Methods Patents (Class 219/121.17)
  • Patent number: 11534968
    Abstract: A nozzle according to one embodiment has an inner surface and an outer surface, and is provided with a first passage through which an energy ray passes, and a second passage that is provided between the inner surface and the outer surface, and through which powder and fluid pass. The second passage includes a second open end on one end thereof in a first direction. A first surface that is one of the inner surface and the outer surface includes a first edge on one end thereof in the first direction. A second surface that is the other one of those includes a second edge on one end thereof in the first direction, and is distanced from the first edge toward the first direction. The fluid ejected from the second open end flows along the second surface, and separates at the second edge.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: December 27, 2022
    Assignees: Technology Research Association for Future Additive Manufacturing, Kabushiki Kaisha Toshiba, Toshiba Kikai Kohuchiki Kichs
    Inventors: Hiroshi Ohno, Satoshi Tsuno, Mitsuo Sasaki, Tomohiko Yamada, Yasutomo Shiomi, Shimpei Fujimaki
  • Patent number: 11317064
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a display, an optical fiber having a polarization-maintaining (PM) transmission fiber section and a non-PM scanning fiber section, a light source configured for injecting a linearly polarized light beam into the transmission fiber section, such that the linearly polarized light beam is emitted from the scanning fiber section, a mechanical scanning drive assembly in which the scanning fiber section is affixed, wherein the mechanical scanning drive assembly is configured for displacing the scanning optical fiber section is order to scan the emitted light beam, and a display configured for receiving the scanned light beam and generating an image to the end user.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: April 26, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Yeoh, Lionel Ernest Edwin, David Tinch
  • Patent number: 10843408
    Abstract: A nozzle according to one embodiment has an inner surface and an outer surface, and is provided with a first passage through which an energy ray passes, and a second passage that is provided between the inner surface and the outer surface, and through which powder and fluid pass. The second passage includes a second open end on one end thereof in a first direction. A first surface that is one of the inner surface and the outer surface includes a first edge on one end thereof in the first direction. A second surface that is the other one of those includes a second edge on one end thereof in the first direction, and is distanced from the first edge toward the first direction. The fluid ejected from the second open end flows along the second surface, and separates at the second edge.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: November 24, 2020
    Assignees: Technology Research Association for Future Additive Manufacturing, Kabushiki Kaisha Toshiba, Toshiba Kikai Kabushiki Kaisha
    Inventors: Hiroshi Ohno, Satoshi Tsuno, Mitsuo Sasaki, Tomohiko Yamada, Yasutomo Shiomi, Shimpei Fujimaki
  • Patent number: 10777391
    Abstract: A chamber component for a processing chamber is disclosed herein. In one embodiment, a chamber component for a processing chamber includes a component part body having unitary monolithic construction. The component part body has a textured surface. The textured surface includes a plurality of independent engineered macro features integrally formed with the component part body. The engineered macro features include a macro feature body extending from the textured surface.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: September 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kadthala R. Narendrnath, Govinda Raj, Goichi Yoshidome, Bopanna Ichettira Vasantha, Umesh M. Kelkar
  • Patent number: 10589377
    Abstract: A system for LAM that uses a scalable array of individually controllable laser beams that are generated by a fiber array system to process materials into an object using a powder bed, wire feed, or direct deposition. The adaptive control of individual beams may include beam power, focal spot width, centroid position, scanning orientation, amplitude and frequency, piston phase and polarization states of individual beams. These characteristics can be independently adjusted to control LAM characteristics including microstructure, mechanical and surface quality characteristics. The system may also have a set of material sensors that gather information on a material and environment immediately before, during, and immediately after processing. This information can be used to adapt the material processing routine to improve LAM productivity and parts quality. The system also supports a variety of beam shaping methods that improve the quality of produced objects or mitigate processing issues.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 17, 2020
    Assignee: II-VI Delaware Inc.
