Seeding Patents (Class 210/714)
  • Patent number: 10501353
    Abstract: In a process and apparatus for treating produced water, the produced water flows through a series of treatment units. A portion of the produced water may by-pass one or more of the treatment units but the by-pass portion may be such that the treated water is still acceptable, for example for discharge or reuse. Concentrations of oil and grease, organic carbon, silica, pH or related parameters in the produced water may be monitored and used to control the process or apparatus. Control of the process may involve one or more of altering a by-pass portion, altering the addition of chemicals, and altering the operation of a unit process. The process may be controlled to respond to upset conditions, or such that the concentration of one or more limiting contaminants is near, but not over, a specified maximum for re-use or discharge.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 10, 2019
    Assignee: BL TECHNOLOGIES, INC.
    Inventors: David M. Polizzotti, Kevin Paul McEvoy, Anthony Yu-Chung Ku, Carl Vess, Abdul Rafi Khwaja, Matthew Alan Petersen
  • Patent number: 10301205
    Abstract: The present disclosure relates to a formulation and a process for the removal of inorganic impurities from waste water. The formulation consists of a blend of at least one alkali metal aluminate, at least one cationic organic coagulant and optionally at least one alkalinating agent in pre-determined proportions. The process for decontamination using the afore-stated formulation includes steps such as admixing, settling, microfiltration and optionally acidification, ultrafiltration and reverse osmosis. The disclosure further provides an apparatus for the removal of inorganic impurities from waste water.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 28, 2019
    Assignee: ECOLAB USA INC.
    Inventors: Tarun Kumar Bera, Manish Kumar Singh, Yogesh Bhole
  • Patent number: 9975787
    Abstract: A cerium (IV) oxide composition having unexpectedly greater arsenic loading capacities than oxides of cerium (IV) of the prior art are disclosed. The arsenic loading capacities are greater at low level equilibrium levels of arsenic. The cerium (IV) oxide composition is more effective at removing arsenite and arsenate. Moreover, the cerium (IV) oxide composition has a greater capacity for the previously more difficult to remove arsenite.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: May 22, 2018
    Assignee: Secure Natural Resources LLC
    Inventors: Dimitrios Psaras, Yuan Gao, Mason Haneline, Joseph Lupo, Carol Landi
  • Patent number: 9782750
    Abstract: In an activated carbon for adsorbing a noble metal from an aqueous solution containing the noble metal, the difference (absolute value) between a zeta-potential in a 10 mmol/L aqueous solution of sodium tetraborate and a zeta-potential in a 0.01 mmol/L aqueous solution of sodium tetraborate is adjusted to not more than 18 mV and the pore volume of pores with a pore radius of not more than 1 nm is adjusted to 150 to 500 mm3/g. The activated carbon of the present invention may have a carbohydrate solution decolorizing performance of not less than 30%. The aqueous solution containing the noble metal may be a plating wastewater. According to the present invention, a noble metal can efficiently be adsorbed (or recovered) from a solution containing the noble metal.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: October 10, 2017
    Assignees: KURARAY CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Tetsuya Hanamoto, Takayuki Yamada, Yoshichika Sabae
  • Patent number: 9458038
    Abstract: A wastewater treatment process capable of selectively and efficiently separating and removing a manganese precipitate with high purity from sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese. In the wastewater treatment for a sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese, a magnesium oxide is used for part or all of the neutralizing agent to be added, the magnesium oxide is produced through the following steps (1) to (4): (1) effluent wastewater obtained by separating aluminum and manganese from sulfuric acid-acidic wastewater is concentrated, and calcium contained in the effluent wastewater is precipitated as a calcium sulfate; (2) the solution obtained in (1) is further concentrated, and magnesium is precipitated and separated as a magnesium sulfate; (3) the magnesium sulfate separated in (2) is roasted together with a reducing agent to obtain a magnesium oxide and sulfurous acid gas; and (4) the magnesium oxide obtained in (3) is washed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: October 4, 2016
