Utilizing Exchange Or Sorbent Material Associated With Inert Material Patents (Class 210/679)
  • Patent number: 6551515
    Abstract: Compositions and methods for selectively binding specific metal ions, such as Ca2+and Cd2+, contained in a source solution are disclosed and described. This is accomplished by the use of a composition comprised of an EGTA ligand covalently bonded to a particulate solid supports through a hydrophilic spacer. The composition formula of the present invention is SS—A—X—L where SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, L is an EGTA ligand with the proviso that when SS is a particulate organic polymer, A—X may be combined as a single covalent linkage.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: April 22, 2003
    Assignee: IBC Advanced Technologies, Inc.
    Inventors: Ronald L. Bruening, Krzysztof E. Krakowiak
  • Patent number: 6531267
    Abstract: Disclosed is a method for producing an acid sensitive liquid composition. The method involves passing an acid sensitive liquid composition containing a carbonate represented by the formula ROC(═O)OR1 wherein R and R1 independently are a hydrocarbyl group of 1 to about 10 carbon atoms, through at least one of the following two filter sheets: (a) a filter sheet containing a self-supporting fibrous matrix having immobilized therein a particulate filter aid and a particulate ion exchange resin having an average particle size of from about 2 to about 10 microns, wherein the particulate filter aid and ion exchange resin particles are distributed substantially uniformly throughout a cross-section of said matrix; and/or (b) a filter sheet containing a self-supporting matrix of fibers having immobilized therein particulate filter aid and binder resin, and having an average pore size of about 0.05 to 0.5 &mgr;m.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: March 11, 2003
    Assignee: Clariant Finance (BVI) Limited
    Inventor: Joseph E. Oberlander
  • Publication number: 20020187439
    Abstract: Disclosed is a method for producing an acid sensitive liquid composition. The method involves passing an acid sensitive liquid composition containing a carbonate represented by the formula ROC(=O)OR1 wherein R and R1 independently are a hydrocarbyl group of 1 to about 10 carbon atoms, through at least one of the following two filter sheets: (a) a filter sheet containing a self-supporting fibrous matrix having immobilized therein a particulate filter aid and a particulate ion exchange resin having an average particle size of from about 2 to about 10 microns, wherein the particulate filter aid and ion exchange resin particles are distributed substantially uniformly throughout a cross-section of said matrix; and/or (b) a filter sheet containing a self-supporting matrix of fibers having immobilized therein particulate filter aid and binder resin, and having an average pore size of about 0.05 to 0.5 &mgr;m.
    Type: Application
    Filed: April 11, 2001
    Publication date: December 12, 2002
    Inventor: Joseph E. Oberlander
  • Patent number: 6491655
    Abstract: The present invention provides a method for treating Hemophilia A or B which comprises implanting in fluid communication with the bloodstream of a mammal in need of such treatment a permeable membrane having one or more walls, a hollow chamber therewithin, a plurality of holes extending through the walls of the membrane and permitting fluid to enter and exit the chamber of the membrane, each of the holes being sized so that it is large enough to permit inactive Factor VII to enter the chamber of the membrane and activated Factor VIIa to exit the chamber of the membrane but small enough to prevent fibrinogen from entering the chamber of the membrane, a plurality of supports being disposed within the chamber, and an effective amount of a Factor VII activator or a source of the activator being bound to the supports, wherein inactive factor VII in blood passing through the membrane becomes activated into Factor VIIa upon contact with the activator within the chamber.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: December 10, 2002
    Inventors: Harvey B. Pollard, Bette S. Pollard
  • Patent number: 6482326
    Abstract: A filter for removing undesired materials from a fluid, such as used cooking oil, for example, includes a filter envelope including first and second panels. The first panel has a permeability which is greater than that of the second panel. The first panel of the filter envelope may be formed from a filter pad and the second panel from a filter paper, and may enclose a metal spacer grid. When the filter is connected to a pump for drawing the oil through the filter, the flow of the oil is directed selectively through the filter pad, whereby undesired materials are removed from the oil. The filter provides for efficient flow of the oil to be filtered while removing undesired materials therefrom.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: November 19, 2002
    Assignee: The Dallas Group of America, Inc.