    Inventor: Mikhail A. Vorontsov
  • Patent number: 10493559
    Abstract: Laser processing is enhanced by using endpointing or by using a charged particle beam together with a laser. End-pointing uses emissions, such as photons, electrons, ions, or neutral particles, from the substrate to determine when the material under the laser has changed or is about to change. Material removed from the sample can be deflected to avoid deposition onto the laser optics.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 3, 2019
    Assignee: FEI Company
    Inventors: Marcus Straw, David H. Narum, Milos Toth, Mark Utlaut, Guido Knippels, Gerardus Nicolaas Anne Van Veen
  • Patent number: 10099289
    Abstract: Provided is a method for forming a three dimensional article comprising the steps of: providing at least one electron beam source emitting an electron beam for at least one of heating or fusing said powder material, where said electron beam source comprises a cathode, an anode, and a grid between said cathode and anode; controlling the electron beam source in at least two modes during said formation of said three dimensional article; applying a predetermined accelerator voltage between said cathode and said anode; applying a predetermined number of different grid voltages between said grid and said cathode for producing a corresponding predetermined number of electron beam currents; and at least one of creating or updating a look-up table or mathematical function during one of the at least two modes, wherein said look-up table or mathematical function defines a relationship between a desired electron beam current and an applied grid voltage.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: October 16, 2018
    Assignee: Arcam AB
    Inventor: Daniel Jonasson
  • Patent number: 9919361
    Abstract: Provided is a method for forming a three dimensional article comprising the steps of: providing at least one electron beam source emitting an electron beam for at least one of heating or fusing said powder material, where said electron beam source comprises a cathode, an anode, and a grid between said cathode and anode; controlling the electron beam source in at least two modes during said formation of said three dimensional article; applying a predetermined accelerator voltage between said cathode and said anode; applying a predetermined number of different grid voltages between said grid and said cathode for producing a corresponding predetermined number of electron beam currents; and at least one of creating or updating a look-up table or mathematical function during one of the at least two modes, wherein said look-up table or mathematical function defines a relationship between a desired electron beam current and an applied grid voltage.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 20, 2018
    Assignee: Arcam AB
    Inventor: Daniel Jonasson
  • Patent number: 9831073
    Abstract: Described is a design and method for producing a sputtering target assembly with low deflection made from target material solder bonded to composite backing plate with coefficient of thermal expansion (CTE) matching the target material. The composite backing plate is composite configuration composed of at least two different materials with different CTE. The composite backing plate, after plastic deformation, if necessary, has a CTE matching the target material and low and desirable deflection in the bonding process, and therefore, resulting in a low deflection and low stress target material bonded to composite backing plate assembly. The method includes manufacturing composite backing plate with a flat bond surface, heat treating of target blank and composite backing plate to achieve desirable shape of bond surfaces, solder bonding target to a backing plate, and slowly cooling the assembly to room temperature.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 28, 2017
    Assignee: Tosoh SMD, Inc.
    Inventors: Yongwen Yuan, Eugene Y. Ivanov
  • Patent number: 9520643
    Abstract: Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dielectric carrier such as a foam carrier. The foam carrier may be formed from a material that can withstand elevated temperatures. Metal traces for antennas can be formed on the foam carrier by selectively activating areas on a powder coating with a laser and plating the laser-activated areas. Metal for the antennas may also be formed by attaching layers such as flexible printed circuit layers and metal foil layers to the foam carrier. Solder may be used to attach a coaxial cable or other transmission line, electrical components, and other electrical structures to the metal antenna structures on the foam carrier. The foam carrier may be formed from open cell or closed cell foam. The surface of the foam may be smoothed to facilitate formation of metal antenna structures.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: December 13, 2016
    Assignee: Apple Inc.
