Including Agitation Patents (Class 210/738)
  • Patent number: 10463992
    Abstract: A high-rate sedimentation tank includes a hopper configured to be supplied with raw water including floc, at least one circular orifice pipe disposed at a lower portion of the hopper and configured to have the floc deposited therein as a sludge while passing the floc included in the raw water therethrough, and a sludge outlet configured to discharge the sludge deposited by passing through the circular orifice pipe to an outside of the hopper.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 5, 2019
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventors: Jine Hee Min, Chul Woo Lee, Youngjun Ro
  • Patent number: 10093567
    Abstract: The ballast water and fish farm treatment system for circulating effluent water of a fish farm or a ship by filtering and resupplying the effluent water, the system including a heat exchange system to heat or cool the effluent water, a physical filtration unit to filter out impurities from the effluent water are discharged from the heat exchange system, and a chemical filtration unit to mix the effluent water discharged from the physical filtration unit with chlorine dioxide, wherein the effluent water discharged from the chemical filtration unit is resupplied to the fish farm or the ship. The ballast water and fish farm treatment system allows circulation water of the ship and fish farm to be reused after completely removing parasites, hazardous organisms, germs, and viruses from the circulation water using a combination of physical, chemical and physiological treatment techniques.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 9, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE & TECHNOLOGY
    Inventors: Yong Joo Park, Sun Wan Hwang, Jung Goo Myoung, Jang Geun Lim
  • Publication number: 20150144571
    Abstract: Techniques are described that relate to enhancing flocculation and dewatering of thick fine tailings, for example by reducing process oscillations. One example method includes dispersing a flocculant into thick fine tailings having a turbulent flow regime to produce turbulent flocculating tailings; subjecting the turbulent flocculating tailings to shear to build up flocs and increase yield stress, to produce a flocculated material having a non-turbulent flow regime; and shear conditioning the flocculated material to decrease the yield stress and produce conditioned flocculated tailings within a water release zone; and dewatering the conditioned flocculated tailings, for example by employing sub-aerial deposition. The thick fine tailings may have a Bingham Reynolds Number of at least 40,000 upon flocculant addition.
    Type: Application
    Filed: June 21, 2013
    Publication date: May 28, 2015
    Inventors: Trevor Bugg, Ana Sanchez, Adrian Revington, James Macaulay
  • Patent number: 9011699
    Abstract: Systems are provided with varying flow chamber configurations which acoustically agglomerate microorganisms such as algae for separation from a host fluid such as water. Related apparatus, systems, techniques and articles are also described.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: April 21, 2015
    Assignee: FloDesign Sonics, Inc.
    Inventors: Jason Dionne, Jeff King, Bart Lipkens, Edward A. Rietman
  • Patent number: 9011687
    Abstract: A method and apparatus for obtaining various components of a multi-component material. Generally, a component of a whole blood sample may be concentrated from a patient and re-introduced to the same patient. For example, a clotting component, such as thrombin, from a whole blood sample may be extracted and concentrated in an apparatus and collection to be reapplied or reintroduced into a patient.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 21, 2015
    Assignee: Biomet Biologics, LLC
    Inventors: Matthew Swift, Barry F. Hecker, Michael D. Leach
  • Publication number: 20150083577
    Abstract: Systems and methods related to the desalination of aqueous solutions containing one or more dissolved salts are generally described.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Steven Lam, Maximus G. St. John, Mark Zaloudek, Anurag Bajpayee
  • Publication number: 20150048031
    Abstract: In the water treatment industry, the present mechanical flocculation systems and over/under or channel side to side static flocculation systems have been utilized. These static flocculation systems are inefficient and require additional head loss and also require more basin volumes to produce a good flocculation. The mechanical flocculation systems use power and are subject to oil leak to drinking water sources. The orifice plate flocculation is an innovative technology in water treatment flocculation process that is more efficient, operator friendly, and requires less capital cost. The orifice plate flocculation system can also increase the flocculation capacities of existing mechanical flocculation basins up to 100% without any additional basin.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Inventor: Hossein Eshaghi
  • Publication number: 20150041404
    Abstract: A method for treating acid mine drainage includes mixing acid mine drainage (20) and alkaline tailings from a gold recovery process (140). The acid mine drainage is thereby neutralized (12).
