Utilizing Plural Diverse Membranes Patents (Class 210/641)
  • Patent number: 11931733
    Abstract: A device and a method for repeatedly modifying the composition of a fluid. The device includes a first module (19) modifying the composition of the fluid, a second module (21) modifying the composition of the fluid and a dwell module (20) with an inlet (8) and an outlet (10). The first module is connected in a fluid-conducting manner to the dwell module inlet and the dwell module outlet is connected in a fluid-conducting manner to the second module. Either the first or the second module is a filter unit, or the first module is a first filter unit and the second module is a second filter unit. The filter unit(s) include(s) at least one first filter medium (4, 14) delimiting a supply channel (2, 12) and a retentate channel (1, 11) and at least one second filter medium (5, 15) delimiting the retentate channel and a permeate channel (3, 13).
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: March 19, 2024
    Assignee: Sartorius Stedim Biotech GmbH
    Inventors: Martin Leuthold, Alexander Helling, Ulrich Grummert
  • Patent number: 11884692
    Abstract: The present invention provides, among other things, methods of purifying messenger RNA (mRNA) including the steps of (a) precipitating mRNA from an impure preparation; (b) subjecting the impure preparation comprising precipitated mRNA to a purification process involving membrane filtration such that the precipitated mRNA is captured by a membrane; and (c) eluting the captured precipitated mRNA from the membrane by re-solubilizing the mRNA, thereby resulting in a purified mRNA solution. In some embodiments, a purification process involving membrane filtration suitable for the present invention is tangential flow filtration.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: January 30, 2024
    Assignee: TRANSLATE BIO, INC.
    Inventors: Frank DeRosa, Anusha Dias, Michael Heartlein, Shrirang Karve
  • Patent number: 11795069
    Abstract: A phase separator apparatus includes a fluid flow pathway and a phase separator. The fluid flow pathway includes a fluid inlet and a fluid outlet. The fluid flow pathway is configured to flow multiphase fluid including an oil phase and a water phase from the fluid inlet to the fluid outlet. The phase separator is spatially positioned relative to the fluid flow pathway to receive the multiphase fluid flowing from the fluid outlet. The phase separator includes a mounting substrate and a separation layer attached to the mounting substrate. The separation layer includes a material switchable between oleophilic and hydrophobic under a first condition and oleophobic and hydrophilic under a second condition. The separation layer is configured to separate the oil phase and the water phase when the separation layer is under either the first condition or the second condition.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: October 24, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Zeyad Tareq Ahmed
  • Patent number: 11633699
    Abstract: A dialyzer (15) includes a hollow fiber dialysis column (20), a liquid tubing section (12a), and a flow rate changing section (16a). The hollow fiber dialysis column (20) includes a hollow fiber membrane, a first flow channel that allows a dialysis target to flow internally of the hollow fiber membrane, and a second flow channel that allows an external liquid to flow externally of the hollow fiber membrane. The liquid tubing section (12a) tubes the dialysis target to an inlet (20a) of the first flow channel. The flow rate changing section (16a) is capable of changing a flow rate of the dialysis target at the dialysis target flowing out of an outlet (20b) of the first flow channel.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 25, 2023
    Assignee: OSAKA UNIVERSITY
    Inventors: Takashi Matsuzaki, Tetsuo Minamino, Ryo Araki
  • Patent number: 11577973
    Abstract: A fluid treatment apparatus includes: a first tank portion arranged to receive a first fluid from a first fluid source; a second tank portion adapted to contain a second fluid and receive water molecules of the first fluid from the first tank portion, wherein the concentration of the second fluid is higher than that of the first fluid; a third tank portion arranged to collect the water molecules of the first fluid from the second tank portion; a first membrane positioned between the first and second tank portions and arranged to filter the water molecules of the first fluid from the first tank portion; and a second membrane positioned between the second and third tank portions and arranged to obtain the water molecules of the first fluid from the second tank portion, wherein the second membrane has a greater permeability than that of the first membrane.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 14, 2023
    Assignee: City University of Hong Kong
    Inventors: Alicia Kyoungjin An, Paula Jungwon Choi
  • Patent number: 11515552
    Abstract: A catalyst laminate includes a plurality of catalyst layers containing at least one of a noble metal and an oxide of the noble metal and at least one of a non-noble metal and an oxide of the non-noble metal, including: two or more first catalyst layers and two or more second catalyst layers. In an atomic percent of the noble metal obtained by using a line analysis by energy dispersive X-ray spectroscopy in a thickness direction of the catalyst laminate. The first catalyst layer is less than an average of a highest value and a lowest value of the atomic percent of the noble metal. The second catalyst layer has an atomic percent of the noble metal equal to or greater than the average of the highest value and the lowest value thereof. The second catalyst layer is present between the first catalyst layers.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 29, 2022
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Iida, Norihiro Yoshinaga, Wu Mei, Yoshihiko Nakano
  • Patent number: 11412673
    Abstract: The present disclosure relates to an article for enriching soil fertility, a method of manufacturing the same and a method of enriching soil fertility. The article comprising: a plurality of containers, each having a respective fluid-permeable membrane and each containing one or more fertilizers. At least one of permeabilities of the membranes and contents of the one or more fertilizers are selected to control a release of the fertilizers from the containers.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: August 16, 2022
    Assignee: PS Global SDN. BHD.