    Inventors: Boon W. Shiu, Chun-Lung Chen
  • Patent number: 9468973
    Abstract: A method for forming a three-dimensional article comprising the steps of: applying a model of the three dimensional article, applying a first powder layer on a work table, directing a first electron beam from a first electron beam source over the work table causing the first powder layer to fuse in first selected locations according to the model to form a first cross section of the three-dimensional article, directing a second electron beam from a second electron beam source over the work table, registering at least one setting of the first electron beam source, registering at least one setting of the second electron beam source, correcting the position of the second electron beam depending on the at least one setting of the first electron beam source and the at least one setting of the second electron beam source.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: October 18, 2016
    Assignee: ARCAM AB
    Inventor: Ulric Ljungblad
  • Patent number: 8952292
    Abstract: A welding head is provided. The welding head includes a bracket and a plurality of blocks coupled to the bracket. Each of the plurality of blocks has a contact tip. The contact tips are adapted to receive an electrode. Further, at least one of the plurality of blocks is capable of variable positioning relative to the bracket.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: February 10, 2015
    Assignee: Caterpillar Inc.
    Inventors: Matthew J. Behmlander, Huijun Wang
  • Publication number: 20140366996
    Abstract: The present concept is a method of cladding and fusion welding of superalloys and includes the steps of firstly application of a composite filler powder that consists of 5-50% by weight brazing powder which includes melting point depressants, and 50-95% by weight high temperature welding powder, to a superalloy base material. Secondly there is simultaneous heating of the base material and the composite filler powder by a welding heat source that is movable relative to the base material. There is heating to a temperature that will fully melt the brazing powder and at least partially melt the high temperature welding powder and also melt a surface layer of the base material, thereby forming a weld pool. Thirdly upon solidification and cooling of the weld pool, there is coalescence between the weld bead and the base material.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 18, 2014
    Applicant: Liburdi Engineering Limited
    Inventors: Alexander B. Goncharov, Joseph Liburdi, Paul Lowden, Scott Hastie
  • Patent number: 8901454
    Abstract: In a method for controlling pulse arc welding where an arc is created between a wire and a base material, a pulse waveform different from the pulse waveform for steady-state welding is outputted when a predetermined time has passed since short-circuit welding control was started at arc start, and after a sufficiently large melt pool is formed, the pulse waveform for the steady-state welding is outputted. This reduces the generation of spatters after an arc is created and until the arc is stabilized.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Akira Nakagawa, Atsuhiro Kawamoto, Junji Fujiwara, Masaru Kowa
  • Publication number: 20140315040
    Abstract: A method of integrally forming at least one stiffener onto a sheet metal component configured to carry a load is provided including generating a stereolithography file. The stereolithography file includes a surface geometry of the at least one stiffener extending from a surface of the sheet-metal component. The surface geometry of the stereolithography file is sliced into a plurality of thin strips. The plurality of thin strips is substantially parallel to the surface of the sheet metal component. Energy from an energy source is applied to a powdered material such that the powdered material fuses to form the plurality of thin strips. One of the plurality of thin strips is integrally formed with the surface of the sheet-metal component. Each of the plurality of thin strips is integrally formed with an adjacent thin strip to create at least one stiffener.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: Sikorsky Aircraft Corporation
    Inventor: Michael R. Urban
  • Publication number: 20140305914
    Abstract: Crater-like intricate indents formed by melting and scattering of a metal surface are provided by irradiating with high density energy such as a laser beam or an electron beam the surface of the metal member. By using the irradiation condition that the crater-like indents have partially overlapped regions, gangue-like prominent portions formed by melting and scattering of the metal surface, a spherical metal splash formed at the top end of the prominent portions, and a roughed surface shape where particulate sputtering formed upon fabrication is secured. Thus, the molded resin intrudes into the constricted space formed by surface roughening to provide an anchoring effect against volume change of the resin in the direction where the resin is peeled from the surface of the metal member.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Mitsuru SUTOU, Shin ONOSE, Takashi HOSOGAYA
  • Publication number: 20140295087
    Abstract: The invention relates to a method for additively manufacturing an article made of a difficult-to-weld highly-precipitation-strengthened Ni-base super alloy that comprises Al and Ti in the sum of more than 5 wt.-% or a difficult-to weld carbide/solution-strengthened cobalt (Co)-base super alloy, whereby a metal particle mixture of at least a first phase and a second phase is provided as a starting material, said first phase of the mixture being a base material and said second phase of the mixture being a material which is a derivative of the first material and has relative to said material of said first phase an improved weldability, and whereby the metal particle mixture is processed by means of an additive manufacturing process which is one of selective laser melting (SLM), selective laser sintering (SLS), electron beam melting (EBM), laser metal forming (LMF), laser engineered net shape (LENS), or direct metal deposition (DMD).