    Inventors: James R. Munson, Paul Roberts
  • Patent number: 6479300
    Abstract: Methods, compositions and devices for purifying polypeptides and/or proteins using metal loaded ligand bound membranes by metal ion affinity chromatography are described.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: November 12, 2002
    Assignees: Millipore Corporation, IBC Advanced Technologies, Inc.
    Inventors: Tongbo Jiang, Anthony J. DiLeo, Ronald L. Bruening
  • Patent number: 6471864
    Abstract: Highly porous, adsorbent biocatalyst beads of poly(hexamethyleneadipamide) or poly(caproamide) polymer having powdered activated carbon dispersed throughout the polymer and biocatalytic material, such as bacteria, located within macropores of the beads, are highly useful and relatively inexpensive polymeric beads, compared to similar known aramid beads, in removing organic and/or some inorganic contaminants from aqueous streams. The biocatalytic material consumes the organic and/or some inorganic contaminants which are adsorbed by the activated carbon and metabolizes the contaminant into harmless products, while continuously renewing the adsorptive capacity of the activated carbon.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: October 29, 2002
    Assignee: The University of Tulsa
    Inventors: Kerry L. Sublette, William A. Redman, Thomas I. Bair
  • Publication number: 20020148785
    Abstract: Filters and filter materials for removing microorganisms from a fluid are provided along with processes for using the same. The filters include a housing having an inlet and an outlet and a filter material disposed within the housing, wherein the filter material is formed at least in part from a plurality of filter particles having an activated coating with a lignosulfonate.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Inventors: Michael Donovan Mitchell, Blair Alex Owens, Dimitris Ioannis Collias, Andrew Julian Wnuk
  • Publication number: 20020143283
    Abstract: A material for removing beta-2 microglobulin from blood by passing the blood through the material which are hydrophilic and biocompatible a size and a structure selected so as to remove beta-2 microglobulin from the blood, wherein said material is a porous beaded polydivinylbenzene or polystyrene-co-polydivinylbenzene polymer with a surface of [the] beads and of pores modified so as to prevent adsorption of large proteins and platelets and to minimize activation of blood complement system without affecting noticeably accessibility of an inner absorption space of the beads for beta-2 microglobulin and middle-sized toxicant molecules, in which polymer surface exposed vinyl groups are chemically modified so as to form different surface exposed functional groups which are hydrophilic and biocompatible.
    Type: Application
    Filed: May 7, 2002
    Publication date: October 3, 2002
    Inventors: Andrew Braverman, Vadim Davankov
  • Publication number: 20020130085
    Abstract: A material and method for removal of environmental oxyanions (and especially phosphates), the material comprising a substrate such as a clay modified with complexing elements selected from Group IIIB, Group IVB, and lanthanide elements (or a mixture of such elements). The resultant modified substrate can bind oxyanions and make them unavailable for utilisation in the environment; in the case of phosphates, by algae and the like. The method includes forming a capping of material at the sediment/water interface, applying the material in the form of pellets at the sediment/water interface, or injecting the pellets into the sediment.
    Type: Application
    Filed: January 15, 2002
    Publication date: September 19, 2002
    Applicant: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventor: Grant Brian Douglas
  • Publication number: 20020117449
    Abstract: Methods and a device for removing aldehydes from a waste stream are disclosed. In a preferred embodiment, the device provides for and the method uses a chemical or an aminated surface having primary amine functionality resulting from the amination of a support material such as silica.