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hideki Ohara, Yoshitomo Ozaki
  • Patent number: 9169144
    Abstract: A ballasted flocculation system that chemically softens water and causes hardness particles to precipitate from the water and crystallize. In the course of crystallizing, the hardness particles grow and form ballasted floc that are separated from the water in the form of sludge by a clarification unit, producing a clarified effluent. The separated sludge including the hardness crystals is directed to a separator where the sludge is separated into two streams with each stream having hardness crystals contained therein. In one process design, one stream includes relatively small hardness crystals and the other stream includes relatively large hardness crystals. The stream having the relatively small hardness crystals is directed to a first reactor and mixed with the incoming water and a softening reagent. The stream having the relatively large crystals is directed to a second downstream reactor and mixed with water and a flocculant which facilitates the growth of the hardness crystals.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 27, 2015
    Assignee: Veolia Water Solutions & Technologies Support
    Inventor: Charles D. Blumenschein
  • Patent number: 9056784
    Abstract: A high-efficiency water softening process is disclosed. The softening-process is particularly effective for the treatment of water process streams containing a broad array of contaminants, such as Ca, Mg, Ba, Sr, iron, aluminum, manganese, copper, zinc, silica, TOC, oil, and grease. The softening-process includes steps of: (a) adding carbonate ions and hydroxide ions to said water process stream until the process stream pH is raised to between at or about 10.5 and at or about 14.0; (b) optionally adding a coagulation aid so as to facilitate the creation of separated solids comprising a substantial portion of the contaminants; (c) optionally adding a polyelectrolyte so as to facilitate the creation of separated solids comprising a substantial portion of the contaminants; and (d) phase-separating the separated solids so as to remove the contaminants and produce a highly purified water process stream.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: June 16, 2015
    Inventor: Ken V. Pandya
  • Patent number: 8992783
    Abstract: Method for enantioseparation of a chiral system with compound formation comprising a pair of enantiomers. The method comprises the steps of: placing the chiral system to be processed, which is optically enriched by a target enantiomer, in the 3-phase region of the ternary phase diagram of chiral compound forming systems to achieve the establishment of the solid/liquid phase equilibria; phase-separating the liquid and solid phase formed by the placing step; shifting the eutectic composition of the remaining liquid towards a lower eutectic composition (xE) until the overall composition is located in the 2-phase region of the ternary phase diagram of chiral compound forming systems; and performing crystallization in the 2-phase region of the ternary phase diagram for obtaining the target enantiomer in the solid phase. In some cases the shifting step can be skipped.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 31, 2015
    Assignee: Max-Planck-Gessellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Heike Lorenz, Henning Kaemmerer, Daniel Polenske, Andreas Seidel-Morgenstern
  • Publication number: 20150068982
    Abstract: A water treatment method and a water treatment system that are capable of treating water containing salts to allow recovery of treated water at a high ion removal rate and a high water recovery rate, and allow recovery of high quality gypsum are provided. In the water treatment system, the water to be treated containing Ca2+ and SO42? is separated into concentrated water in which Ca2+ and SO42? are concentrated and treated water containing CO2 in a first demineralizer so that the treated water is recovered. The concentrated water in the first demineralizer is adjusted to a pH at which calcium carbonate can be dissolved and the scale inhibition function of a scale inhibitor is reduced, and then is delivered to a crystallizing tank. In the crystallizing tank, gypsum is crystallized from the concentrated water in the first demineralizer. The gypsum is separated and recovered in a separating section.
