Brazing Or Soldering Patents (Class 228/262.42)
  • Patent number: 10344349
    Abstract: A method for treating sheet metal is disclosed. An amorphous mass containing an alloying element is applied onto a first area of a surface of the metal sheet. A second area of the surface is kept free of the amorphous mass. The amorphous mass and at least the first area of the metal sheet are heated in order to alloy the alloying element into the first area of the metal sheet while the second area remains unalloyed.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: July 9, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hartmut Baumgart, Ronald Sanders
  • Patent number: 9932650
    Abstract: A ferritic stainless steel material for brazing without grain coarsening has a partially recrystallized structure and composition comprising, in % by mass, C:0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 35%, Nb: 0.2 to 0.8%, N: 0.03% or less, if necessary, at least one of Mo, Cu, V and W: 4% or less in total, at least one of Ti and Zr: 0.5% or less in total, at least one of Ni and Co: 5% or less in total, or at least one of Al: 6% or less, REM (rare earth metal): 0.2% or less and Ca: 0.1% or less, the remainder being Fe and unavoidable impurities, wherein area ratio in percentage of recrystallized grains formed by heating after cold working is from 10 to 80%.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: April 3, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Sadayuki Nakamura, Yoshiaki Hori
  • Patent number: 9663849
    Abstract: The present invention is directed to a formulation of one or more low silver containing alloys (including those with silver content below 50 weight %, “w %”) that show one of the group of distinct pink, yellow and green colors and further demonstrate enhanced resistance to tarnish and other beneficial features described herein.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: May 30, 2017
    Assignee: LeachGarner, Inc.
    Inventor: Grigory Raykhtsaum
  • Patent number: 9660494
    Abstract: The invention relates to a joint between a copper short-circuiting ring (1) and a copper bar (2) of the damper winding in a permanent magnet synchronous machine, wherein the end of the bar is jointed to a hole (9) disposed in the short-circuiting ring by welding them together at the mating surfaces. Further, the invention relates to a corresponding method. According to the invention the short-circuiting ring (1) includes a blocking structure for limiting the heat flux from being conducted further into the short-circuiting ring from the weld between the short-circuiting ring and the bar.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 23, 2017
    Assignee: AXCO-Motors Oy
    Inventors: Asko Parviainen, Ari Piispanen
  • Patent number: 8857699
    Abstract: The present invention relates to a method of brazing articles of stainless steel, which method comprises the following steps: step (i) applying an iron-based brazing filler material to parts of stainless steel; step (ii) optionally assembling the parts; step (iii) heating the parts from step (i) or step (ii) to a temperature of at least about 1000° C. in a non-oxidizing atmosphere, a reducing atmosphere, vacuum or combinations thereof, and heating the parts at the temperature of at least about 1000° C. for at least about 15 minutes; step (iv) providing articles having an average hardness of less than about 600 HV1 of the obtained brazed areas. The present invention relates also to brazed articles of stainless steel.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: October 14, 2014
    Assignee: Alfa Laval Corporate AB
    Inventors: Per Sjodin, Jens Rassmus
  • Publication number: 20130075456
    Abstract: A method is disclosed of forming a wheel tip assembly for a compactor wheel assembly used on a compactor machine. The method may include forming a tip portion of white cast iron, and forming a base portion configured to be connected to a wheel rim. The tip portion may be brazed to the base portion to thereby form the wheel tip assembly. Also disclosed is a method of forming a compactor wheel assembly for use on a compactor machine, which includes the wheel tip assembly.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 28, 2013
    Inventors: Michael Hans Hinrichsen, Rammagy Yoeu
  • Patent number: 8350176