    Type: Application
    Filed: December 22, 2000
    Publication date: August 29, 2002
    Inventors: Peter Zhu, Xiaolan Chen, Charles G. Roberts
  • Publication number: 20020113018
    Abstract: SiO2—R   (I)
    Type: Application
    Filed: April 18, 2002
    Publication date: August 22, 2002
    Inventor: Yoshiyuki Ono
  • Publication number: 20020113019
    Abstract: Arsenic and TOC are removed from drinking water or wastewaters by use of finely-divided metallic iron in the presence of powered elemental sulfur or other sulfur compounds such as manganese sulfide, followed by an oxidation step. A premix may be produced for this process, by adding the iron, sulfur and oxidizing agent to water in a predetermined pH range. The iron and sulfur are mixed for a period of time dependent upon the temperature and pH of the water and the presence of complexing or sequestering minerals and organic acids in the water. An oxidizing agent is added to the mixture and agitating is continued. In a preferred embodiment the oxidizing agent is hydrogen peroxide. Water is decanted from the mixture after a sufficient reaction time, to produce a concentrated premix. This premix can be added to water intended for drinking or to industrial effluents containing toxic materials.
    Type: Application
    Filed: September 14, 2001
    Publication date: August 22, 2002
    Inventor: Peter F. Santina
  • Patent number: 6436294
    Abstract: A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: August 20, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Susan H. Lundquist
  • Patent number: 6432313
    Abstract: Compositions and methods for selectively binding metal ions from a source solution comprise using a polyhydroxypyridinone-containing ligand covalently bonded to a particulate solid support through a hydrophilic spacer of the formula SS-A-X-L (HOPO)n where SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, L is a ligand carrier, HOPO is a hydroxypyridinone appropriately spaced on the ligand carrier to provide a minimum of six functional coordination metal binding sites, and n is an integer of 3 to 6 with the proviso that when SS is a particulate organic polymer, A-X may be combined as a single covalent linkage.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: August 13, 2002
    Assignee: IBC Advanced Technologies, Inc.
    Inventors: Ronald L. Bruening, Krzysztof E. Krakowiak
  • Patent number: 6432314
    Abstract: Anion exchange material surfaces are provided with zwitterionic and cationic groups, preferably by coating with a polymer formed from monomers including a zwitterionic monomer, a cationic monomer and, optionally, a termonomer providing stable binding at the substrate surface. The ion exchange materials may be used to scavenge heparin from blood by an ion exchange separation process. The zwitterionic group reduces the rate of fouling by biological materials such as proteins.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: August 13, 2002
    Assignee: Biocompatibles Limited
    Inventors: Joachim Storch, Robert Neil Hanley, Richard Neil Templar Freeman
  • Patent number: 6416487
    Abstract: A method of removing beta-2 microglobulin from blood, plasma and the like, has the steps of removing blood from a patient, passing the blood through an ADSORBENT material with a size and a structure selected so as to remove beta-2 microglobulin from the blood, and re-entering the blood from which the beta-2 microglobulin is removed into the patient.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: July 9, 2002
    Assignee: Renal Tech International LLC
    Inventors: Andrew Braverman, Vadim Davankov
  • Patent number: 6413432
    Abstract: This invention relates to a method for treating various kinds of drain water and waste liquid which treatment now becomes a problem, for example, drain water and waste liquid containing hardly removable phosphorus and nitrogen, waste liquid containing organochlorine compounds such as tetrachloroethylene, etc., excretive drain water from a piggery containing organonitrogen compounds at a high level, waste liquid containing heavy metals such as lead, hexavalent chromium, cadmium and the like, drain water from dairy product plants, fishery processing plants, slaughterhouses, etc. which contains water soluble protein at a high level, drain water from pulp plants, photo developing waste liquid, car wash drain water containing a mixture of car polishing wax and detergent and the like by the use of porous ceramics provided with amorphous pore surfaces.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 2, 2002
    Inventor: Shun'ichi Kumaoka
  • Patent number: 6402961