    Type: Application
    Filed: April 25, 2013
    Publication date: March 12, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryuji Yoshiyama, Susumu Okino, Jun Satou, Hideaki Sakurai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka, Nobuyuki Ukai, Masayuki Eda
  • Patent number: 8968572
    Abstract: In a device and a process for purifying water which is contaminated with sulphate ions and heavy metal ions, the water is collected in a water reservoir and a substance having basic activity in water is fed to the water reservoir in such a manner that a precipitant having heavy metal ions is precipitated from the water, wherein at least a subquantity of water is taken off from the water reservoir and is separated into pure water which is substantially freed from sulphate ions and heavy metal ions and dirty water which is enriched with sulphate ions and heavy metal ions. The dirty water is at least in part recirculated to the water reservoir, as a result of which a concentration of sulphate ions in the water reservoir is achieved such that a precipitant having sulphate ions is precipitated from the water.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: March 3, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Riebensahm
  • Patent number: 8945394
    Abstract: Disclosed herein are systems and methods for removing fine particulate matter from a fluid, comprising a separator that separates an inflow fluid stream into an overflow fluid path and an underflow fluid path, where the underflow fluid path is treated with a tethering material that attaches to the coarse particulate matter to form tether-bearing anchor particles and where the overflow fluid path is treated with an activating material so that the activating material interacts with the fine particulate matter to form activated particles. After these treatments, the underflow fluid path containing the tether-bearing anchor particles is commingled with the overflow fluid path containing the activated particles, so that a removable complex is produced that can be removed in a settling facility, thereby removing the fine particulate matter from the fluid.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 3, 2015
    Assignee: Soane Energy, LLC
    Inventors: Patrick D. Kincaid, Robert P. Mahoney, David Soane
  • Publication number: 20150008189
    Abstract: The present invention provides an aqueous solution evaporative treatment method that makes it possible to efficiently perform evaporative treatment of a silica-containing aqueous solution. The aqueous solution evaporative treatment method comprises a seed crystal mixing step of adding to and mixing with a silica-containing aqueous solution a silicate as seed crystals and an evaporative concentration step of evaporatively concentrating the aqueous solution together with the seed crystals. The silicate is preferably magnesium silicate and/or calcium silicate.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 8, 2015
    Inventors: Junji MIZUTANI, Yo FUJIMOTO, Tatsuya TAGUCHI
  • Patent number: 8889010
    Abstract: A method for treating low barium frac water includes contacting a frac water stream with a radium selective complexing resin to produce a low radium stream, passing the low radium stream through a thermal brine concentrator to produce a concentrated brine; and passing the concentrated brine through a thermal crystallizer to yield road salt.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: James Manio Silva, Hope Matis, William Leonard Kostedt, IV
  • Patent number: 8865000
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material, at least one second material and magnetic particles, which comprises the following steps (A) at least partial removal of the magnetic particles by application of a magnetic field gradient, optionally in the presence of at least one dispersing medium, to give a mixture comprising at least one first material and at least one second material and a reduced amount of magnetic particles, (B) contacting of the mixture comprising at least one first material and at least one second material from step (A) with magnetic particles so that the at least one first material and the magnetic particles agglomerate, (C) separation of the agglomeration product from the mixture from step (B) by application of a magnetic field gradient and (D) dissociation of the agglomeration product separated off in step (C) in order to obtain the at least one first material and the magnetic particles
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: October 21, 2014
    Assignees: BASF SE, Siemens AG
    Inventors: Alexej Michailovski, Imme Domke
  • Patent number: 8858801
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material, at least one second material and at least one third material, which comprises at least the following steps: (A) contacting of the mixture comprising at least one first material, at least one second material and at least one third material with at least one hydrocarbon in an amount of from 0.01 to 0.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: October 14, 2014
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga
  • Publication number: 20140158632
    Abstract: Described herein are methods of separating a first soluble salt from water that contains the first soluble salt and a second soluble salt, by (a) adding a composition to a water product containing a first soluble salt and a second soluble salt, the composition comprising seed crystals composed substantially of a target insoluble salt to be formed from the first soluble salt; and (b) collecting the target insoluble salt. These methods may be used, for example, to separate strontium from water that includes at least one soluble strontium salt and a second soluble salt (such as one soluble calcium salt).
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: ADVANCED WATER RECOVERY, LLC
    Inventors: Rakesh Govind, Robert Foster
  • Publication number: 20140054233
    Abstract: This invention relates to a method for selective removal of silica and silicon containing compounds from solutions that include silica and silicon containing compounds, including geothermal brines.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 27, 2014
    Applicant: Simbol Inc.