    Type: Application
    Filed: March 12, 2013
    Publication date: February 12, 2015
    Applicant: MINTAILS MINNING SA (PTY) LIMITED
    Inventors: Jan Hendrik Phillipus Jacobs, Robert George Freeman
  • Patent number: 8945402
    Abstract: One embodiment of the invention disclosed is an apparatus for separating a solid material from a mixture containing oil, water, clay, sand, soil and drill cuttings. The apparatus comprise a series of processing cells and wash tanks. Hydrocyclonic devices are also used to further purify the solid mixture for disposal.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: February 3, 2015
    Inventor: Larry Saik
  • Publication number: 20150014247
    Abstract: A field water purification system filter is described. The filter includes a water tight enclosure formed between two layers of a polymeric material, an inlet and an outlet are coupled to the water tight enclosure. A filter envelope including a quantity of filter media is inside the water tight enclosure. The water filter having a minimal thickness when not filled with water. The filter envelope is formed by a first set of bonded segments of the two layers of polymeric material. The filter can also include an outer channel having a first side formed by the water tight enclosure and a second side opposite from the first side. The second side can include a second set of bonded segments of the two layers of polymeric material interspersed with a set of nonbonded segments, the nonbonded segments defining openings in an intermittent barrier between the outer channel and the filter media.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Trygve J. Lundquist, Patricia M. Compas-Markman
  • Publication number: 20140346118
    Abstract: The present invention relates to an apparatus for separation of hydrocarbons from hydrocarbon-containing produced water, comprising; a separator tank, at least one inlet tube (22, 27), at least one branch means (6) distributing the produced water stream, at least one outlet nozzle (7) and at least one guide vane (8.1) mounted under each outlet nozzle and leading water over the next outlet nozzle; at least one outlet (12) in the bottom of the tank for cleaned water and at least one outlet (9, 35, 36) rejecting rising gas with adherent oil droplets, at least one shroud (39) is arranged entirely or partly along the inside of at least one guide vane (8.1) in an angle of 30° to 150° related to the at least one guide vane (8.1). Further the invention relates to a process for separation of hydrocarbons from hydrocarbon-containing produced water.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 27, 2014
    Applicant: CAMERON INTERNATIONAL CORPORATION
    Inventor: Jorn Folkvang
  • Patent number: 8889008
    Abstract: A method of conditioning a membrane biological reactor mixed liquor containing one or more nonionic polysaccharides and/or one or more organic molecules is disclosed.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: November 18, 2014
    Assignee: Nalco Company
    Inventors: Deepak A. Musale, John H. Collins
  • Patent number: 8889012
    Abstract: A feedwell assembly for a thickener/clarifier includes a feedwell body, at least one infeed conduit connected at a downstream end to the body, and at least one spin or rotation inducement element disposed as part of the infeed conduit for imparting rotation or spin to a slurry stream fed to the feedwell body via the infeed conduit. The spin or rotation inducement element may be a fixed and rigid structural member such as a vane or baffle, or include actively operated elements. Multiple such spin or rotation inducement elements may be provided in various locations in or adjacent the infeed conduit.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: November 18, 2014
    Assignee: FLSmidth A/S
    Inventor: Simon Turner
  • Publication number: 20140319072
    Abstract: A method of filtering a fluid, including flowing a fluid from a first side of a filter member to a second side of the filter member, the fluid containing dissolved impurities. In addition, the method includes inducing fluid cavitation within the fluid to precipitate out at least a portion of the dissolved impurities. Further, the method includes controlling a pressure differential across the filter member. Still further, the method includes, maintaining or further inducing the fluid cavitation within the fluid in response to controlling the pressure differential. Related systems are also disclosed.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: GREEN AGE TECHNOLOGIES LLC
    Inventors: Arthur Johnson, Brandon Johnson, Martin Margulies
  • Publication number: 20140319073
    Abstract: A method of filtering a fluid includes flowing a fluid into a filter assembly. The filter assembly includes a vessel defining a pressure chamber and a filter screen disposed within the vessel. The screen divides the pressure chamber into a first subchamber and a second subchamber. In addition, the method includes flowing the fluid from the first subchamber to the second subchamber, and controlling a first pressure of the first subchamber relative to a second pressure of the second subchamber to induce cavitation in the flowing fluid. Further, the method includes precipitating out dissolved impurities within the fluid during the cavitation.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: GREEN AGE TECHNOLOGIES LLC
    Inventors: Arthur Johnson, Brandon Johnson, Martin Margulies
  • Publication number: 20140311990
    Abstract: A turbulence inducing device is described. Embodiments of the device include a nozzle (135), a vessel assembly (110), and an obstructer (140). The vessel assembly typically includes an open ended main channel (115) surrounded by a housing. In typical operation, fluid under positive pressure is forced through the nozzle into the main channel. Disposed at the main channel outlet, the obstructer is adapted to deflect the flowing fluid and induce turbulence that can result in cavitation when the fluid is a liquid. When the liquid includes water, cavitation can result in production of reactive species that oxidatively modify contaminants in the water. Embodiments of the turbulence inducing device can be used to reduce contamination of produced water, the produced water arising from hydrocarbon extraction or exploration.