    Inventors: Kim Fui Ng, Lee Yien Thang
  • Patent number: 11401172
    Abstract: A filtration system can comprise a pressure pump configured to apply a pressure on fluid flowing between a first chamber and a second chamber. The filtration system can also comprise a flow sensor configured to determine at least one parameter associated with fluid flowing across a membrane deposited between the first chamber and a second chamber. The filtration system can comprise a pressure sensor configured to determine pressure readings of the fluid flowing from the first chamber to the second chamber. The filtration system can comprise a filtration management system configured to cause the pressure pump to apply a constant pressure on fluid flowing across the membrane for a first predetermined time based on the pressure reading. The filtration management system can be configured to cause the pressure pump to reverse the fluid flow across the membrane.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 2, 2022
    Assignee: INTELLIFLUX CONTROLS
    Inventors: Eric M. V. Hoek, Subir Bhattacharjee, Gil Hurwitz
  • Patent number: 11324241
    Abstract: Snack bars incorporating a prebiotic, probiotic and natural fibers, and methods of making such snack bars are described herein. The snack bar may incorporate waxy grains held together by a binder comprising inulin and may be enrobed with a yogurt coating. The methods may include mixing inulin into a binder syrup at low temperature and a slab-bake process for reducing water activity.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 10, 2022
    Assignee: Kellogg Company
    Inventors: Guoshen Yang, Jennifer Elegbede, Vara Prodduk
  • Patent number: 11306008
    Abstract: A working medium includes a first amine compound and a second amine compound. The first amine compound is a heterocyclic tertiary amine compound including a carbon atom, a nitrogen atom and a hydrogen atom, and in which a ratio (C/N ratio) of a carbon atom number to a nitrogen atom number included in one molecule is from 7 to 9. The second amine compound is a heterocyclic tertiary amine compound including a carbon atom, a nitrogen atom and a hydrogen atom. and in which a ratio (C/N ratio) of a carbon atom number to a nitrogen atom number included in one molecule is in a range of 5 or more to less than 7.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 19, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akiko Suzuki, Toshihiro Imada, Kenji Sano
  • Patent number: 11246970
    Abstract: Provided is a blood processing filter comprising a container having two spouts serving as an inlet for a liquid to be processed and an outlet for the processed liquid, and a filtration medium contained in the container, the filtration medium comprising a filter material having different CWST values for one surface A and the other surface B.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: February 15, 2022
    Assignee: ASAHI KASEI MEDICAL CO., LTD.