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Lukas Emanuel RICKENBACHER, Alexander STANKOWSKI, Simone HOEVEL, Thomas ETTER
  • Publication number: 20140277517
    Abstract: A porous metal glenoid component, comprising a thin solid nonporous region having a first side and a second side; a first porous metallic substrate formed on the first side of the nonporous region; a polymeric body fabricated onto the first porous metallic substrate, the polymeric body having an articulating surface configured to engage a humeral component to permit rotational and translational movement therewith; and a second porous metallic substrate formed on the second side of the nonporous region, the second porous metallic substrate being configured to interface with a glenoid cavity.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventor: Nathan A. Winslow
  • Publication number: 20140242400
    Abstract: The invention refers to a method for manufacturing a hybrid component including the following steps of manufacturing a preform as a first part of the hybrid component, then successively building up on that preform a second part of the component from a metallic powder material by means of an additive manufacturing process by scanning with an energy beam, thereby establishing a controlled grain orientation in primary and in secondary direction of at least a part of the second part of the component. The controlled secondary grain orientation is realized by applying a specific scanning pattern of the energy beam, which is aligned to the cross section profile of the component or to the local load conditions for the component.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Inventors: Matthias Hoebel, Thomas Etter, Maxim Konter, Julius Schurb
  • Patent number: 8809780
    Abstract: A process (and apparatus for performing the process) for layer manufacturing a three-dimensional work piece comprising the steps of: feeding raw material in a solid state to a first predetermined location; exposing the raw material to an electron beam to liquefy the raw material; depositing the raw material onto a substrate as a molten pool deposit, the deposit having a forward edge region in an x-y plane with a forward edge region width and a trailing edge region in the x-y plane with a trailing edge region width, under at least one first processing condition; monitoring the molten pool deposit for at least one preselected condition using detecting of scatter from a scanning electron beam contemporaneously with the depositing step; solidifying the molten pool deposit; automatically altering the first processing condition to a different processing condition based upon information obtained from the comparing step; and repeating steps at one or more second locations for building up layer by layer, generally alo
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 19, 2014
    Assignee: Sciaky, Inc.
    Inventors: Phillip E. Wollenhaupt, Scott Stecker
  • Patent number: 8709328
    Abstract: This method for forming ventilation holes in an electrode plate includes: a roughening step of roughening a surface of an electrode plate for a plasma processing apparatus such that a center line average roughness Ra becomes in a range of 0.2 ?m to 30 ?m; and a ventilation hole forming step of irradiating a laser beam having a wavelength within a range of 200 nm to 600 nm on a roughened surface of the electrode plate so as to form ventilation holes in the electrode plate which pass through the electrode plate in a thickness direction, wherein in the ventilation hole forming step, a focus spot of the laser light is swirled along a planar direction of the electrode plate so as to form a circular irradiation area, and while moving the irradiation area along a planar direction of the electrode plate in a circular movement, the focus spot of the laser light is shifted in a thickness direction of the electrode plate.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 29, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Satoshi Fujita, Atsushi Matsuda
  • Publication number: 20140072823
    Abstract: The invention relates to a generative production method for producing a component by selectively melting and/or sintering a powder several times consecutively by introducing an amount of heat by means of beam energy, such that the powder particles melt and/or sinter in layers, wherein the powder particles (1) are made of a first material (2) and the powder particles are surrounded by a second material (3) partially or over the entire surface thereof, wherein the second material has a lower melting point than the first material and/or lowers the melting point of the first material when mixed with the first material. The invention further relates to a corresponding powder and to a prototype produced from said powder.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 13, 2014