    Type: Application
    Filed: February 27, 2012
    Publication date: October 23, 2014
    Applicant: En-Spire Technologies, LLC
    Inventor: David Bower
  • Patent number: 8865003
    Abstract: A method for separating, or removing, particulate material, e.g., blood cells, from a sample of fluid, e.g., whole blood of a patient, in which the particulate material is suspended. In the case of separating blood cells from blood plasma or blood serum, the resulting samples of blood plasma or blood serum can be used for in vitro diagnostic applications. In normal practice, a whole blood sample of a patient are provided and then introduced into an apparatus that contains a flow channel. An acoustic field, which contains acoustic standing waves from external ultrasonic transducers, is located within the flow channel. Laminar flow is maintained in the flow channel. Blood cells and platelets are separated from blood plasma or blood serum at the end of the flow channel and collected. The method described herein allows fluid components to differentially migrate to areas of preferred acoustic interaction.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 21, 2014
    Assignee: Abbott Laboratories
    Inventor: Tahua Yang
  • Patent number: 8834726
    Abstract: A method of treating a wastewater is provided and can be used, for example, to treat a gas well hydrofracture wastewater. The method can involve precipitating barium as barium sulfate, precipitating calcium and strontium as calcium carbonate and strontium carbonate, precipitating magnesium hydroxide, and filtering out the metal compounds to form a recycle water. The recycle water produced from the method is also provided, as is a method for using the recycle water as a gas well hydrofracture water. In some embodiments, discharge water from a coal mine, and/or water from an abandoned coal mine, is used as a source of sulfate ions to precipitate barium as barium sulfate.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: September 16, 2014
    Assignee: ProChemTech International, Inc.
    Inventor: Timothy Edward Keister
  • Publication number: 20140245930
    Abstract: Embodiments provided herein relate to removing liquid from soil or other moisture rich media. In some embodiments, a method for solidifying sludge is provided and involves providing a sludge, fluidizing the sludge to form a fluidized sludge, adding a gelling agent to the fluidized sludge in an amount sufficient to form a slurry, and adding a dewatering agent to the slurry in an amount sufficient to dewater the slurry, thereby solidifying the sludge.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 4, 2014
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Bing Chen
  • Publication number: 20140238941
    Abstract: A mixing chamber system for removal of contaminants from a liquid, and related systems and methods, are provided. The mixing chamber system includes a length of pipe having a hollow interior. A plurality of perforated discs are stationarily positioned within the hollow interior in at least a portion of the length of pipe, wherein each of the plurality of perforated discs has a curved profile, wherein a middle portion of each of the plurality of perforated discs is offset from a radial edge of each of the plurality of perforated discs, respectively.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Inventor: Frederick J. Haydock
  • Publication number: 20140175020
    Abstract: In a feed dilution system and method for a thickener or settling tank, a feed pipe nozzle has a variable orifice configured to provide an infeed slurry flow stream of substantially constant velocity. The feed pipe orifice is disposed in a mixing conduit proximate an upstream end thereof, while a downstream end of the mixing conduit is functionally attached to a feedwell inside the thickener or settling tank, so that the mixing conduit communicates with the feedwell. Where a diluting liquid is introduced into the mixing conduit, the variable-orifice nozzle ensures a substantially uniform degree of dilution of the influent slurry feed stream by the diluting liquid.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: FLSMIDTH A/S
    Inventor: Timothy J. Laros
  • Patent number: 8747674
    Abstract: A process for the treatment of water/oil (W/O) emulsions is described which includes the addition of an ionic liquid, under heating, to a water/oil emulsion containing between 0.5% and 85% of water per volume as a dispersion phase, until the concentration of the ionic liquid in the emulsion remains within the range of 0.01 ?L/g to 100 ?L/g. The ionic liquid used is a salt of a general C+ A? formula in a liquid state at temperatures below 150° C., where A? is an anion and C+ is a cation, which has at least a hydrophobic alkyl chain connected to a cation group. The heating method includes conventional heating and heating via microwaves. In the heating via microwaves, the salts of the general C+ A? formula present synergic behavior in separation efficiency in relation to conventional heating.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: June 10, 2014