    Abstract: A process for preparing epoxysilanes by reacting a hydrogensilane with an allyl glycidyl ether in the presence of a catalyst and working up the crude product obtained, where the catalyst is removed from the crude product and the crude product is subsequently distilled.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: June 11, 2002
    Assignee: Degussa AG
    Inventors: Stefan Bade, Uwe Schoen, Hartwig Rauleder
  • Patent number: 6383395
    Abstract: A media is used to remove species from aqueous solutions, particularly in the treatment of water to enable it to be suitable for drinking. The media includes a material selected from the group consisting of zirconium hydroxide, titanium hydroxide, hafnium hydroxide and combinations thereof. A preferred form of the media is a layer having an aspect ratio of at least 1:1, more preferably, at least about 10:1. Removed from the water are species selected from the group consisting of arsenate, selenate, chromate, borate, perchlorate, fluoride and combinations thereof. In particular arsenite (As+3) containing species are also removed from water. Arsenite may be removed from water to levels not greater than 10 parts per billion with a single exposure to the media. The media is selective for certain species over others.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: May 7, 2002
    Assignee: Luxfer Group Limited
    Inventors: Stephen R. Clarke, Richard J. Clarke, Roderick Murdock, Clive J. Butler, Sam Mohanta
  • Patent number: 6350422
    Abstract: A process for removing hydrogen sulfide from a fluid stream by contacting a hydrogen sulfide-containing stream with a sorbent composition wherein said sorbent composition is produced by mixing at least one zinc component which is zinc oxide or a compound convertible to zinc oxide, at least one silica component where the silica component comprises silica or a compound convertible to silica, at least one colloidal metal oxide, and optionally at least one pore generator component so as to form a mixture, extruding the mixture, sphering the resulting extrudate to form spherical particles having a size of form about 0.5 to about 15 millimeters drying the resulting spherical particles, calcining the dried particles, steaming the resulting calcined particles, sulfiding the steamed particles by contacting them with sulfides or sulfur at a temperature of about 200° C. to 1400° C.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 26, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6350383
    Abstract: A material and method for removal of environmental oxyanions (and especially phosphates), the material comprising a substrate such as a clay modified with complexing elements selected from Group IIIB, Group IVB, and lanthanide elements (or a mixture of such elements). The resultant modified substrate can bind oxyanions and make them unavailable for utilisation in the environment; in the case of phosphates, by algae and the like. The method includes forming a capping of material at the sediment/water interface, applying the material in the form of pellets at the sediment/water interface, or injecting the pellets into the sediment.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: February 26, 2002
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventor: Grant Brian Douglas
  • Publication number: 20020020672
    Abstract: The invention herein provides a method of treating water in situ to both sterilize the water and remove unwanted odors and tastes produced during sterilization. The water is preferably intended for drinking. The water is sterilized by a sterilizing treatment such as ozonation and the odors are removed by incorporating zeolite into the container cap, a capliner, or both. The invention also provides a container for packaging sterilized water for human consumption.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 21, 2002
    Inventor: Allen G. Kirk
  • Patent number: 6334956
    Abstract: To adsorb, on solid adsorbent particles, constituents dissolved in liquid, or to desorb (extract), from solid desorbent particles, soluble constituents in liquid, in a container a packed bed formed from granular material is mixed with adsorbent particles or desorbent particles smaller than 200 &mgr;m, said bed moves downwards by virtue of gravity, said liquid is passed upwards through the bed by means of a pressure differential, the said dissolved constituents being adsorbed on the solid adsorbent particles or the said soluble constituents being extracted from the desorbent particles.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: January 1, 2002
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek (TNO)