    Inventors: Manuel Hertter, Erwin Bayer, Markus Waltemathe, Klaus Broichhausen, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov
  • Patent number: 8642916
    Abstract: An apparatus for melting an electrically conductive metallic material includes a vacuum chamber and a hearth disposed in the vacuum chamber. At least one wire-discharge ion plasma electron emitter is disposed in or adjacent the vacuum chamber and is positioned to direct a wide-area field of electrons into the vacuum chamber, wherein the wide-area electron field has sufficient energy to heat the electrically conductive metallic material to its melting temperature. The apparatus may further include at least one of a mold and an atomizing apparatus which is in communication with the vacuum chamber and is positioned to receive molten material from the hearth.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: February 4, 2014
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 8598523
    Abstract: A process (and apparatus for performing the process) for layer manufacturing a three-dimensional work piece comprising the steps of: feeding raw material in a solid state to a first predetermined location; exposing the raw material to an electron beam to liquefy the raw material; depositing the raw material onto a substrate as a molten pool deposit, the deposit having a forward edge region in an x-y plane with a forward edge region width and a trailing edge region in the x-y plane with a trailing edge region width, under at least one first processing condition; monitoring the molten pool deposit for at least one preselected condition using detecting of scatter from a scanning electron beam contemporaneously with the depositing step; solidifying the molten pool deposit; automatically altering the first processing condition to a different processing condition based upon information obtained from the comparing step; and repeating steps at one or more second locations for building up layer by layer, generally alo
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 3, 2013
    Assignee: Sciaky, Inc.
    Inventors: Scott Stecker, Phillip E. Wollenhaupt
  • Publication number: 20130233846
    Abstract: Disclosed is a method for generatively producing or for repairing at least one area of a component, wherein a zone arranged downstream of a molten bath is post-heated to a post-heating temperature and the component is set to a base temperature, and also a device for carrying out such a method.
    Type: Application
    Filed: September 8, 2011
    Publication date: September 12, 2013
    Inventors: Andreas Jakimov, Herbert Hanrieder, Wilhelm Meiners
  • Patent number: 8502107
    Abstract: The invention relates to a method for making metallic and/or non-metallic products 2, in particular dental products, by freeform sintering and/or melting, in which the products 2 are fabricated layer by layer from a material 5 that is applied layer by layer by means of a computer-controlled high-energy beam 7, in particular a laser or electron beam. In order to reduce production times, beam 7 irradiates predetermined positions P1 to P6 of a layer of a material 5 a plurality of time, namely m times, where m is a whole integer greater than 1. Each of said positions P1 to P6 is initially heated during the first irradiation to a temperature below the melting point Tmelt of the material 5, and during the mth irradiation to a temperature above said melting point and is completely melted over the entire thickness of the layer in such a way that the material (5) fuses at said position to the layer thereunder. The invention also relates to an apparatus for performing said method.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 6, 2013
    Assignee: BEGO Medical GmbH
    Inventor: Ingo Uckelmann
  • Patent number: 8461474
    Abstract: A method for layer-by-layer manufacturing of a three-dimensional work piece including, (a) delivering a metallic feed material into a feed region; (b) emitting an electron beam; (c) translating the electron beam through a first predetermined raster pattern frame that includes: (i) a plurality of points within the feed region; and (ii) a plurality of points in a substrate region that is outside of the feed region; (d) monitoring a condition of the feed region or the substrate region for the occurrence of any deviation from a predetermined condition; (e) upon detecting of any deviation, translating the electron beam through at least one second predetermined raster pattern frame that maintains the melting beam power density level substantially the same, but alters the substrate beam power density level; and (f) repeating steps (a) through (e) at one or more second locations for building up layer-by-layer.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: June 11, 2013
    Assignee: Sciaky, Inc.
