA) which posses both the advantageous characteristics of carbon and alumina viz., the high specific surface area associated with activated carbon and high sorption capacity of alumina towards F? Carbon supported activated alumina has an added advantage of its usage in the neutral pH unlike alumina and alumina impregnated carbon which are found to be efficient only in acidic pH. It is more efficient compared to carbon in terms of its sorption capacity towards F? and is therefore useful for the efficient removal of fluoride ions from water.
    Type: Application
    Filed: October 2, 2006
    Publication date: September 13, 2007
    Inventors: Kamaraju Seetha Rama Rao, Veldurthi Shashikala, Aytam Hari Padmasri, Burri David Raju, Vasireddy Siva Kumar, Bhari Mallanna Naga Raja, Podila Seetha Ramulu, Sanapureddy Sreevardhan Reddy, Umesh Chandra Kulshreshta, Komandur Venkata Raghava Chary
  • Patent number: 6994788
    Abstract: A sulfonated aromatic polymer comprising the repeating structural unit of the formula I —O—Ar1(SO3R)n—C(CF3)2—Ar1(SO3R)n—O—Ar2—(X—Ar2)m—, ??(I) in which Ar1 and Ar2 are, independently of one another, divalent aromatic or heteroaromatic radicals which are optionally substituted by one or more monovalent organic groups which are inert under the conditions of use, R is hydrogen, an alkali metal or alkaline earth metal ion or an ammonium ion, n is an integer from 0 to 3, m is 0, 1 or 2 and X is a —CO—, —O—, —CpH2p—, —CpF2p— or —S— group, in which p is an integer from 1 to 10, is described. Membranes with high proton conductivities can be produced from this polymer and are preferably used in fuel cells.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: February 7, 2006
    Assignee: PEMEAS GmbH
    Inventors: Alexander Dyck, Thomas Soczka-Guth
  • Patent number: 6558546
    Abstract: A pore plugging material, for pH dependent membrane diffusion, in which cyclic olefins having phosphazene-functional moieties provide predictable erosion properties when used to plug pores in separation barriers and other porous membranes. Specific properties of the polymers are dependent on several factors, including molecular weight and identity of side groups attached to the phosphazene moiety. However, as a class, phosphazene-functional cyclic olefins provide both predictable erodibility and uniformly benign hydrolysis products and are, therefore, uniquely suitable as pore plugging polymers for separation barriers and membranes of all kinds. The invention, therefore, embraces the provision of a pH-sensitive erodible pore plugging material for pores in separation barriers and membranes of all kinds.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: May 6, 2003
    Assignee: The Penn State Research Foundation
    Inventors: Harry R. Allcock, Jared Bender, Roy H. Hammerstedt, Stephen Schwartz, Walter Laredo
  • Patent number: 6527955
    Abstract: A novel microporous membrane comprising a hot-melt adhesive and an engineering plastics, the methods of preparing such microporous membrane and the uses of the microporous membrane in, e.g., batteries, super capacitors, fuel cells, sensors, electrochromic devices or the like.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: March 4, 2003
    Assignee: Policell Technologies, Inc.
    Inventor: Luying Sun
  • Publication number: 20020033367
    Abstract: A method and apparatus for filtering suspensions of medical and biological fluids, one aspect of which is separating a suspension comprising at least two types of particles which are differently sized or shaped and in which the first type of particle may be deformable at a relatively lower force and/or faster rate than the second type of particle. A filter member is provided having substantially precisely dimensioned pore sizes, with the pores being dimensioned to allow passage of the first type of suspended particle without distortion or only minimal distortion and passage of the second type of particle only with substantial distortion.
    Type: Application
    Filed: September 18, 2001
    Publication date: March 21, 2002
    Applicant: Baxter International Inc.
    Inventors: Paul R. Prince, Michael O. Pekkarinen, David Bellamy, Shmuel Sternberg