    Abstract: A method of providing boiler tubes with a variably ribbed interior surface. A suitably dimensioned spindle with a channel having a desired pattern on the exterior surface of the spindle is wrapped by a wire-like member in the channel so as to form thereon a reverse image of the desired, patterned tube ribbing. A brazing metal paste is applied on the exterior surface of the wire-like member and the spindle is inserted into a tube to be ribbed. The wire-like member is released from the spindle to allow the wire-like member to conform to the inner surface of the tube, and the tube is heated to the melting temperature of the brazing metal paste so that the wire-like member bonds to the inner surface of the tube, and the metal tube is then cooled.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: January 8, 2013
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Walter R. Mohn, George B. Watson, John Hainsworth, James M. Tanzosh, Douglas D. Zeigler
  • Patent number: 8324522
    Abstract: Provided is an apparatus for performing a reflow process of a solder ball provided to a semiconductor chip. The reflow apparatus may include a coil, a support member and a moving member. The coil may receive a current from a power supply to heat the solder ball using an induced heating method. The support member may be disposed on the front or the rear of the coil and may support a printed circuit board on which a semiconductor chip is mounted. The moving member may move the printed circuit board so that the printed circuit object passes through an internal space surrounded by the coil.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minill Kim, Kwang Yong Lee, Jonggi Lee, Ji-Seok Hong
  • Patent number: 8317081
    Abstract: A reflow bonding method easily bonds first and second wiring members together by reflowing solder arranged on at least one of first and second bonding parts that are defined on the first and second wiring members, respectively. The method includes positioning the first and second wiring members so that the first and second bonding parts face each other with the solder interposed between them and heating and pressing one of the first and second bonding parts from behind with a pressing face of a heater chip so that the first and second bonding parts lie one on another and so that the solder is heated and reflows to bond the first and second wiring members together.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: November 27, 2012
    Assignee: NHK Spring Co., Ltd.
    Inventors: Shogo Ogaki, Takashi Ando, Masaru Inoue
  • Patent number: 8220695
    Abstract: Disclosed is a method for bonding stainless steel to aluminum oxide. The method includes the steps of providing a first substrate of the stainless steel, filling solder in the first substrate, providing a second substrate of the aluminum oxide, filling solder in the second substrate, providing a net, pressing the net, locating the net between the first and second substrates to form a laminate and clamping the laminate, locating the laminate in a vacuum oven, increasing the temperature in the vacuum oven, retaining the temperature in the vacuum oven, and decreasing the temperature in the vacuum oven.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: July 17, 2012
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defense
    Inventors: Ming-Hsiung Wei, Dong-Hau Kuo, Ren-Kae Shiue, Kai-Ting Yeh
  • Patent number: 8042726
    Abstract: To form high performance bonding connections suitable for producing micro-structured components made of a plurality of individual layers, bonding by the steps; providing at least two work pieces; forming a metal bonding layer on at least one side of at least one of said at least two work pieces by chemical or electrolytic metal plating method; the metal bonding layer being a nickel/phosphorous alloy having a prescribed phosphorous content and prescribed thickness; forming a bonding arrangement comprising said work pieces so that there is at least one metal bonding layer between said at least two respective work pieces; heating at a prescribed heating rate to a temperature above the melting temperature of the bonding layer; bonding the two work pieces by applying contact pressure within a prescribed range; and cooling at a prescribed rate.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: October 25, 2011
    Assignee: Atotech Deutschland GmbH
    Inventors: Ralph Herber, Olaf Kurtz, Johannes Etzkorn, Christian Madry, Carsten Schwiekendick, Gerd Schafer
  • Patent number: 7896224
    Abstract: A method for raising a demagnetization temperature of a permanent magnet is disclosed. The method provides a ferromagnetic arrangement around the magnet to increase demagnetization thresholds for the duration of soldering, or any other process requiring high temperatures. Using the method disclosed, it is possible to apply high levels of heat directly to permanent magnets without demagnetization, and more particularly to create permanent magnetic assemblies fit for any environment.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 1, 2011