    Inventors: Phillip E. Wollenhaupt, Scott Stecker
  • Patent number: 8414787
    Abstract: Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation. In one example an electron beam array such as a carbon nanotube array is used to selectively expose a surface during a processing operation.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 9, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Mark J. Williamson, Gurtej S. Sandhu
  • Patent number: 8344281
    Abstract: A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 1, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Karen M. Taminger, William H. Hofmeister, Robert A. Hafley
  • Publication number: 20120223059
    Abstract: The invention concerns an apparatus for producing a three-dimensional object layer by layer using a powdery material which can be solidified by irradiating it with an energy beam, said apparatus comprising an electron gun for generating said energy beam and a working area onto which the powdery material is distributed and over which the energy beam sweeps during irradiation. The invention is characterized in that the apparatus is provided with a system for feeding controlled amounts of a reactive gas into the apparatus such as to contact the reactive gas with material positioned on the working area, said reactive gas being capable of, at least when having been exposed to the energy beam, reacting chemically and/or physically with the material positioned on the working area. The invention also concerns a method for operating an apparatus of the above type.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: ARCAM AB
    Inventor: Ulf Ackelid
  • Patent number: 8141769
    Abstract: In one aspect, a repair method for repairing components comprising a base material with a directed microstructure is provided. The repair is performed in such a way that the repaired location correspondingly has a directed microstructure like the surrounding base material. A solder is applied in the region of a location to be repaired and is soldered to the component via heat exposure, a temperature gradient, i.e., for instance a temperature variation from a higher temperature to a lower temperature, is thereby produced in the region of the location to be repaired.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: March 27, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Ott, Uwe Paul, Robert Singer, Andreas Volek
  • Publication number: 20110240607
    Abstract: A method for layer-by-layer manufacturing of a three-dimensional metallic work piece, comprising the steps of: delivering a metallic feed material in a substantially solid state into a feed region; emitting an electron beam having one or more predetermined electrical currents; translating the electron beam through a first predetermined raster pattern frame in an x-y plane that includes: a plurality of points within the feed region sufficient so that the metallic feed material is subjected to a melting beam power density level sufficient to cause melting of the metallic feed material and formation of a molten pool deposit; and a plurality of points in a substrate region that is outside of the feed region, sufficient so that the plurality of points outside the feed region is subjected to a substrate beam power density level that is different from (e.g.
    Type: Application
    Filed: February 17, 2011
    Publication date: October 6, 2011
    Applicant: SCIAKY, INC.
    Inventors: Scott Stecker, Phillip E. Wollenhaupt
  • Patent number: 7902481
    Abstract: A method of manufacturing a sealed electronic component, which can seal a housing in a high-vacuum state while preventing enclosure of a gas within the housing, as well as achieving the improvement in manufacturing efficiency. According to the method, after forming an unwelded section by a primary welding process step, including a first beam irradiation process step and a second beam irradiation process step, annealing treatment is performed in an annealing process step by irradiating an electron beam to a predetermined portion on a locus of the electron beam formed in the first beam irradiation process step. The locus may be on a housing or a lid.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 8, 2011
    Assignees: Citizen Holdings Co., Ltd, Citizen Finetech Miyota Co., Ltd
    Inventors: Keisuke Kigawa, Haruyuki Hiratsuka, Tomohisa Wada
  • Publication number: 20100270274
    Abstract: A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 28, 2010
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Karen M. Taminger, William H. Hofmeister, Robert A. Hafley
  • Patent number: 7718080
    Abstract: Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation. In one example an electron beam array such as a carbon nanotube array is used to selectively expose a surface during a processing operation.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Mark J. Williamson, Gurtej S. Sandhu
  • Publication number: 20100012629
    Abstract: An apparatus for melting an electrically conductive metallic material comprises an auxiliary ion plasma electron emitter configured to produce a focused electron field including a cross-sectional profile having a first shape. The apparatus further comprises a steering system configured to direct the focused electron field to impinge the focused electron field on at least a portion of the electrically conductive metallic material to at least one of melt or heat any solidified portions of the electrically conductive metallic material, any solid condensate within the electrically conductive metallic material, and/or regions of a solidifying ingot.