    Inventor: Stephen Harrison
  • Publication number: 20140042100
    Abstract: A single step pretreatment of wastewater or recreational water is provided comprising treatment with nanocomposites consisting of an anchoring particle such as a clay mineral and one or more polymers.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 13, 2014
    Applicant: Gavish-Galilee Bio Applications, Ltd.
    Inventor: Giora RYTWO
  • Publication number: 20140014590
    Abstract: The invention relates to a method for preparing potable water from crude water containing trace species contaminants. The method includes the steps of separating iron compounds and optionally other compounds from the crude water, contacting the water with a ferrous material, co-precipitating trace species upon aeration, and recovering drinking water.
    Type: Application
    Filed: January 4, 2012
    Publication date: January 16, 2014
    Applicant: MicroDrop Aqua ApS
    Inventor: Suni A. Dalbø
  • Patent number: 8617400
    Abstract: A method for treating wastewater using a ballasted flocculation technique includes continuously measuring the concentration of suspended solids, organic matter or other impurities in the water to be treated prior to directing the water to be treated to a flocculation tank. Based on this measurement, the amount of ballast necessary to obtain treated water of a predetermined quality is then calculated. In the flocculation tank, ballast and a flocculating reagent are added to the water to form a water-floc mixture. The water-floc mixture is directed to a settling tank where a sludge-ballast mixture is settled. The sludge-ballast mixture is directed to a mixing tank and then to a separator to separate the ballast from the sludge. The separated ballast is directed to the flocculation tank. The separated sludge is directed to the mixing tank when the level of sludge-ballast mixture in the mixing tank is lower than a predetermined level.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: December 31, 2013
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Philippe Sauvignet, Claus Dahl, Valey Ursel, Celine Levecq, Jean-Francois Beaudet
  • Patent number: 8557123
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 15, 2013
    Assignee: Soane Energy, LLC
    Inventors: Michael C. Berg, John H. Dise, Robert P. Mahoney, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, Jr., Atul C. Thakrar
  • Patent number: 8486270
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises the following steps (A) contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle in the presence of at least one dispersion medium so that the at least one first material and the at least one magnetic particle agglomerate, (B) if appropriate, addition of further dispersion medium to the dispersion obtained in step (A), (C) separation of the agglomerate from step (A) or (B) from the mixture by application of a magnetic field, (D) and dissociation of the agglomerate separated off in step (C) in order to obtain the at least one first material and the at least one magnetic particle separately, with an energy input of at least 10 kW/m3 being introduced into the dispersion in step (A).
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: July 16, 2013
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Reinhold Rieger, Alexej Michailovski, Imme Domke
  • Patent number: 8475662
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material using magnetic particles with which the at least one first material agglomerates.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: July 2, 2013
    Assignees: BASF SE, BASF Corporation, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Reinhold Rieger, Alexej Michailovski, Christian Bittner
  • Patent number: 8454831
    Abstract: A method for treating wastewater comprises biologically treating the wastewater in a fixed-biomass biological reactor and then treating the wastewater in a ballasted flocculation system. The ballasted flocculation system produces a clarified effluent and sludge containing inert granular material having biomass accumulated thereon and suspended solids. The inert granular material having biomass accumulated thereon is separated from the suspended solids and then cleaned with a cleaning solution. After separating the biomass from the cleaned inert granular material, the cleaned inert granular material is recycled for use in the ballasted flocculation system.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 4, 2013
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Phillippe Sauvignet, Kashi Banerjee, Charles D. Blumenschein
  • Patent number: 8377312
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material in an amount of from 0.001 to 1.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 19, 2013
    Assignees: BASF SE, Siemens AG
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga
  • Patent number: 8377311