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Regina Celia Lourenco Guimarães, Bianca Machado da Silva Ferreira, Maria de Fatima Pereira dos Santos, Ricardo Andre Guarnieri, Montserrat Fortuny Heredia, Cláudio Dariva, Alexandre Ferreira Santos, Rita de Cássia Bomfim Lemos, Lisiane dos Santos Freitas
  • Patent number: 8741153
    Abstract: Use of a non-sacrificial electrode made of synthetic graphite for applications utilizing conductive immersed treatment of wastewater is disclosed. The synthetic graphite is manufactured from a petroleum based extruded or molded composite material in any of plate, bar or coil forms. The electrodes are especially useful in the primary reaction chamber of an electrocoagulation apparatus.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 3, 2014
    Assignee: Rockwater Resource, LLC
    Inventors: Reginald A. Wiemers, Robert Kohlheb
  • Patent number: 8709250
    Abstract: Described herein are systems, methods, and apparatuses for aggregating microorganism in an aqueous suspension. In particular, are systems, methods, and apparatuses that apply an electrical field and/or acoustic energy to an aqueous suspension comprising microorganisms as the aqueous suspension follows a flow path to cause aggregation of the microorganisms. The electrical field may be continuous or pulsed. In some embodiments, the flow path for the aqueous suspension may vary.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: April 29, 2014
    Assignee: Heliae Development, LLC
    Inventors: Justin S. Kniep, Aniket Kale
  • Patent number: 8702992
    Abstract: A continuous flow reactor, including a cylindrical coagulation crystallizer, a funnel type protective baffle for static settling, and a conical static settler. A lower end surface of the cylindrical coagulation crystallizer is connected with an upper end surface of the conical static settler, and the funnel type protective baffle for static settling is connected with an inner wall of the cylindrical coagulation crystallizer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 22, 2014
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Qiucheng Li, Tao Zhang, Lili Ding, Ke Xu, Xinkun Ren
  • Patent number: 8702991
    Abstract: Described herein are systems, methods, and apparatuses for aggregating microorganism in an aqueous suspension. In particular, are systems, methods, and apparatuses that apply an electrical field to an aqueous suspension comprising microorganisms as the aqueous suspension follows a flow path to cause aggregation of the microorganisms. The electrical field may be continuous or pulsed. In some embodiments, the flow path for the aqueous suspension may vary.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: April 22, 2014
    Assignee: Heliae Development, LLC
    Inventors: Justin S. Kniep, Aniket Kale
  • Patent number: 8668827
    Abstract: Described herein are systems, methods, and apparatuses for aggregating microorganism in an aqueous suspension. In particular, are systems, methods, and apparatuses that apply an electrical field and/or acoustic energy to an aqueous suspension comprising microorganisms as the aqueous suspension follows a flow path to cause aggregation of the microorganisms. The electrical field may be continuous or pulsed. In some embodiments, the flow path for the aqueous suspension may vary.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: March 11, 2014
    Assignee: Heliae Development, LLC
    Inventors: Justin S. Kniep, Aniket Kale
  • Publication number: 20140054229
    Abstract: A deoiling or demulsifying composition including talc. Also disclosed is a process for removal of hydrocarbons, oil or oil-bearing formations from an aqueous stream by adding talc to the aqueous stream. The process may also include one or more of: aerating or injecting air or gas into the aqueous stream; agitating the treated stream to form a layer comprising the hydrocarbons, oil or oil-bearing formations; and separating the layer from the aqueous stream.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Inventors: Marcelo Costa, Lucas Moore, Cynthia Cardoso
  • Publication number: 20140054231