    Type: Application
    Filed: August 25, 2009
    Publication date: January 21, 2010
    Applicant: ATI Properties, Inc.
    Inventor: Robin M. Forbes Jones
  • Publication number: 20100000976
    Abstract: In one aspect, a repair method for repairing components comprising a base material with a directed microstructure is provided. The repair is performed in such a way that the repaired location correspondingly has a directed microstructure like the surrounding base material. A solder is applied in the region of a location to be repaired and is soldered to the component via heat exposure, a temperature gradient, i.e., for instance a temperature variation from a higher temperature to a lower temperature, is thereby produced in the region of the location to be repaired.
    Type: Application
    Filed: July 22, 2005
    Publication date: January 7, 2010
    Inventors: Michael Ott, Uwe Paul, Robert Singer, Andreas Volek
  • Publication number: 20090314136
    Abstract: A method of manufacturing a blade of a cutting tool, the method including depositing a mixture including a hard material onto an edge of a movable steel strip to form a hard material coated steel strip; grinding the edge of the hard material coated steel strip; and subsequently to grinding, forming individual blades from the hard material coated steel strip.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 24, 2009
    Applicant: The Stanley Works
    Inventor: Peter Geoffrey CULF
  • Patent number: 7592563
    Abstract: The present invention relates to a method for smoothing and polishing surfaces by treating them with energetic radiation, in particular laser radiation, in which the to-be-smoothed surface is remelted in a first treatment step using said energetic radiation and employing first treatment parameters at least once down to a first remelting depth of approx. 5 to 100 ?m, which is greater than a structural depth of the to-be-smoothed structures of said to-be-smoothed surface, wherein continuous radiation or pulsed radiation with a pulse duration of ?100 ?s is employed. The method makes it possible to automatically polish any three-dimensional surface fast and cost effective.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: September 22, 2009
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Konrad Wissenbach, Edgar Willenborg, Norbert Pirch
  • Publication number: 20080237200
    Abstract: An apparatus for melting an electrically conductive metallic material includes a vacuum chamber and a hearth disposed in the vacuum chamber. At least one wire-discharge ion plasma electron emitter is disposed in or adjacent the vacuum chamber and is positioned to direct a wide-area field of electrons into the vacuum chamber, wherein the wide-area electron field has sufficient energy to heat the electrically conductive metallic material to its melting temperature. The apparatus may further include at least one of a mold and an atomizing apparatus which is in communication with the vacuum chamber and is positioned to receive molten material from the hearth.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 2, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 7002096
    Abstract: Metal and/or partial metal dentures having a surface modified by a pulsed electron beam system. The system includes an explosive emission cathode, an accelerating gap formed by the cathode and plasma anode, and an electron collector where the metal and/or partial metal dentures are fixed, and placed into a magnetic field. The surface of the modified metal and/or partial metal denture has high reflectance like a mirror polished surface and high corrosion resistance.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: February 21, 2006
    Assignee: Itac Limited
    Inventors: Uemura Kensuke, Uehara Seigo, Raharjo Purwadi, Proskurovsky Dmitri Il′ich, Ozur Grigorii Evgen′evich, Rotshtein Vladimir Petrovich
  • Patent number: 6884964
    Abstract: The method of repairing a metal alloy component, and the resulting repaired component. The method involves machining the component surface to remove a defect, and then placing in the resulting surface cavity a filler insert whose size and shape are predetermined so that the welding operation can be carried out to completely melt the insert while minimizing the melting of the component immediately surrounding the insert. As such, minimum mixing occurs between the materials of the insert and the component, thereby reducing the risk of cracking following the welding operation.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: April 26, 2005
    Assignee: General Electric Company
    Inventor: John Thomas Murphy
  • Patent number: 6883405
    Abstract: A process for profiling a workpiece engagement surface of a band tool, and a hand tool produced thereby, in particular a screwing tool, such as a screwdriver or wrench, pliers, a clamping tool or a file, comprising the steps of briefly irradiating the workpiece engagement surface (8) over a large area and/or locally with a high level of energy, such that a region of an irradiated zone which is close to the surface melts and solidifies suddenly at an edge to form a rib.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: April 26, 2005
    Assignee: Wera Werk Hermann Werner GmbH & Co. KG
    Inventor: Martin Strauch
  • Patent number: 6774339
    Abstract: The interfacial joint area of a target/backing plate assembly is sealed so as to inhibit the migration of air and/or water vapor that may be present or trapped along the interfacial surfaces. A pool or bead of molten solder is placed along the interfacial joint and moved continuously around the full 360° circumference of the assembly so as to cover and seal the boundary area. The solder is melted, preferably, by e-beam welding in a vacuum or the like.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: August 10, 2004
    Assignee: Tosoh SMD, Inc.