    Inventor: Jan Hendrik Hanemaaijer
  • Patent number: 6315907
    Abstract: An adsorbent for toxic shock syndrome toxin-1 (TSST-1) comprising a compound which has a log P value of at least 2.50 wherein P is a partition coefficient in an octanol-water system and which is immobilized on a water-insoluble carrier; a method for removing TSST-1 body fluids by adsorption which comprises bringing a body fluid containing TSST-1 into contact with the adsorbent; an adsorber for TSST-1 comprising an adsorbent packed in a container having an inlet and an outlet for a body fluid and a means for preventing the adsorbent from flowing out of the container; and use of the adsorbent. TSST-1 in body fluids can be efficiently removed by the adsorbent.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: November 13, 2001
    Assignee: Kaneka Corporation
    Inventors: Fumiyasu Hirai, Eiji Ogino, Hiroyuki Maruyama, Takayuki Sakogawa, Takashi Asahi, Nobutaka Tani
  • Patent number: 6270822
    Abstract: The present invention discloses a device for removing chlorine from chlorinated potable water. The device contains a chlorine adsorptive material selected from the group consisting of cellulose, activated carbon, or activated carbon with an enhanced adsorptive capacity for chlorine. A method for enhancing the adsorptive affinity of activated carbon for chlorine in potable water is also disclosed. By pretreating ordinary activated carbon with one of several agents, including potassium iodide, ammonium carbonate and ammonium sulfate, the activated carbon, which is minimally active for chlorine reduction, is rendered highly active and able to be applied in much smaller quantities than presently known in the art. Also disclosed is the use of activated carbon in zero-pressure-drop devices instead of filters requiring a pressure differential.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Tekquest Industries
    Inventor: Stephen Earl Frazier
  • Patent number: 6261459
    Abstract: An improved process for the treatment of water, selected from livestock wastewater and a livestock water stream, which process comprises adding to said water a composition comprising a sufficient amount of an acid to lower the water pH to less than 3.5 to 2.0; and wherein said acid is selected from the group of 1,3,5-Triazine-2,4,6-(1H,3H,5H)-hydroxyalkyltriglyoxilic acid (PR-1409SA); 2,2-oxy-diacetic acid; 2,2-ether diglycolic acid; sulfamic acid; and sulfuric acid.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: July 17, 2001
    Assignee: Polymer Research Corporation
    Inventor: John J. Waldmann
  • Patent number: 6258334
    Abstract: An activated carbon catalyst having sulfur dispersed homogeneously thereon, the sulfur being chemically bonded to the activated carbon. A method of making the catalyst involves forming an intimate mixture of a synthetic carbon precursor and a sulfur-containing material, curing the carbon precursor, carbonizing the carbon precursor, activating the carbonized carbon precursor to produce an activated carbon catalyst having sulfur chemically bonded to said activated carbon and uniformly dispersed thereon.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: July 10, 2001
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Patent number: 6248798
    Abstract: Anion-exchange compositions are provided comprising anion-exchange functional groups comprising at least a first and a second nitrogen group, wherein the first nitrogen group is a quaternary amine and the second nitrogen group is selected from the group consisting of primary, secondary, tertiary or quaternary amines. Methods of making and using the compositions are also provided.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: June 19, 2001
    Assignee: Dionex Corporation
    Inventors: Rosanne W. Slingsby, Christopher A. Pohl, Jacek J. Jagodzinski, Latha P. Narayanan, Michael Weitzhandler
  • Patent number: 6232265
    Abstract: Compositions and methods for selectively binding metal ions from a source solution comprise using a polyhydroxypyridinone-containing ligand covalently bonded to a particulate solid support through a hydrophilic spacer of the formula SS-A-X-L(HOPO)n, where SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, L is a ligand carrier, HOPO is a hydroxypyridinone appropriately spaced on the ligand carrier to provide a minimum of six functional coordination metal binding sites, and n is an integer of 3 to 6 with the proviso that when SS is a particulate organic polymer, A-X may be combined as a single covalent linkage.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: May 15, 2001
    Assignee: IBC Advanced Technologies, Inc.