    Assignee: Cornell University
    Inventor: Alexander Temnykh
  • Patent number: 7793867
    Abstract: A nozzle body has a first nozzle body element (1) and a second nozzle body element (3). The first nozzle body element (1) is provided with a first nozzle-needle recess (10) accommodating an nozzle-needle (15) and a first guide area (8) for the nozzle-needle (15). In a first process step, the first nozzle body element (1) is assembled with the second nozzle body element (3). Brazing solder having a working temperature in the range of the tempering temperature of the first nozzle body element (1) is supplied to an assembly area (5). The assembly area (5) is defined between the second nozzle body element (3) and the first nozzle body element (1). The assembled first nozzle body element (1) and second nozzle body element (3) is subjected to tempering during which the tempering temperature of the first nozzle body element (1) is reached.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: September 14, 2010
    Assignee: Continential Automotive GmbH
    Inventors: Claus Anzinger, Willibald Schürz, Martin Simmet
  • Patent number: 7751924
    Abstract: An apparatus for placing solder bumps on a mold plate includes: a solder fill head configured for dispensing molten solder onto the mold plate, the solder fill head also configured for relative movement over the mold plate; and a control mechanism configured for controlling positions of the solder fill head relative to the mold plate.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Timothy J Chainer, Peter A Gruber, Dennis G Manzer
  • Publication number: 20090305078
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminium (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Application
    Filed: November 14, 2007
    Publication date: December 10, 2009
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Sjodin
  • Patent number: 7407715
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 5, 2008
    Assignee: Elliott Company
    Inventors: Kent W. Beedon, Phillip Dowson
  • Patent number: 7367099
    Abstract: A method of assembling two parts of which the dimensions of one of the parts or the final assembly are to be adhered to with precision. In the part whose dimensions are to be adhered to with the highest level of precision, a groove is machined to have a depth greater than a depth of a zone constituting a closed outline delimiting a space where the assembly exercises constraints, located between these dimensions and the zone, so as to introduce some elasticity.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 6, 2008
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Michel Painchault, Michel Durand
  • Patent number: 7261784
    Abstract: The method of the invention enables a coating to be made on at least one face to be protected of a metal substrate and/or article in order to improve its performance in terms of resistance to wear by friction, in particular at high temperature. The method comprises the following steps: providing a flexible sheet derived from at least one plate obtained by the technique of casting a strip by silkscreen printing from a viscous material made of a binder and a metal powder of a superalloy; cutting said flexible sheet to the dimensions of said face to be protected of a metal substrate and/or article in order to constitute a preform; placing said preform on said face to be protected of a metal substrate and/or article; and raising the assembly to a temperature enabling a coating to be formed by establishing a bond between said preform and said face to be protected.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 28, 2007
    Assignee: Snecma Moteurs
    Inventor: Claude Mons
  • Patent number: 7179540
    Abstract: A plate type heat exchanger wherein contacting portions of laminated plural plates and fins or contacting portions of laminated plural plates are brazed to form a heat exchange area, characterized in that at least the surface of a plate or fin contacting with a fluid is covered with an alloy comprising in weight ratio 25–35% of chromium, 5–7% of phosphorus, 3–5% of silicon, 0.001–0.1% of at least one selected from the group consisting of aluminum, calcium, yttrium and mischmetal, and balance containing mainly nickel. The alloy may contain 15% or less of iron and or 10% or less of molybdenum. The plate type exchanger exhibits enhanced pressure resistance and is excellent in corrosion resistance.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 20, 2007
    Assignees: Brazing Co., LTD., Fukuda Metal Foil & Power Co., LTD.
    Inventor: Kaoru Tada
  • Patent number: 6935555
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 30, 2005
    Assignee: Elliott Turbomachinery Co., Inc.