    Inventors: David B. Smathers, Dorian Heimanson, Michael Gutkin
  • Patent number: 6627842
    Abstract: The method of the invention produces protruding features on a glass layer. Initially, a conductive layer is applied to the glass layer and is coupled to a source of reference potential. This conductive layer prevents a build-up of electrons in the glass layer when it is exposed to an electron beam. Thereafter, an electron beam is directed at combined layers in areas where protruding features are to be produced. The energy, current density and duration of application of the electron beam are controlled so as to create a melt/softened region within the glass layer. Such softening and differences in expansion rates between the softened glass and the surrounding glass causes a protruding feature to appear on the surface of the glass layer.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: September 30, 2003
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, A. Kaan Kalkan
  • Patent number: 6436466
    Abstract: A method is disclosed for the operation of a high-power electron beam for the vaporization of materials in a target. With this method, static and dynamic deflection errors are corrected. First, the static and dynamic deflection errors are ascertained by means of a teach-in process for concrete spatial coordinates and concrete frequencies of the deflection currents and stored in a memory. For the later operation, this stored data is used in such a way that input geometric data for the incidence points of the electron beam is automatically recalculated into corrected current values which bring about the exact incidence onto the input points. A corresponding procedure takes place with the input of frequencies for the deflection current. The input frequencies are automatically corrected in terms of frequency and amplitude in order to eliminate the frequency-dependent attenuation effects.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: August 20, 2002
    Assignee: Unaxis Deutschland Holding GmbH
    Inventors: Martin Bähr, Erik Laux
  • Patent number: 6214408
    Abstract: A method is disclosed for the operation of a high-power electron beam for the vaporization of materials in a target. With this method, static and dynamic deflection errors are corrected. First, the static and dynamic deflection errors are ascertained by means of a teach-in process for concrete spatial coordinates and concrete frequencies of the deflection currents and stored in a memory. For the later operation, this stored data is used in such a way that input geometric data for the incidence points of the electron beam is automatically recalculated into corrected current values which bring about the exact incidence onto the input points. A corresponding procedure takes place with the input of frequencies for the deflection current. The input frequencies are automatically corrected in terms of frequency and amplitude in order to eliminate the frequency-dependent attenuation effects.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: April 10, 2001
    Assignee: Balzers und Leybold Deutschland Holding AG
    Inventors: Martin Bähr, Erik Laux
  • Patent number: 6198066
    Abstract: A method for treating the surface of a golf club part having a non-smooth surface such as a part which has been cast. Preferably, in those instances where the part is cast, the part is abraded for example by tumbling or by directing a light sandblast against the part to create a low reflectivity surface. Such abrading roughens the golf club part so that greater contrast can be obtained using radiated beam treatment. Surface roughening can also be created by acid etch or other suitable method. The club part is mounted in a beam treatment station to permit projecting a radiated beam on selected areas of the part's surface resulting in the momentary and superficial melting or fusing of the surface which makes such areas less rough and more light reflective than adjacent surface areas. Patterns are formed by causing relative movement between the part and a high energy heat source such as a radiated beam. Preferably the heat source or beam is held fixed and the part mounted on a movable table.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: March 6, 2001
    Assignee: Sturm, Ruger & Company, Inc.
    Inventor: John K. Thorne