    Inventor: Kazuhiko Nakamura
  • Patent number: 11241656
    Abstract: Disclosed herein is a single pass cross flow diafiltration system comprising: a filtration module having; two or more filtration segments fluidly connected in series, each having an upstream side and a downstream side; wherein each filtration segment comprises hollow fiber filter membranes, and wherein each filtration segment has a selected length; wherein the hollow fiber filter membranes of each filtration segment have a selected inner diameter; wherein the selected inner diameter of each filtration segment may be the same or different, provided that at least one selected inner diameter differs from another selected inner diameter, and provided that the two or more filtration segments are arranged such that no selected inner diameter in a given filtration segment is larger on the upstream side; one or more pumps, mounted to urge fluid flow; and one or more points of introduction of a diadiluent, each of said points of introduction being fluidly connected to an upstream filtration segment.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: February 8, 2022
    Assignee: WaterSep BioSeparations LLC
    Inventors: Attila Herczeg, Bengt G Persson, Julie-Anne Burdick
  • Patent number: 11220448
    Abstract: Disclosed is a process for enriching silicate content in drinking water that includes separating raw water via reverse osmosis into a permeate comprising demineralised raw water and a retentate comprising mineral enriched raw water. The permeate is mixed with a water glass solution comprising sodium silicate and/or potassium silicate. An ion exchange process is used to reduce the concentration of sodium and/or potassium ions in at least part of the mixture. At least part of the retentate is supplied to the mixture after reducing the concentration of sodium and/or potassium ions to provide a silicate-enriched drinking water. Also disclosed is an apparatus for producing a drinking water enriched with silicate. The apparatus includes a reverse osmosis unit, a mixing unit, an ion exchanger, and a feed unit for feeding at least part of the retentate to the mixture after reducing the concentration of sodium and/or potassium ions.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: January 11, 2022
    Assignee: Krones AG
    Inventor: Dirk Scheu
  • Patent number: 11179678
    Abstract: The present invention relates to systems and methods for filtration and/or dilution of fluids, in particular for the dialysis of blood. The systems comprise a filter device (10) having a fluid chamber (18) and comprising a first lid (20) having arranged thereon a first fluid port (22). The filter device (10) further comprises a second lid (30) having arranged thereon at least a second fluid port (32). The filter device (10) further comprises a plurality of hollow fibers (40) arranged within the housing (12), wherein each of the plurality of hollow fibers (40) comprises a semi-permeable membrane and defines a fluid channel extending longitudinally through an interior of the respective hollow fiber (40). Also, the filter device (10) comprises a fourth fluid port (50) and a fifth fluid port (52) both provided at the fluid chamber (18).
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 23, 2021
    Assignee: GAMBRO LUNDIA AB
    Inventors: Olof Jansson, Bjoern Ericson, Henrik Hall
  • Patent number: 11090616
    Abstract: Described herein are filtration membranes and related, compositions, methods and systems and in particular filtration membranes with embedded polymeric micro/nanoparticles and related compositions, methods, and systems.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: August 17, 2021
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Mamadou S. Diallo, Madhusudhana Rao Kotte
  • Patent number: 11071951
    Abstract: The present invention provides a hemodiafiltrator comprising two compartmentalized dialysate chambers coaxially arranged in tandem. A single packed bundle of hollow fibers for blood flow is enclosed coaxially along a longitudinal axis inside the dual dialysate chambers. A configuration of a tandem arrangement of the dual dialysate chambers at least comprises a first dialysate chamber for an acidic dialysate with a varying level of urea and a second compartmentalized dialysate chamber for a basic dialysate with no urea but with a level of ammonia up to a level detected in normal human blood.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: July 27, 2021
    Inventor: Choon Kee Lee
  • Patent number: 10967309
    Abstract: Disclosed herein is a water purifying system, including: a raw water tank configured to store raw water; a filter unit configured to include a plurality of filtration modules for purifying the raw water and a plurality of valves for feeding or cutting off the raw water; a raw water pump configured to feed the raw water from the raw water tank to the filter unit; and a backwash module configured to feed backwash water to the filter unit, in which some of permeate water permeated by the filter unit is fed to the backwash module to be used as the backwash water and a feed pressure of the backwash water is fed by the raw water pump.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: April 6, 2021
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventors: Woo Nyoung Lee, Sung Won Park