    Abstract: The present invention relates to a process of the invention for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises the steps: (A) Contacting of at least one magnetic particle and at least one bifunctional molecule or an adduct of the two with the mixture comprising the at least one first material and at least one second material so that an adduct is formed from the at least one magnetic particle, the bifunctional compound of the general formula (I) and the at least one first material, (B) suspension of the adduct obtained in step (A) in a suitable suspension medium, (C) separation of the adduct present in the suspension from step (B) from the suspension by application of a magnetic field, (D) if appropriate, dissociation of the adduct separated off in step (C) in order to obtain the at least one first material. a corresponding adduct and the use of such an adduct for the separation of mixtures of materials.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 19, 2013
    Assignees: BASF SE, Seimens AG
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga, Hartmut Hibst, Juergen Tropsch, Susanne Stutz
  • Patent number: 8377313
    Abstract: The present invention relates to an agglomerate of at least one particle P which is hydrophobicized on the surface with at least one first surface-active substance and at least one magnetic particle MP which is hydrophobicized on the surface with at least one second surface-active substance, a process for producing it and also the use of these agglomerates.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 19, 2013
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Hartmut Hibst, Alexej Michailovski, Norbert Mronga, Werner Hartmann, Wolfgang Krieglstein, Vladimir Danov
  • Patent number: 8372290
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises at least the following steps: (A) contacting of the mixture comprising at least one first material and at least one second material with at least one surface-active substance, if appropriate in the presence of at least one dispersion medium, with the surface-active substance binding to the at least one first material, (B) if appropriate, addition of at least one dispersion medium to the mixture obtained in step (A) in order to obtain a dispersion, (C) treatment of the dispersion from step (A) or (B) with at least one hydrophobic magnetic particle so that the at least one first material to which the at least one surface-active substance is bound and the at least one magnetic particle agglomerate, (D) separation of the agglomerate from step (C) from the mixture by application of a magnetic field in order to obtain th
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 12, 2013
    Assignees: BASF SE, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga, Werner Hartmann, Wolfgang Krieglstein, Vladimir Danov
  • Patent number: 8329039
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises the steps: (A) production of a suspension of the mixture comprising at least one first material and at least one second material and at least one magnetic particle in a suitable suspension medium, (B) setting of the pH of the suspension obtained in step (A) to a value at which the at least one first material and the at least one magnetic particle bear opposite surface charges so that these agglomerate, (C) separation of the agglomerate obtained in step (B) from the suspension by application of a magnetic field and (D) dissociation of the agglomerate separated off in step (C) by setting of the pH to a value at which the at least one first material and the at least one magnetic particle bear the same surface charges in order to obtain the at least one first material.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: December 11, 2012
    Assignee: BASF SE
    Inventors: Imme Domke, Alexej Michailovski, Norbert Mronga, Hartmut Hibst
  • Patent number: 8318025
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises the following steps: (A) contacting of the mixture comprising at least one first material and at least one second material with at least one surface-active substance, if appropriate in the presence of at least one dispersant, resulting in the surface-active substance becoming attached to the at least one first material, (B) if appropriate, addition of at least one dispersant to the mixture obtained in step (A) to give a dispersion having a suitable concentration, (C) treatment of the dispersion from step (A) or (B) with at least one hydrophobic magnetic particle so that the at least one first material to which the at least one surface-active substance is bound and the at least one magnetic particle become attached to one another, (D) separation of the addition product from step (C) from the mixture by application of
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Imme Domke, Norbert Mronga, Alexej Michailovski, Hartmut Hibst, Thomas Servay, Rainer Klopsch
  • Publication number: 20120267315
    Abstract: The invention encompasses systems and methods for removing contaminants from an aqueous stream using systems and methods that add treatment agents comprising anchor particles and tethers, with optional activating agents or activators.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 25, 2012
    Inventors: David S. Soane, Robert P. Mahoney, Ian Slattery