    Abstract: A process for dewatering oil sands tailings is provided, comprising providing a tailings feed having a solids content in the range of about 10 wt % to about 45 wt %; adding a flocculant to the tailings feed and mixing the tailings feed and flocculant to form flocs; and centrifuging the flocculated tailings feed to produce a centrate having a solids content of less than about 3 wt % and a cake having a solids content of at least about 50 wt %.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: SYNCRUDE CANADA LTD. in trust for the owners of Syncrude Project
    Inventors: JONATHAN SPENCE, BARRY BARA, JIM LORENTZ, RANDY MIKULA, JIWON LEE, RICHARD DANIEL LAHAIE
  • Patent number: 8641909
    Abstract: The present invention provides a method (20) of separating pulp from a feed material within a tank (1), the method comprising the steps of (23) introducing the feed material (22) into the tank (1); (24) allowing the feed material (22) to settle in the tank (1); (25) allowing the pulp (21) to form into aggregates (13); (26) allowing the pulp aggregates (13) to settle towards the bottom of the tank (1) and form a networked layer (2) of pulp; and (27) causing a disturbance substantially uniformly across a disturbance zone (16) in an upper region of the networked layer (2), so as to disrupt the networked pulp in the disturbance zone within a predetermined period of time; thereby releasing entrained liquid from the networked pulp in the disturbance zone (16) and increasing the relative density of the pulp below the disturbance zone. The invention also provides a separation device (40) for separating pulp (21) from a feed material (22).
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 4, 2014
    Assignee: Outotec Oyj
    Inventors: Ian Arbuthnot, Richard Triglavcanin, Loc Thanh Le
  • Patent number: 8617400
    Abstract: A method for treating wastewater using a ballasted flocculation technique includes continuously measuring the concentration of suspended solids, organic matter or other impurities in the water to be treated prior to directing the water to be treated to a flocculation tank. Based on this measurement, the amount of ballast necessary to obtain treated water of a predetermined quality is then calculated. In the flocculation tank, ballast and a flocculating reagent are added to the water to form a water-floc mixture. The water-floc mixture is directed to a settling tank where a sludge-ballast mixture is settled. The sludge-ballast mixture is directed to a mixing tank and then to a separator to separate the ballast from the sludge. The separated ballast is directed to the flocculation tank. The separated sludge is directed to the mixing tank when the level of sludge-ballast mixture in the mixing tank is lower than a predetermined level.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: December 31, 2013
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Philippe Sauvignet, Claus Dahl, Valey Ursel, Celine Levecq, Jean-Francois Beaudet
  • Patent number: 8603342
    Abstract: The present invention relates to an apparatus and method for collecting solid microparticles floating in water, and more particularly, to a safe, ease to use, and environmental friendly collecting apparatus and method adapted for collecting radioactive solid microparticles floating and depositing in a cooling water tank of nuclear facility or a tank for storing radioactive materials.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 10, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Chun-Ping Huang, Kuo-Yuan Chang
  • Publication number: 20130292342
    Abstract: A system and method for treating water or sewage is provided. The system can include a screening tank, a septic tank, a flocculant and mixing reactor, a primary clarifier, a secondary clarifier, a sludge dewatering tank, a surge tank, one or more filter tanks and a disinfection tank. The method can include the steps of receiving water or sewage to be treated and passing it through a screening tank and septic tank, a flocculant reactor, a primary clarifier, a secondary clarifier, a sludge dewatering tank, a surge tank, one or more filter tanks and a disinfection tank.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 7, 2013
    Inventors: Gerald Hanna, Alberto Valdes
  • Patent number: 8557124
    Abstract: A process for treating impure water includes adding magnesium hydroxide and/or ammonium hydroxide to the water. This neutralizes the impure water and reacts with dissolved metals in the water. The metals are precipitated as metal hydroxides/oxides, which are removed from the water. Thereafter barium hydroxide is added to the water. The barium hydroxide reacts with dissolved sulphates to produce barium sulphate and, when magnesium hydroxide is used, with dissolved magnesium, to produce magnesium hydroxide. Barium sulphate and, when present, magnesium hydroxide are removed from the water. When ammonium hydroxide is used, ammonia is stripped from the water. Carbon dioxide is then added to the water. The carbon dioxide reacts with dissolved calcium in the water. The calcium is precipitated as calcium carbonate, which is removed from the water.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: October 15, 2013