    Inventors: Kent W. Beedon, Phillip Dowson
  • Patent number: 6848609
    Abstract: In a method of making finned tubes as components of air-cooled systems or condensers, a sheet metal strip of aluminum is first shaped into a waved finned structure with plural fins in parallel relationship and arched ends for connecting the fins, thereby defining crests on opposite ends of the finned structure. A fluxing agent of cesium-aluminum tetrafluoride is applied in lines onto the crests on at least one of the ends of the finned structure. The finned structure is then placed upon a broad side of a flat steel tube coated with a zinc/aluminum alloy. The finned structure and the flat tube are subsequently joined in a brazing furnace in the presence of an inert gas at a temperature between 370° C. and 470° C. to produce a unitary structure which is then allowed to cool down at room temperature.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: February 1, 2005
    Assignee: GEA Energietechnik GmbH
    Inventors: Benedict Korischem, Horia Dinulescu, Raimund Witte, Eckard Volkmer
  • Patent number: 6783870
    Abstract: This invention describes the roll bonding of Al and Ni-bearing Cu alloys to suitable substrates to produce self-brazing materials for the elevated temperature, aggressive environment application. The Al and Ni-bearing Cu alloy for the self-brazing layers can be obtained by cladding layers of elemental Ni and Al to Cu. The Al content in the self-brazing layers can be varied from 2 to 100%. The Ni content in the self-brazing Cu alloy can be varied from 10 to 100%. Additional alloying elements in the commercial Cu alloys such as Fe, Cr, Si, Mn, Sn and Zn are unavoidable. Trace elements in the commercial alloys such as Pb, Ag and As will also affect the brazing and shall be reduced.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 31, 2004
    Assignee: Engineered Materials Solutions, Inc.
    Inventors: Gardner S. Haynes, Bijendra Jha, Chen-Chung S. Chang
  • Publication number: 20040108366
    Abstract: A plurality of parts are brazed using an iron/chromium brazing filler metal. The parts are preferably composed of stainless steel and the brazed assembly forms a heat exchanger characterized by good corrosion resistance and low rates of leaching of Ni into fluids passing therethrough. The heat exchanger is especially suited for use in processing items intended to be ingested by humans or animals. Leaching rates and corrosion resistance are further enhanced by a post-brazing conditioning step wherein the assembly is heated in an oxygen-containing atmosphere to a temperature ranging from about 150° to 600° C.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 10, 2004
    Applicant: Metglas, Inc.
    Inventors: Anatol Rabinkin, Nicholas J. Decristofaro
  • Patent number: 6715667
    Abstract: In a method for joining a steel tube with an aluminum rib, a zinc-aluminum alloy layer, having an aluminum content of 0.5% by wt. to 20% by wt., is applied to the surface of the steel tube or the aluminum rib, and then a fluxing agent in the form of cesium-aluminum tetrafluoride is applied between the steel tube and the aluminum rib at room temperature before or during the mechanical contact of the aluminum rib with the steel tube. The steel tube provided with the aluminum rib is then heated to a soldering temperature of between 370° C. and 470° C. and subjected to room temperature to cool down.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: April 6, 2004
    Assignee: GEA Energietechnik GmbH
    Inventors: Benedict Korischem, Horia Dinulescu, Raimund Witte, Eckard Volkmer
  • Patent number: 6698644
    Abstract: A single-tube Coriolis mass flow sensor includes a stainless steel sleeve having an unplated interior surface and a titanium member having a cylindrical end inserted into the stainless steel sleeve. The exterior surface of the titanium cylindrical end forms a joint with the unplated interior surface of the stainless steel sleeve. The titanium cylindrical end is brazed to the unplated interior surface of the stainless steel sleeve at the joint, and the stainless steel sleeve exerts compressive stress on the titanium cylindrical end at the joint.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: March 2, 2004
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Rainer Lorenz
  • Publication number: 20010047861
    Abstract: A method of production of an inexpensive corrosion-resistant heat exchanger made of stainless steel including the steps of electroplating chrome to a thickness of 15 &mgr;m on at least one of the end faces of a plurality of first and second shaped plates made of stainless steel alternately stacked in the thickness direction so as to form a chrome-based brazing filler metal layer, then electrolessly plating or electroplating Ni-P to a thickness of 35 &mgr;m on the chrome-based brazing filler metal layer to form a nickel-based brazing filler metal layer. The first and second shaped plates are brazed together through the chrome-based brazing filler metal layer and the nickel-based brazing filler metal layer to obtain a high corrosion resistant heat exchanger. Due to this, a high corrosion resistance brazing filler metal containing an Ni-Cr28-P8-etc. alloy composition is obtained at the two end faces of the first and second shaped plates.