  • Patent number: 8236181
    Abstract: The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: August 7, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Enid J. Sullivan, Bryan J. Carlson, Robert M. Wingo, Thomas W. Robison
  • Patent number: 8231792
    Abstract: The invention relates to a process for purifying an ionic liquid, which comprises the steps (a) partial crystallization of the ionic liquid from its melt and (b) separation of the crystals from the residual melt.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: July 31, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Fiene, Harald Rust, Klemens Massonne, Veit Stegmann, Oliver Huttenloch, Jörg Heilek
  • Publication number: 20120160777
    Abstract: Methods and apparatus of embodiments of the invention relate to treating water including contacting a liquid stream with a source comprising inorganic and/or divalent ions and separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more inorganic and/or divalent ions than the stream. Methods and apparatus relate to treating water including a reaction unit comprising an inlet for feed fluid and an inlet for inorganic and/or divalent ions and a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid. Some embodiments include introducing the fluid comprising less sulfate than the stream into a subterranean formation.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventor: M. Fazrie B A. Wahid
  • Publication number: 20120160778
    Abstract: Methods and apparatus of embodiments of the invention relate to treating water including contacting a liquid stream with a source comprising inorganic and/or divalent ions and separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more inorganic and/or divalent ions than the stream. Methods and apparatus relate to treating water including a reaction unit comprising an inlet for feed fluid and an inlet for inorganic and/or divalent ions and a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid. Some embodiments include introducing the fluid comprising less sulfate than the stream into a subterranean formation.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 28, 2012
    Inventor: M. Fazrie B.A. Wahid
  • Patent number: 8187470
    Abstract: Some mineral processing plants encounter difficulties in dewatering pulps using clarifier/thickener (C/T) equipment due to a layer of fine particles, air bubbles and chemicals formed at the top of the liquid in the thickener. Such layers are very stable and form a cap on the C/T. The dewatering performance of the C/T then deteriorates under these conditions, and a high percentage of solids is contained in the thickener overflow. A process for removing water from rock slurry containing a wide range of particle sizes in mineral processing operations has been developed. The process includes: (a) classifying the feed slurry into two size fractions, namely a coarse fraction and a fine fraction, (b) treating the fine fraction (and the coarse fraction if required) with a selected flocculant, and (3) thickening the flocculated slurry in sedimentation equipment to separate liquid from solids.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 29, 2012
    Assignee: ARR-MAZ Custom Chemicals, Inc.
    Inventors: Guoxin Wang, Zhengxing Gu, Edward W. Gannon
  • Patent number: 8168067
    Abstract: A process for treating and disposing a liquid waste, which is solidified prior to disposal, includes steps of adding to said liquid waste a dry treatment product generally comprising approximately 25% to 75% bentonite clay and respectively 75% to 25% of a liquid-sorbing polymer, subjecting the liquid waste to a single pass high shear mix so as to incorporate the treatment product into the liquid waste with increased dispersion and reduced agglomeration, subjecting the treated liquid waste to a retention time suitable for solidification, and disposing of the solidified liquid waste. The liquid waste preferably is recirculated prior to addition of dry treatment product so as to permit a calibration of the characteristics of the liquid waste, and subsequent determination of the correct rate of dry treatment addition.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 1, 2012
    Assignee: Metaflo Technologies Inc.
    Inventors: Roger H. Woods, Doug Pullman
  • Patent number: 8147695
    Abstract: A process for removing phosphorus from wastewater wherein an iron or aluminum salt is added to the wastewater. The iron or aluminum salt results in the precipitation of certain iron or aluminum species that include phosphorus adsorption sites. These iron or phosphorus species are settled and become a part of sludge produced in the course of the wastewater treatment process. By recycling substantial portions of the sludge, the concentration of these iron or aluminum species in the wastewater is increased. This increased concentration results in the presence of large quantities of unused phosphorus adsorption sites that attract and adsorb phosphorus, resulting in phosphorus being removed from the wastewater.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 3, 2012
    Assignee: I. Kruger Inc.