  • Patent number: 10940439
    Abstract: The high water recovery hybrid membrane system for desalination and brine concentration combines nanofiltration, reverse osmosis and forward osmosis to produce pure water from seawater. The reject side of a nanofiltration unit receives a stream of seawater and outputs a brine stream. A permeate side of the nanofiltration unit outputs a permeate stream. A feed side of a reverse osmosis desalination unit receives a first portion of the permeate stream and outputs a reject stream. A permeate side of the reverse osmosis desalination unit outputs pure water. A draw side of at least one forward osmosis desalination unit receives the reject stream and outputs concentrated saline solution. A feed side of the at least one forward osmosis desalination unit receives a second portion of the permeate stream and outputs a dilute saline stream, which mixes with the first portion of the permeate stream fed to the reverse osmosis desalination unit.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 9, 2021
    Assignee: KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH
    Inventors: Mansour Ahmed, Rajesha Kumar, Garudachari Bhadrachari, Yousef Jassim Essa Al-Wazzan, Jibu Pallickel Thomas
  • Patent number: 10604611
    Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads of an aqueous solution comprising water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, recovering polymer beads, and then cleaning the non-aqueous liquid in which the process comprises providing the non-aqueous liquid in a vessel (1), forming a suspension of monomer beads from the aqueous monomer or monomer blend in the non-aqueous liquid, initiating polymerisation to form polymerising beads, removing a suspension of the polymer beads in non-aqueous liquid from the vessel and recovering, water soluble or water swellable polymer beads from the suspension, in which the non-aqueous liquid contains impurities which comprise particles, and then transferring the non-aqueous liquid from the suspension to a cleaning stage, in which the cleaning stage provides a cleaned non
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 31, 2020
    Assignee: BASF SE
    Inventors: John Scott Barratt, Aleksandra Jelicic, Pascal Hesse, Oliver Soetje, Robert Haschick, Gabriela Eugenia Fonseca Zepeda, Shankara Narayanan Keelapandal Ramamoorthy, Sandra Jeck, Jelan Kuhn
  • Patent number: 10569222
    Abstract: A membrane process unit (MPU) is configured to receive a feed stream, subject the feed stream to membrane purification to generate a product stream and a concentrate stream, and subject the concentrate stream to energy recovery to provide at least a portion of energy for membrane purification. A concentrate recycle unit (CRU) is configured to receive the concentrate stream from the MPU, subject the concentrate stream to flow regulation to generate a waste stream and a recycled concentrate stream, and combine the recycled concentrate stream with a raw feed stream to generate the feed stream which is supplied to the MPU. At least one of a flow rate of the raw feed stream, a flow rate of the waste stream, or a flow rate of the recycled concentrate stream is varied, while each of a flow rate of the feed stream, a flow rate of the product stream, and a flow rate of the concentrate stream is maintained substantially fixed.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: February 25, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yoram Cohen, Anditya Rahardianto, Tae Kyung Lee
  • Patent number: 10308524
    Abstract: The pressure-reduced saline water treatment system combines both forward osmosis and reverse osmosis techniques for the desalination of salt water, such as seawater. A feed side of the reverse osmosis desalination unit is in fluid communication with the feed side of the forward osmosis desalination unit, such that seawater drawn through the feed side of the forward osmosis desalination unit is fed into the feed side of the reverse osmosis desalination unit. The reverse osmosis desalination unit outputs product water extracted from the seawater from a permeate side thereof. The feed side of the reverse osmosis desalination unit outputs a reject stream, which is fed to a draw side of the forward osmosis desalination unit, such that the draw side of the forward osmosis desalination unit receives the reject stream and outputs concentrated brine.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: June 4, 2019
    Assignee: Kuwait Institute for Scientific Research
    Inventors: Mansour Ahmed, Rajesha Kumar, Bhadrachari Garudachari, Yousef Jassim Easa Al-Wazzan, Jibu Pallickel Thomas
  • Patent number: 10189728
    Abstract: A fluid purification system has cells whose purifying capability can be regenerated. Some of the cells are arranged in series to reach a high level of purification. An automatic valve network is controlled to cycle the cells in a way that levels the loads on each, thereby maximizing the service interval for replacing expired cells, enabling all of the cells to be replaced at the same time after having each contributing approximately equally to the purification load, and operated such that at any one time, at least one cell is regenerated so as to enable continuous up-time.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: January 29, 2019
    Assignee: NxStage Medical, Inc.