    Inventors: Ronald L. Bruening, Krzysztof E. Krakowiak
  • Patent number: 6211408
    Abstract: Macroporous, strong-acid polysiloxane ion exchange resins which have been converted to the silver or mercury form are utilized to remove iodides from non-aqueous organic media. In a particularly preferred method, hexyl iodide is removed from acetic acid.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: April 3, 2001
    Assignee: Celanese International Corporation
    Inventor: Charles B. Hilton
  • Patent number: 6203708
    Abstract: An ion exchange resin comprising an ion exchange material dispersed or distributed throughout a polyurethane matrix. The ion exchange material is typically a second polymer which has been chemically modified after dispersion or distribution throughout the polyurethane matrix.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: March 20, 2001
    Assignee: Monash University
    Inventors: Frank Lawson, William Harold Jay
  • Patent number: 6200544
    Abstract: An adsorbent for removing HCl from fluid streams comprising activated alumina impregnated with alkaline oxide and promoted with phosphate or organic amine or a mixture thereof. A method of making such adsorbent and a method of removing HCl from fluid streams using such adsorbent.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: March 13, 2001
    Assignee: Porocell Corporation
    Inventor: Marc Blachman
  • Patent number: 6197269
    Abstract: Membrane gas adsorption is conducted wherein the gas phase contains mercury in the gaseous state and the liquid phase containing at least one oxidizing agent for mercury such that the mercury in the gaseous state is absorbed into the liquid phase, and an oxidation/reduction reaction between the mercury and the oxidizing agent takes place in one step.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: March 6, 2001
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek (TNO)
    Inventors: Albert Edward Jansen, Paul Hubert Maria Feron
  • Patent number: 6190562
    Abstract: For the removal of trace quantities of iodine-containing contaminants from corrosive liquid feed streams, an alternative with distinct advantages over the prior art is provided. The treatment method involves the use of a crystalline manganese phosphate which has been cation-exchanged with an iodine-reactive metal. This inorganic adsorbent may be used in unbound form, or it can bound with a substantially insoluble porous inorganic refractory metal oxide binder. A reactivation technique for this material is also presented.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: February 20, 2001
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Gregory J. Lewis, Richard R. Willis
  • Patent number: 6187205
    Abstract: The invention concerns a method of decontaminating a photographic effluent. The method comprises contacting the effluent with a fibrous polymeric alumino-silicate and, optionally, with a cerium-based catalyst on an activated carbon membrane. The iron, silver, thiosulphate and organics contents of photographic effluents are reduced.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: February 13, 2001
    Assignee: Eastman Kodak Company
    Inventors: Didier J. Martin, Oliver J. Poncelet, Jeannine Rigola
  • Patent number: 6174299
    Abstract: The present invention provides a method for treating Hemophilia A or B which comprises implanting in fluid communication with the bloodstream of a mammal in need of such treatment a permeable membrane having one or more walls, a hollow chamber therewithin, a plurality of holes extending through the walls of the membrane and permitting fluid to enter and exit the chamber of the membrane, each of the holes being sized so that it is large enough to permit inactive Factor VII to enter the chamber of the membrane and activated Factor VIIa to exit the chamber of the membrane but small enough to prevent fibrinogen from entering the chamber of the membrane, a plurality of supports being disposed within the chamber, and an effective amount of a Factor VII activator or a source of the activator being bound to the supports, wherein inactive Factor VII in blood passing through the membrane becomes activated into Factor VIIa upon contact with the activator within the chamber.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: January 16, 2001
    Inventors: Harvey B. Pollard, Bette S. Pollard
  • Patent number: 6156214
    Abstract: A three-stage process for removing mercury contaminants from alcoholic alkali metal alkoxide solutions is provided, in which mercury is depleted in a first filtration through inert fibrous material, followed by a second filtration through pulverized coal, and then by concentration by distillation, to preferably provide a mercury content below 0.1 ppm.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: December 5, 2000
    Assignee: Huels Aktiengesellschaft
    Inventors: Marcus Bongen, Marcel Feld, Guenter Zoche
  • Patent number: 6139751
    Abstract: Heavy metals can be effectively complexed with a derivative of a fructan, which derivative contains complexing groups chosen from --X--CY--ZM, --X--CY--ZM, --X--CY--S--S--CY--X--Q, --PY'(--Z'M).sub.2, --SO.sub.3 M and --NR--CH.sub.2 --COOM, where M is a metal or hydrogen, Q denotes the residue of an alcohol or polyol, R is hydrogen or carboxymethyl and X, Y, Y', Z and Z', independently of one another, are O, S or NH and at least one of X, Y and Z is S, with a degree of substitution of 0.1-2.5. The complexing groups are in particular xanthate, xanthide or dithiocarbamate groups.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: October 31, 2000
    Assignee: Cooperatie Cosun U.A.