    Assignee: Tshwane University of Technology
    Inventors: Johannes Philippus Maree, Wynand Jacobus Louw
  • Patent number: 8551344
    Abstract: A method and apparatus for obtaining various components of a multi-component material. Generally, a component of a whole blood sample may be concentrated from a patient and re-introduced to the same patient. For example, a clotting component, such as thrombin, from a whole blood sample may be extracted and concentrated in an apparatus and collection to be reapplied or reintroduced into a patient.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 8, 2013
    Assignee: Biomet Manufacturing, LLC
    Inventors: Matthew Swift, Barry F. Hecker, Michael D. Leach
  • Patent number: 8545707
    Abstract: A coalescer includes fibrous media capturing droplets of the dispersed phase, coalescingly growing the droplets into larger drops which further coalesce and grow to form pools that drain, and adapted to reduce pressure drop thereacross by increasing dispersed phase drainage therefrom.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 1, 2013
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Eric J. Rego, Brian W. Schwandt, Eric A. Janikowski, Barry M. Verdegan, Kwok-Lam Ng
  • Patent number: 8540882
    Abstract: One embodiment of a method to system for enhancing TOC removal while maintaining membrane filter performance is the implementation of a dual pH control system. This embodiment will enhance the ability to maximize TOC removal while maintaining optimum membrane filter performance. By adjusting pH, dosing a chemical coagulant and incorporating liquid-solids separation, a considerably higher degree of TOC removal is possible. By adjusting pH again after liquid-solids separation this embodiment can drastically increase the efficiency of the membrane microfiltration/ultrafiltration system. Thus pH control for soluble organic removal is critical. This pH level however may not be the ideal set point for minimizing membrane fouling which is the basis for this embodiment. An example: the pH set point for optimum soluble organic removal is designated to be 5.5. However, the optimum pH set point for optimum membrane performance is 7.0.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Gregg A. McLeod
  • Publication number: 20130240457
    Abstract: In a feed dilution system and method for a thickener or settling tank, a feed pipe nozzle has an outlet opening or orifice configured to generate an initial stream of slurry from the feed pipe into an upstream end of a mixing conduit wherein the stream is extended from a first side of the mixing conduit to a substantially opposite second side in a first direction transverse to the mixing conduit so as to enhance entrainment of dilution fluid flow into the slurry stream and concomitantly produce a substantially uniform solids concentration across a stream flowing from the mixing conduit into the feedwell. The outlet opening is generally shaped asymmetrically towards a third side of the mixing conduit in a second direction transverse to the mixing conduit so as to bias the initial stream of slurry towards the one side, where the second direction is substantially perpendicular to the first direction.
    Type: Application
    Filed: November 18, 2011
    Publication date: September 19, 2013
    Applicant: FLSMIDTH A/S
    Inventor: Timothy J. Laros
  • Patent number: 8518268
    Abstract: A mobile water filtration apparatus and method for on-site removal of contaminants from raw water comprising a portable platform and a first settling tank secured with respect to the platform. The settling tank includes flocculating agent and a lower portion into which sediment settles. A sloped trough is secured with respect to the platform and has an upper end which receives the flocculating-agent-containing water, a lower end, a plurality of spaced-apart walls between upper and lower ends which define a serpentine flow path, and a plurality of agitators between the walls. A terminal settling tank receives water from the trough lower end and includes a lower portion into which sediment settles and an outlet along an upper portion through which treated water flows. An exemplary apparatus includes a gate corresponding to each wall and defining an opening through which water flows.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 27, 2013
    Assignee: Flocate Industries, Inc.