    Inventors: Kashi Banerjee, Charles D. Blumenschein, John Charles Schrader
  • Patent number: 8092688
    Abstract: A method for treating water in a ballasted flocculation system comprises directing water into a ballasted flocculation zone and adding ballast and a flocculation reagent to the water to form a water-floc mixture. The water-floc mixture is directed into a settling zone to form treated water and sludge containing ballast. The ballast is then directed to a recirculation line where the ballast is recirculated to the ballasted flocculation zone. The method further includes determining the ballast concentration and comparing the ballast concentration with a predetermined threshold value. The rate at which ballast is recirculated to the ballasted flocculation zone is adjusted based on the determined ballast concentration and the predetermined threshold value.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 10, 2012
    Assignee: OTV SA
    Inventors: Philippe Sauvignet, Jean-Francois Beaudet, Sonia Guillot, Valery Ursel
  • Patent number: 8062529
    Abstract: A method for treating water includes directing untreated water into a mixing zone in a water treatment system and mixing the untreated water with a flocculating agent and a ballast to form a ballast-floc mixture. Thereafter, the ballast-floc mixture is directed to a settling zone where the mixture settles to form sludge. Treated water is discharged from the settling zone and the sludge is directed to a separator. The method further includes separating at least a portion of the ballast from the sludge and directing the separated ballast from the separator to the mixing zone. Finally, the sludge is directed from the separator to a sludge treatment reactor where at least some of the remaining ballast settles from the sludge and substantially ballast-free sludge is discharged from the sludge treatment reactor.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: November 22, 2011
    Assignee: OTV SA
    Inventor: Philippe Sauvignet
  • Patent number: 8062530
    Abstract: A method for neutralizing brines that contain high levels of silica accompanied with a high pH. Brine is processed through a reactor in which the pH is lowered and the resultant silica precipitate is adsorbed onto a sacrificial crystal structure. The resultant stream is then processed through a solids removal zone wherein the solids are removed and recovered for reuse. The neutralized solids-free brine is then suitable for down-hole injection in the heavy oil industry or further treatment by common water treatment methods if further adjustment is required for other industries.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: November 22, 2011
    Assignee: Aquatech International Corporation
    Inventors: Richard M. Schoen, Chandrakant Tiwari
  • Publication number: 20110259830
    Abstract: The present invention relates to a seed-conjugated polymer support. In particular, the present invention is directed to a seed-conjugated polymer support for aggregating biomolecules, a method for preparing the same, and a method for removing ?-2-microglobulin.
    Type: Application
    Filed: September 23, 2009
    Publication date: October 27, 2011
    Applicant: SNU R&DB FOUNDATION
    Inventors: Yoon-Sik Lee, Seung-Ryeoul Paik
  • Patent number: 8021556
    Abstract: A method is provided for clarifying wastewater containing contaminants including soluble organic compounds and insoluble organic compounds. The wastewater is treated with a paculant admixture including a cationic coagulant polymer and powdered activated carbon. The cationic coagulant polymer is polydiallydimethylammonium chloride, poly quaternary amine, and/or a starch-based organic polymer. After an at least 2 second delay, a flocculent is added to the wastewater to achieve (i) microcoagulation of the cationic coagulant polymer with the contaminants to form coagulated particles having an effective mass and cationic charge to react with an anionic flocculent to be added thereafter, and (ii) absorption of the soluble organic compounds on the powdered activated carbon. The anionic flocculent as added and reacted with the coagulated particles to form a sludge, containing agglomerated particles including the coagulated particles and powdered activated carbon, of sufficient size for mechanical removal.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: September 20, 2011
    Inventors: Stuart G. Davis, Robert A. Davis
  • Publication number: 20110203928
    Abstract: Water treatment methods for reducing silica concentration in water containing at least 100 ppm dissolved or suspended silica include contacting the water with particles comprising mesoporous alumina having surface area ranging from about 250 m2/g to about 600 m2/g and pore volume ranging from about 0.1 cm3/g to about 1.0 cm3/g; and separating the treated water from the particles.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Danielle Lynn Petko, Larry Neil Lewis, Donald Wayne Whisenhunt, JR., Ming Yin, Andrea Jeannine Peters, Robert Edgar Colborn
  • Patent number: 7981297
    Abstract: A method for removing helminth egg and other suspended solids from a wastewater stream includes directing the wastewater to a ballasted flocculation system and adding a coagulation agent, flocculation agent and a ballast into the wastewater. Sludge is settled from the wastewater in a settling tank at a rate of at least 10 meters per hour. The method further includes removing helminth egg by filtering the effluent through a fine screen having a mesh diameter of approximately 5 micrometers to approximately 25 micrometers. After passing through the fine screen, the filtered effluent has less than one helminth egg per liter.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: July 19, 2011
    Assignee: OTV SA
    Inventors: Philippe Sauvignet, Claus Poulsen Dahl
  • Publication number: 20110155665
    Abstract: A method of desalting an aqueous solution includes performing a demineralization process on a concentrate solution to produce a demineralized solution and performing a desalting process. A method of recovering an aqueous solution includes performing a first membrane based separation process on a feed stream to produce a permeate stream and a concentrate stream, performing a demineralization process on the concentrate stream to produce a solid phase and a liquid phase, separating the solid phase from the liquid phase, and performing a second membrane based separation process on the liquid phase. The demineralization process includes adding chemical additives to induce calcium carbonate precipitation and subsequently adding gypsum seeds to the concentrate stream.