    Inventors: Piet Marc Paul Bogaert, Theodoor Maximiliaan Slaghek, Henricus Wilhelmus Carolina Raaijmakers
  • Patent number: 6129846
    Abstract: An activated carbon-crystalline titanium and/or tin silicate composite for purifying waste streams and method of making. The method involves providing a combination of a synthetic carbon precursor, and titanium and/or tin silicate, followed by curing, carbonizing, and activating the carbon precursor. The composite is used to purify fluid streams such as water, of pollutants such as VOC's, heavy metals such as lead, and chlorine.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: October 10, 2000
    Assignee: Corning Incorporated
    Inventor: Kishor P. Gadkaree
  • Patent number: 6127154
    Abstract: Compounds which possess a complementary structure to a desired molecule, such as a biomolecule, in particular polymeric or oligomeric compounds, which are useful as in vivo or in vitro diagnostic and therapeutic agents are provided. Also, various methods for producing such compounds are provided. These polymeric or oligomeric compounds are useful in particular as antimicrobial agents, receptor, hormone or enzyme agonists and antagonists.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: October 3, 2000
    Inventors: Klaus Mosbach, Peter A. G. Cormack, Olof Ramstrom, Karsten Haupt
  • Patent number: 6117330
    Abstract: The invention has compositions of matter and process aspects.The compositions of matter aspects relate to a class of new organic compounds, viz., intermediates which are sulfur and nitrogen containing hydrocarbons covalently bonded to trialkoxysilane and those intermediates covalently bonded to a solid inorganic support such as silica.The process aspect comprises two processes, viz., (1) a process for making the new class of compounds, and (2) the process of removing and/or concentrating certain ions such as noble metal ions and other transition metal ions, from solutions thereof admixed with other ions which may be present in much higher concentrations by forming a complex of the desired ion(s) with a compound as stated, e.g., by flowing the solution through a column packed with the compound, breaking the complex, e.g., by flowing a receiving liquid through the column to remove the desired ion(s) in solution in the receiving liquid and recovering the desired ion(s) from the receiving liquid.
    Type: Grant
    Filed: June 28, 1990
    Date of Patent: September 12, 2000
    Assignee: Brigham Young University
    Inventors: Bryon J. Tarbet, Ronald L. Bruening, Jerald S. Bradshaw, Reed M. Izatt
  • Patent number: 6106725
    Abstract: A process for removing lead and copper from drinking water discharged from a drinking water outlet while suppressing the concentration of phosphate ions comprising directing the water through a matrix comprising phosphate mineral with a very low phosphate solubility, and a solid carbonate mineral which is slightly soluble in water. The matrix is sized such that there is sufficient contacting between the water and the matrix to form a lead phosphate precipitate, reduce the lead concentration in the water to below 15 parts per billion, and suppress the phosphate ion concentration to 5 mg/L, preferably 3 mg/L, or below.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: August 22, 2000
    Assignee: University of Utah
    Inventor: Puikwan Andy Hong
  • Patent number: 6106724
    Abstract: A process for separating one chiral compound from a mixture of chiral compounds is disclosed. The separation process involves using a chiral stationary phase (CSP) which comprises a chiral organic material deposited on an amorphous silica support having a unimodal distribution of pore sizes in the range of about 300 .ANG. to about 25,000 .ANG. and a surface area of less than about 30 m.sup.2 /g.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: August 22, 2000
    Assignee: UOP LLC
    Inventors: Beth McCulloch, Timothy A. Brandvold, Peter K. Nickl, Jennifer S. Holmgren, Joseph J. Alcaraz
  • Patent number: 6107354