    Type: Application
    Filed: May 8, 2001
    Publication date: December 6, 2001
    Inventors: Akihiro Maeda, Yoshitsugu Sakamoto, Shinkichi Obayashi, Shunji Kajikawa
  • Patent number: 6257483
    Abstract: Disclosed is a nickel-based brazing material obtained by adding to powdery brazing nickel a powder of at least one metal selected from the group consisting of nickel, chromium, nickel-chromium alloys, and SUS (stainless steel) in an amount of from 2 to 10% by weight, excluding 10% by weight, based on the nickel-based brazing material, followed by mixing.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: July 10, 2001
    Assignees: Calsonic Corporation, Tokyo Radiator Mfg. Co., Ltd.
    Inventor: Junpei Inaba
  • Patent number: 6203754
    Abstract: The present invention provides a brazing filler metal whose brazing temperature is 1060-1120° C. which is close to that of BNi-2 specified in JIS Z3265. The present invention also provides a brazing filler metal which has a melting point of 890-980° C. (which is close to that of BNi-7) and is capable of brazing at a temperature lower than 1000° C. The brazing filler metal of the present invention improves the base metal in corrosion resistance without deterioration. In addition, it has good resistance to oxidation and good resistance to corrosion by sulfuric acid. It has high strength, good heat resistance, and good wetting characteristics. It is used to produce durable EGR coolers by brazing. The first brazing filler metal is composed of Cr (20-30 wt %), P (3-10 wt %), Si (2-7 wt %), and Ni (remainder). It may be incorporated with another brazing filler metal composed of Cr (10-15 wt %), P (7-12 wt %), and Ni (remainder) in an amount of 2-15 wt %.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: March 20, 2001
    Assignee: Usui Kokusai Sangyo Kaisha Limited
    Inventor: Motoharu Sugiyama
  • Patent number: 6177205
    Abstract: A process for manufacture of a railroad track part, in particular a large points part, with rail parts such as a frog point and connecting rails, and the track part obtained. The track part is made of materials of differing composition, one of which is a carbon steel and one of which is an austenitic manganese steel, which are connected by welding and are subsequently subjected to a joint heat treatment. To permit joining of the materials without negative effects on their properties, the parts are joined directly by electron beam welding or indirectly via an intermediate layer comprising a nickel-based alloy, the joined parts then being heated to a temperature T and held over a time t such that for the austenitic manganese steel, solution annealing takes place, and for the carbon steel, austenitizing takes place.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: January 23, 2001
    Assignee: BWG Butzbacher Weichenbau GmbH
    Inventors: Alfred Kais, Gerhard Ratz, Walter Kunitz
  • Patent number: 6168069
    Abstract: Surprisingly, silver-copper-palladium brazing alloys, which have hitherto been used only for the brazing of components of the same material, are also very well suited for brazing directly titanium to stainless steel if, the latter component clasps the titanium component tightly, so that the cold joint is under constant compressive stress. In a method for forming the titanium-steel compound the titanium component is provided with a cylindrical end which has a smaller out-side diameter than an adjacent main portion whose external surface is a first surface to be brazed. The cylindrical steel component is a sleeve whose inside diameter is equal to the outside diameter of the main portion and whose internal surface is a second surface to be brazed. A silver-copper-palladium brazing alloy is placed around the end of the titanium component. The steel sleeve is slipped thereover.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: January 2, 2001
    Assignee: Endress +Hauser Flowtec AG
    Inventor: Rainer Lorenz