    Inventors: Joseph Turk, William K. Weigel, Goetz Friederichs, Jeffery B. Hover
  • Patent number: 10125039
    Abstract: The method of recycling brine from a multi-stage flash desalination plant recycles the high-salinity, high-temperature brine output from a multi-stage flash desalination plant to produce diluted brine suitable for reinjection back into the multi-stage flash desalination plant as a makeup stream. The high-salinity, high-temperature brine output from the multi-stage flash desalination plant is diluted with water extracted from treated wastewater effluent output from a wastewater treatment plant, thus providing further recycling of the treated wastewater effluent. Following osmotic transfer of the diluting water from the treated wastewater effluent to produce the diluted brine, the remaining concentrated treated wastewater effluent passes through a secondary filtration system to yield a solid product and a volume of permeate water. The volume of permeate water may be further mixed with the diluted brine.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 13, 2018
    Assignee: Kuwait University
    Inventor: Bader Shafaqa Al-Anzi
  • Patent number: 9956635
    Abstract: To provide a method for estimating a concentration of carboxylic acid gas, which is capable of measuring safely the concentration of carboxylic acid gas such as formic acid gas or the like in a chamber of a soldering apparatus in real time, and a soldering apparatus capable of estimating the concentration of the carboxylic acid gas in the chamber. The method includes the steps of measuring a surface temperature of a same object placed in the chamber at a same point in time by using a thermometer (first thermometer) for measuring a temperature without any influence of infrared absorption by carboxylic acid, and a radiation thermometer (second thermometer) for measuring a temperature by infrared in a wavelength region that the carboxylic acid absorbs, and estimating the concentration of the carboxylic acid gas in the chamber on the basis of a temperature difference (?Tx) between temperatures indicated by the first and second thermometers.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: May 1, 2018
    Assignee: Origin Electric Company, Limited
    Inventors: Hideo Kobayashi, Naoto Ozawa, Jun Matsuda
  • Patent number: 9950300
    Abstract: [Problem] The purpose of the present invention is to provide a polyamide hollow fiber membrane having such properties that the transmission of fine particles through the membrane can be prevented effectively, the membrane has an excellent water transmissibility, the entire surface of the membrane has excellent hydrophilicity, and impurities such as metal elements are rarely eluted through the membrane. [Solution] A polyamide hollow fiber membrane produced by a TIPS method under specific production conditions has the following characteristic properties: (1) the contact angle of water on the surface of the membrane is 80° or less; (2) the external pressure water transmissibility of the membrane is 50 L/(m2·atm·h) or more; and (3) the 50 nm-particles blocking ratio of the membrane is 90% or more.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: April 24, 2018
    Assignee: UNITIKA LTD.
    Inventors: Yuki Hara, Takahiro Ono, Terumi Murata, Kuniko Inoue
  • Patent number: 9919936
    Abstract: A water recovery method for improving water recovery efficiency may include inflowing a low concentration solution including water into an in-series flow path. The in-series flow path may include a plurality of flow paths for a low concentration solution coupled in series. The method may additionally include inflowing a high concentration solution having the same concentration into a plurality of flow paths for a high concentration solution. Each of the plurality of flow paths for the high concentration solution may be connected to each of plurality of flow paths for the low concentration solution via a respective semipermeable membrane being interposed therebetween.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: March 20, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yuya Sato
  • Patent number: 9895663
    Abstract: The integrated reverse osmosis/pressure retarded osmosis system includes a first housing configured for pretreating feed brine, a second housing, a third housing configured for pretreatment of seawater, a first splitter positioned in communicating relation with the third housing, a first pump positioned in communicating relation with the first splitter, a fourth housing positioned in communicating relation with the first pump, a mixer positioned in communicating relation with the second housing and the first splitter, a first energy recovery system positioned in communicating relation with the second housing, a second energy recovery system positioned in communicating relation with the fourth housing, and a generator. The fourth housing configured for receiving pressurized seawater and producing desalinated product water by reverse osmosis. The second housing configured to receive feed brine from an oil production waste stream and decrease the salinity of the feed brine by pressure retarded osmosis.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: February 20, 2018
    Assignee: KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH
    Inventor: Essam El-Din Farag El-Sayed
  • Patent number: 9687788
    Abstract: A process that can alleviate the internal concentration polarization and can enhance membrane performance of a forward osmosis system includes the steps of passing a fluid in a forward osmosis system from a feed solution with a first osmotic pressure, through a membrane into a draw solution comprising a draw solute with a second osmotic pressure, where the first osmotic pressure is lower than the second osmotic pressure, the membrane includes an active layer and a support layer, and the membrane is oriented such that the active layer of the membrane faces a draw side, and the support layer faces a feed side; and applying an external force to the fluid on the feed side of the membrane.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 27, 2017
    Assignee: King Abdullah University of Science and Technology
    Inventors: Jintang Duan, Ingo Pinnau, Eric Litwiller
  • Patent number: 9587253
    Abstract: The invention provides a method of producing a chemical product through continuous fermentation which includes filtering a culture of a microorganism or cultured cells with a separation membrane to recover a product from a filtrate and simultaneously retaining a nonfiltered fluid in, or refluxing it to, the culture, and adding fermentation materials to the culture, wherein a porous membrane having an average pore size of 0.01 ?m or more to less than 1 ?m is used as the separation membrane and the filtration is conducted with a transmembrane pressure difference in the range of 0.1 to 20 kPa. According to this method, the fermentation productivity of the chemical product can be largely elevated at high stability and a low cost.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: March 7, 2017
    Assignee: Toray Industries, Inc.