    Inventor: Paul A. Nauertz
  • Patent number: 8512571
    Abstract: The present invention is a method and system for treating iron-contaminated water (e.g., mine drainage) using an innovative treatment approach identified herein as the Activated Iron Solids (AIS) Process. The AIS process is capable of oxidizing and removing iron as iron oxides from iron-contaminated waters (such as, mining-related discharge, groundwater, surface water and industrial waste streams) producing a clean effluent. The AIS process is performed in a single or multiple tank system in which high concentrations of AIS are suspended through mechanical mixing to maintain a catalytic surface chemistry environment that increases iron removal thousands times faster than would naturally occur and hundreds times faster than existing arts (e.g., aerobic pond passive treatment). The AIS process can utilize inexpensive alkaline material (such as, pulverized limestone) where initial mine drainage alkalinity (mg/L as CaCO3) to ferrous iron (mg/L) ratio is less than approximately 1.7.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 20, 2013
    Inventor: Jonathan M. Dietz
  • Publication number: 20130200004
    Abstract: In a method and apparatus for separating low density particles from feed slurries, a bubbly mixture is formed in a downcomer and issues into a mid region in a chamber. An inverted reflux classifier is formed by parallel inclined plates below the mid region allowing for efficient separation of low density particles which rise up to form a densely packed foam in the top of the chamber, and denser particles which fall downwardly to an outlet.
    Type: Application
    Filed: June 2, 2011
    Publication date: August 8, 2013
    Applicant: NEWCASTLE INNOVATION LIMITED
    Inventor: Kevin Patrick Galvin
  • Publication number: 20130193077
    Abstract: We provide a process for the neutralization and precipitation of high pH brines that eliminates the formation of “gelatinous silica” during neutralization. The high pH brine is neutralized in a two-step neutralization process. In the first step the salt concentration of a high pH brine is built up to a minimum level of 8-12%, and then its pH is reduced to 9-9.5. The partially neutralized brine is allowed a reaction period with mild agitation. Subsequently the pH is further reduced, typically to 8-9. A coagulant and/or a polymer can also be used to enhance the settling or filtration rate of the neutralized stream.
    Type: Application
    Filed: July 30, 2012
    Publication date: August 1, 2013
    Inventors: Ravi Chidambaran, Pavan Raina, Narendra Singh Bisht
  • Patent number: 8491788
    Abstract: One embodiment of a method to system for enhancing TOC removal while maintaining membrane filter performance is the implementation of a dual pH control system. This embodiment will enhance the ability to maximize TOC removal while maintaining optimum membrane filter performance. By adjusting pH, dosing a chemical coagulant and incorporating liquid-solids separation, a considerably higher degree of TOC removal is possible. By adjusting pH again after liquid-solids separation this embodiment can drastically increase the efficiency of the membrane microfiltration/ultrafiltration system. Thus pH control for soluble organic removal is critical. This pH level however may not be the ideal set point for minimizing membrane fouling which is the basis for this embodiment. An example: the pH set point for optimum soluble organic removal is designated to be 5.5. However, the optimum pH set point for optimum membrane performance is 7.0.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 23, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Gregg A. McLeod
  • Patent number: 8480785
    Abstract: It is an object to provide a method and an apparatus for recovering indium, the method and apparatus ensuring that it is unnecessary to recover indium in the form of indium hydroxide, indium can be recovered easily by a filter or the like without handling inferiors and also, the recovery rate of indium is greatly improved. The method includes immersing a precipitation-inducing metal which includes zinc and is made into the form of a solid such that any part coming into view three-dimensionally has a longitudinal length of 2.5 to 10 mm in an etching waste solution containing at least indium and ferric chloride and allowed to stand, thereby allowing indium contained in the etching waste solution to precipitate on the surface of the precipitation-inducing metal based on a difference in ionization tendency between zinc and indium, and detaching the indium precipitated on the surface of the precipitation-inducing metal to recover it.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 9, 2013
    Assignees: Sharp Kabushiki Kaisha, Kobelco Eco-Solutions Co., Ltd.
    Inventors: Takeo Miki, Tamotsu Sugimoto, Eiichi Sahashi, Takamichi Honma, Tomoharu Maeseto
  • Patent number: 8480907
    Abstract: The invention relates to a method for the floatation-clarification of difficult water, in particular heavily polluted surface water, urban or industrial wastewater, rainwater or any type of water that floats with difficulty, particularly water which contains a high percentage of mineral matter or requires the injection of a flocculation aid and which originates from filters or membrane technologies such as ultrafiltration, said method comprising: a coagulation step (A1) in which a dose of coagulant (1) is injected into the water to be treated; a flocculation step (B) in which flocculant (2) is injected (B1) into the water after the coagulation step, in order to agglomerate the suspended particles in the form of flocs; and subsequently a floatation step (C) in which the flocculated water is mixed with an emulsion of air micro-bubbles in a floatation apparatus. A second coagulant injection step (A2) is performed downstream of the flocculant injection (B1) and upstream of the floatation (C).