    Type: Application
    Filed: June 9, 2009
    Publication date: June 30, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yoram Cohen, Brian C. McCool, Anditya Rahardianto
  • Publication number: 20110114567
    Abstract: A precipitation device comprises a precipitation element disposed within a vessel and configured to define a precipitation zone and a solid-liquid separation zone between the precipitation element and the vessel, the precipitation zone configured to receive a first stream of saline liquid and to precipitate solids from the saline liquid, the solid-liquid separation zone configured to settle the solids by gravity, and an exit port located in an upper portion of the vessel and configured for exit of a second stream of liquid of lower salinity than the first stream, wherein a ratio of a diameter of the vessel to a diameter of the precipitation element ranges from about 1.5 to about 2.8. Associated system and method are also provided.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 19, 2011
    Inventors: Zijun Xia, Rihua Xiong, Jiyang Xia, Chengqian Zhang, James Manio Silva, Weiming Zhang, Wei Cai
  • Publication number: 20110089118
    Abstract: The particle of the present invention is a high-density particle to which a target substance can be bound, wherein the surface of the particle body is a roughened surface. The particle is characterized in that a substance or functional group to which a target substance can bind is immobilized on the roughened surface of the particle body, and the specific surface area of the particle is 1.4 to 100 times the specific surface area of a true spherical particle having the same particle size and the same density as those of the particle of the invention. In the particle of the invention, the accumulated micropore volume [cm3] of micropores having radius of not less than 20 nm per unit surface area [cm2] is not less than 1×10?6 [cm3/cm2].
    Type: Application
    Filed: April 24, 2009
    Publication date: April 21, 2011
    Inventors: Naoki Usuki, Masakazu Mitsunaga, Kenji Kohno, Hisao Kanzaki
  • Patent number: 7906028
    Abstract: Hydraulic cement compositions that include a carbonate compound composition, e.g., a salt-water derived carbonate compound composition containing crystalline and/or amorphous carbonate compounds, are provided. Also provided are methods of making and using the hydraulic cements, as well as settable compositions, such as concretes and mortars, prepared therefrom. The cements and compositions produced therefrom find use in a variety of applications, including use in a variety of building materials and building applications.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 15, 2011
    Assignee: Calera Corporation
    Inventors: Brent R Constantz, Cecily Ryan, Laurence Clodic
  • Publication number: 20110011801
    Abstract: The present invention pertains to an effective system and method for reducing or eliminating the formation of scale in desalination systems. The system utilizes at least one pair of electrodes in direct contact with a liquid to induce an oscillating electric field directly in a portion of the liquid or a liquid stream of the desalination system. The electric field is capable of inducing bulk precipitation of ions, minerals, salts, particulates, contaminants or a combination thereof from the liquid stream.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 20, 2011
    Applicant: DREXEL UNIVERSITY
    Inventor: Young I. Cho