    Inventors: Hideki Sawai, Katsushige Yamada, Takashi Mimitsuka, Kenji Sawai, Tetsu Yonehara, Yohito Ito, Masahiro Henmi
  • Patent number: 9579593
    Abstract: Disclosed herein is a replaceable fuel separation unit having a permeable substrate for separating a fluid source into at least two separate fluid streams, and delivering the two separated fluid streams to separate tanks.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 28, 2017
    Assignees: Corning Incorporated, ExxonMobil Research and Engineering Company
    Inventors: Paul Oakley Johnson, Brandon T Sternquist, Randall D. Partridge
  • Patent number: 9513211
    Abstract: To provide a method for estimating a concentration of carboxylic acid gas, which is capable of measuring safely the concentration of carboxylic acid gas such as formic acid gas or the like in a chamber of a soldering apparatus in real time, and a soldering apparatus capable of estimating the concentration of the carboxylic acid gas in the chamber. The method includes the steps of measuring a surface temperature of a same object placed in the chamber at a same point in time by using a thermometer (first thermometer) for measuring a temperature without any influence of infrared absorption by carboxylic acid, and a radiation thermometer (second thermometer) for measuring a temperature by infrared in a wavelength region that the carboxylic acid absorbs, and estimating the concentration of the carboxylic acid gas in the chamber on the basis of a temperature difference (?Tx) between temperatures indicated by the first and second thermometers.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: December 6, 2016
    Assignee: ORIGIN ELECTRIC COMPANY, LIMITED
    Inventors: Hideo Kobayashi, Naoto Ozawa, Jun Matsuda
  • Patent number: 9481773
    Abstract: (Semi-)continuous etching method for a fluoropolymer substrate (10) comprising steps of feeding (22) said substrate (10) in the form of a continuous ribbon wherein said substrate defines a primary surface (12), subjecting to at least one etching operations (2) a part of the primary surface (12) by means of an adhesion-promoting solution comprising a complex of an alkali metal in naphthalene, washing (4) the primary surface (12) wetted by the adhesion-promoting solution by means of a washing solution (42) comprising aqueous acetic acid/formic acid, and selectively separating a concentrated solution (24) of acetic acid/formic acid from the washing solution (42) by means of inverse osmosis operations (6, 8) at ? increasing pressures, and re-introducing at least a portion of the concentrated solution (24) of acetic acid/formic acid in the washing solution (42) to create a recirculation. The invention further relates to an etching plant.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: November 1, 2016
    Assignee: GUARNIFLON S.P.A.
    Inventors: Massimo Villano, Pasquale Stella
  • Patent number: 9458033
    Abstract: A water desalination mechanism, including: a running pipe, for fresh water; a venturi arrangement, having a first venturi nozzle, a second venturi nozzle and a branch between; the first and second nozzles; a container divided by a reverse osmosis membrane into a first side and a second side and having: a first side inlet, for contaminated water; a first side outlet, for remaining salts and/or minerals; and a second side outlet, for desalinated water.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: October 4, 2016
    Inventor: Uri Rapoport
  • Patent number: 9388059
    Abstract: Systems, methods, and devices for preparation of water for various uses including blood treatment are described. In embodiments, fluid is passed through a first filtration step which is effective for creating purified water and a pair of ultrafilters placed at the outlet. The ultrafilters are separated by an intervening flow path to prevent grow-through from the outlet end upstream. In embodiments, a recirculation path with an air removing filter helps to eliminate air from the ultimate product water.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: July 12, 2016
    Assignee: NXSTAGE MEDICAL, INC.