    Abstract: Disclosed are formed composite material compositions suitable for use in the removal of heavy metals from aqueous systems, a process for preparing said composite materials and a process for the removal of heavy metals using said composite materials. Formed particulate composite material compositions are comprised of (A) at least one ion exchange material; (B) at least one activated carbon; and, optionally, (C) at least one binder material. The method for preparing said composite material compositions comprises first mixing components (A), (B) and, optionally, (C), then forming particles from said mixture. The method for removing heavy metals from aqueous systems containing one or more heavy metals comprises contacting said aqueous system with one or more of the composite materials until the heavy metals are substantially removed from the aqueous system.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: August 22, 2000
    Assignee: Engelhard Corporation
    Inventors: Thomas J. Shaniuk, Robert V. Russo
  • Patent number: 6099734
    Abstract: Membranes and methods for making membranes are disclosed. The membranes include a polymeric matrix and a particulate material immobilized within the matrix. The membranes may find particular application in methods and apparatus for removing organic compounds from a biological fluid as part of a pathogen inactivation treatment.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: August 8, 2000
    Assignee: Baxter International Inc.
    Inventors: Daniel R. Boggs, Derek J. Hei, Shmuel Sternberg, Robin G. Pauley, Donna L. McLarty
  • Patent number: 6093328
    Abstract: Arsenic and TOC are removed from drinking water or wastewaters by use of finely-divided metallic iron in the presence of powdered elemental sulfur or other sulfur compounds such as manganese sulfide, followed by an oxidation step. A premix may be produced for this process, by adding the iron, sulfur and oxidizing agent to water in a predetermined pH range. The iron and sulfur are mixed for a period of time dependent upon the temperature and pH of the water and the presence of complexing or sequestering minerals and organic acids in the water. An oxidizing agent is added to the mixture and agitating is continued. In a preferred embodiment the oxidizing agent is hydrogen peroxide. Water is decanted from the mixture after a sufficient reaction time, to produce a concentrated premix. This premix can be added to water intended for drinking or to industrial effluents containing toxic materials.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: July 25, 2000
    Inventor: Peter F. Santina
  • Patent number: 6080319
    Abstract: A method is provided for removing contaminants from water. The method comprises contacting the contaminants in the water with an organoclay having a positive or negative charge on its surface. Using this method, organic and inorganic contaminants can be removed with such charged organoclays.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: June 27, 2000
    Assignee: Biomin Inc.
    Inventor: George Alther
  • Patent number: 6071416
    Abstract: A method and composition for the concentration and removal of desired metal ions from a source solution by contacting the solution with an N-cyclic aromatic hydrocarbon-containing ligand covalently bonded to a solid support through a hydrophilic spacer of the formula SS--A--X--(L).sub.n where SS is a solid support, A is covalent linkage mechanism, X is a hydrophilic spacer grouping, L is an N-cyclic aromatic containing ligand group and n is an integer of 1 to 6. X or L combined will not contain more than two amine nitrogen atoms. There will preferably be at least four N-cyclic groups present of which pyridine, pyrimidine, pyraxine, imidazole, quinoline, isoquinoline, naphthyridine, pyridopyridine, phenanthroline are representative.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: June 6, 2000
    Assignee: IBC Advanced Technologies, Inc.
    Inventors: Ronald L. Bruening, Krzysztof E. Krakowiak, Reed M. Izatt, Jerald S. Bradshaw
  • Patent number: 6054052
    Abstract: Incorporation of zirconium, nickel and/or copper into M41S results in selective sorption of bulky organic molecules. Zirconium, nickel and/or copper may be incorporated into M41S by exchange or impregnation.
    Type: Grant
    Filed: December 14, 1995
    Date of Patent: April 25, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Sandeep S. Dhingra, Charles T. Kresge, Sharon B. McCullen