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: July 9, 2013
    Assignee: Degremont
    Inventors: Patrick Vion, Céline Broutin, Christian Garriou
  • Publication number: 20130168326
    Abstract: The invention concerns a method for separating solid and liquor components of a process slurry comprising solid material entrained in a liquor, said method comprising: (a) a pre-treatment step of adding a flocculent to the process slurry and mixing the flocculent and the slurry by selecting a higher extent of mixing in an early stage of said step than in a later stage of said step, and (b) a solid/liquor separation step of allowing separation of solid material, including aggregates of solid material, and liquor of said process slurry to produce process outputs of a clarified liquor and solid material with some entrained liquor. The invention also concernes a method and an apparatus for adding a flocculent to a process slurry.
    Type: Application
    Filed: July 7, 2011
    Publication date: July 4, 2013
    Applicant: RIO TINTO ALCAN INTERNATIONAL LIMITED
    Inventors: Nicolas-Alexandre Bouchard, Guy Peloquin, Renald Dufour
  • Patent number: 8475665
    Abstract: Technologies are generally described for a nanoparticle filter and system effective to move a nanoparticle from a fluid to a location. In some examples, the method includes providing the fluid including the nanoparticles. In some examples, the method further includes applying a first light to the fluid to create a first plasmon. In some examples, the first plasmon is effective to aggregate the nanoparticles to generate a nanoparticle aggregation. In some examples, the method includes applying a second light to the fluid to create a second plasmon. In some examples, the second plasmon is effective to move the nanoparticle aggregation to a location.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: July 2, 2013
    Assignee: Empire Technology Development, LLC
    Inventor: Vincenzo Casasanta, III
  • Publication number: 20130153511
    Abstract: The present invention relates to a process for dewatering oil sand tailing muds, comprising: (a) adding a flocculant into oil sand tailing muds and mixing the flocculant and the tailing muds; (b) filtering the flocculated tailing muds using a dynamic filtration system, wherein in step (b) a pressure difference is applied over the filter and wherein the dynamic filtration system comprises a means for producing a dynamic action by which the filter cake is continuously or intermittently moved, deformed and/or broken, the filter cake being the solidified material that sets on the filter during filtration. The process is useful for dewatering oil sand tailing muds from tailing ponds, such as those produced in the Athabasca Oil Fields in Canada.
    Type: Application
    Filed: November 16, 2012
    Publication date: June 20, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: Shell Oil Company
  • Publication number: 20130075334
    Abstract: The invention relates to the treatment of water, including for example treatment in connection with hydrocarbon production operations. Silica in water produces undesirable scaling in processing equipment, which causes excess energy usage and maintenance problems. Electrocoagulation (EC) at relatively high water temperature may be combined with a process of ceramic ultra-filtration (UF filtration) employed to treat water, and optionally followed by any of membrane distillation or forward osmosis (FO). Water to be treated may be produced water that has been pumped from a subterranean reservoir. The treated water may be employed to generate steam. The treatment units (e.g., EC, forward osmosis, UF filtration, etc) can be configured into one system as an on-site installation or a mobile unit for on-site or off-site water treatment.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 28, 2013
    Inventors: Prakhar Prakash, James Craig Pauley, De Vu
  • Patent number: RE44570
    Abstract: In one embodiment, a reactive filtration method includes continuously regenerating a reactive filter media while simultaneously filtering contaminants from fluid flowing through the filter media. In one embodiment, regenerating the reactive filter media comprises mixing metal granules with the filter media and agitating the mixture. In another embodiment, regenerating the reactive filter media comprises introducing a metal in the fluid flowing through the filter media and agitating the filter media. In one embodiment, a method for removing phosphorus, arsenic or a heavy metal from water includes introducing a metal salt reagent into the water at a molar ratio of 5:1 to 200:1 to the phosphorous or the arsenic in the water and passing the water through a bed of moving sand.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 5, 2013
    Assignee: Board of Regents of the University of Idaho
    Inventors: Gregory Moller, Kevin Marshall Brackney, Roger Alan Korus, Gerald Michael Keller, Jr., Brian Keith Hart, Remembrance Louisa Newcombe