    Inventors: Jeffrey H. Burbank, Dennis M. Treu, Christopher S. McDowell, Goetz Friederichs
  • Patent number: 9308503
    Abstract: A method for separation of liquid mixtures with a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: April 12, 2016
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Patent number: 9259668
    Abstract: A cleaning method of an immersion liquid includes supplying an immersion liquid on a surface of a cleaning substrate. The immersion liquid is to be used in a liquid immersion lithography apparatus. The cleaning substrate has a substrate and an organic film laminated on a top face side of the substrate. The immersion liquid is allowed to move on the substrate to remove contaminants from the immersion liquid.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: February 16, 2016
    Assignee: JSR CORPORATION
    Inventors: Kentaro Harada, Goji Wakamatsu
  • Patent number: 9128192
    Abstract: Caesium-137 irradiates electronic paper. An incoming gamma-ray from the Cs-137 interacts with a particle inside a micro-container by generating a recoil electron and/or a hole. Because the recoil electron physically leaves the particle, the particle is charged depending on the dose from the radiation source. And, the charge of the particles change, which results in a movement of the particles within the micro-container. After refreshing the electronic paper, a visible difference in the gray-scale can be seen. Thus, the visible difference in the gray-scale is an effect caused by the irradiation of the electronic paper, showing sensitivity to high energy radiation—thus, non-optimized electronic paper is sensitive to high energy radiation and can be used as a radiation dosimeter. In addition, electronic paper can be used for sensing chemical and bio-chemical agents, as well as detecting high energy radiation.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: September 8, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Marc Christophersen, Bernard F. Phlips
  • Patent number: 9107447
    Abstract: The specification provides methods for extracting xyloglucans from fruit, especially from firm fruit such as cranberries, through a sequential extraction procedure.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: August 18, 2015
    Assignee: Ocean Spray Cranberries, Inc.
    Inventors: Harold L. Mantius, Martin Foster Berry
  • Patent number: 9039899
    Abstract: Separation processes using osmotically driven membrane systems are disclosed generally involving the extraction of solvent from a first solution to concentrate solute by using a second concentrated solution to draw the solvent from the first solution across a semi-permeable membrane. Enhanced efficiency may result from using low grade waste heat from industrial or commercial sources. Pre-treatment and post-treatment may also enhance the osmotically driven membrane processes.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: May 26, 2015
    Assignee: OASYS WATER, INC.
    Inventor: Robert L. McGinnis
  • Patent number: 8999167
    Abstract: There is provided a composite porous membrane comprising a porous membrane comprised of an organic polymeric compound, and a supporting porous membrane adjacent to the porous membrane, characterized in that the organic polymeric compound constituting the porous membrane penetrates in at least part of a surface adjacent to porous membrane of the supporting porous membrane, the porous membrane having specified opening ratio, average pore diameter, standard deviation of pore diameter, ratio of through pore, average membrane thickness, standard deviation of membrane thickness and internal structure, and that the supporting porous membrane has communicating pores of 0.5 D ?m or greater average pore diameter. Further, there are provided a blood filtration membrane comprising the composite porous membrane; a leukocyte removing filter unit comprising the composite porous membrane as a second filter; and, utilizing the composite porous membrane, a cell culturing diaphragm and method of cell culturing.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: April 7, 2015
    Assignee: Asahi Kasei Medical Co., Ltd.
    Inventors: Yasuhiro Nakano, Naoko Ishihara
  • Publication number: 20150075989
    Abstract: The invention provides methods and devices that use membranes to separate oil/water mixtures. The methods and devices have a wide range of applications, including deep seep oil exploration, oil purification, and oil spill cleanup. In some embodiments, at least one first membrane is provided, the first membrane being hydrophilic and oleophobic. The first membrane allows passage of water therethrough In some embodiments, a second membrane that is hydrophobic and oleophilic is provided in addition to the first membrane. The second membrane allows passage of oil therethrough.
    Type: Application
    Filed: March 14, 2014
    Publication date: March 19, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian Richmond Solomon, Kripa K. Varanasi, Md Nasim Hyder
  • Publication number: 20150014248
    Abstract: Methods and systems for generating strong brines are disclosed in which a feed stream and a draw inlet stream are passed through a forward osmosis membrane to create a concentrate and a draw outlet stream, the draw outlet stream is passed through a reverse osmosis membrane to create a reverse osmosis permeate flow and a reverse osmosis retentate flow, the reverse osmosis retentate flow is passed through a first nanofiltration membrane to create a first nanofiltration permeate flow and a first nanofiltration retentate flow; and the first nanofiltration retentate flow is passed through a second nanofiltration membrane to create a second nanofiltration permeate flow and a second nanofiltration retentate flow. In some embodiments, the process is repeated through a third nanofiltration membrane. The process may be repeated through a third nanofiltration membrane.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: John R. Herron, Edward Beaudry, Keith A. Lampi
  • Publication number: 20140374352
    Abstract: Systems and methods are disclosed for separating a continuous aqueous phase and a discontinuous organic phase from a mixture containing both phases.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: John D. Brantley, Jacob M. Dietz
  • Patent number: 8877060
    Abstract: The present application relates to a method for removing pathogens from a transfusion grade platelet composition. The method comprises the steps of passing a platelet preparation through a first tangential flow filtration (TFF) device having a TFF filter, and collecting a retentate from the TFF device, wherein the retentate comprises filtered platelets to be used for transfusion. The platelet preparation comprises a platelet activation inhibitor and an anti-coagulant. During the TFF process, a diafiltration solution is added to the retentate to maintain the volume of the platelets.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 4, 2014
    Assignee: Biovec Transfusion, LLC
    Inventor: Lakshman R. Sehgal
  • Patent number: 8852432
    Abstract: An induced symbiotic osmosis pump (ISOP) (and method of using same) comprising: a closed loop comprising a riser pipe and a downpipe having substantially the same length fluidly communicating at a base with an induced osmosis semipermeable membrane and fluidly communicating at an opposed end with a brine pump fluidly communicating with a pressure exchanger fluidly communicating with a reverse osmosis membrane, the downpipe comprising a check valve; the induced osmosis semipermeable membrane of the closed loop fluidly communicating with an initial reverse osmosis module fluidly communicating with a brine pump fluidly communicating with a source of fluid having an initial salinity; the brine pump electronically communicating with an electrical source; and, the reverse osmosis membrane fluidly communicating with a storage tank.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 7, 2014
    Inventor: Maher Isaac Kelada
  • Publication number: 20140251908
    Abstract: Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including: 1) a first filter having a filtration membrane, 2) a urea removal unit having urease and in fluid communication with the first filter, and 3) a second filter having an ion rejection membrane and in fluid communication with the first filter and the urea removal unit.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicants: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Yuanpang Samuel Ding, Ying-Cheng Lo
  • Publication number: 20140238938
    Abstract: An energy efficient membrane based desalination process, which utilizes an osmotically driven energy recovery sub-process. Energy recovery sub-process involves the extraction of water from low salinity first aqueous solution by using a high salinity content, pressurized second aqueous solution to draw the water from first aqueous solution across a semi-permeable membrane. High salinity content, pressurized second solution can be used to generate osmotic pressure on the low salinity content first solution to drive water from first solution to the second solution with respect to chemical potential differences. The process also harvests the Gibbs free energy of mixing in terms of pressure conservation in the second solution, while the volume of second solution is increasing by the drawn water from the first solution.
    Type: Application
    Filed: November 26, 2013
    Publication date: August 28, 2014
    Applicant: GS ENGINEERING & CONSTRUCTION CORP.
    Inventors: Sarper SARP, In-Ho YEO, Yong Gyun PARK
  • Patent number: 8801934
    Abstract: Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 12, 2014
    Assignees: Board of Regents of the Nevada System of Higher Education, on behalf of the Univeristy of Nevada, Reno, Colorado School of Mines
    Inventors: Andrea Achilli, Amy E. Childress, Tzahi Y. Cath
  • Patent number: 8795530
    Abstract: The present invention relates to methods and systems for optimization of dilution of a viscous starting material to isolate and/or concentrate the product of interest from the starting source material such that the process minimizes the volume of diluent and the total volume of the waste stream generated during the process as well as maximizing the yield of desired product. The system employs cross-flow filtration modules with sub-channels that are equidistant to the inlet and outlet of said modules and such modules are characterized by optimal channel height, optimal transmembrane pressure, etc., which are selected in order to achieve the best combination of product quality and production yield.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 5, 2014
    Assignee: Smartflow Technologies, Inc.
    Inventors: Henry B. Kopf, James A. Kacmar
  • Patent number: 8764992
    Abstract: A method of fractionating a dispersion of oxidic nanoparticles wherein at least one step of the method is a membrane crossflow filtration step, the flow of the dispersion over the membrane being brought about by means of driven rotating parts; and dispersions of oxidic nanoparticles that are obtainable by the method.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 1, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Roland Wursche, Goetz Baumgarten, Wolfgang Lortz, Michael Kroell