Aluminum Or Magnesium Member Patents (Class 228/262.5)
  • Patent number: 12097575
    Abstract: A soldering apparatus, in particular a reflow soldering apparatus, for the continuous soldering of printed circuit boards along a transport direction, including a process channel that has a preheating zone, a soldering zone and a cooling zone, and further includes a base body and a cover hood movable between a closed position and an open position, wherein nozzle plates, fan units with fan motors, air ducts that conduct the process gas, filter elements and/or cooling elements are provided in the base body. The soldering apparatus further includes a drawer, which extends along a pull-out direction running transversely to the transport direction, is provided in the base body, with a bottom, a front wall and a rear side. Air ducts for conducting the process gas, at least one replaceable filter element in a filter region and at least one cooling device are provided in the drawer.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: September 24, 2024
    Assignee: ERSA GmbH
    Inventors: Lothar Endreß, Benedict Fleischmann, Lukas Thanhäuser
  • Patent number: 10895277
    Abstract: A welded joint comprising an aluminum-based base material comprising an aluminum alloy or pure aluminum and a copper-based base material comprising a copper alloy or pure copper joined by a weld metal portion is provided. The weld metal portion contains copper in ranges of less than 75% by mass and silicon in ranges of less than 13% by mass and has a higher content of copper and silicon than the aluminum-based base material.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 19, 2021
    Assignee: UACJ Corporation
    Inventors: Takashi Murase, Shohei Yomogida, Toshihiko Fukuda
  • Patent number: 10857629
    Abstract: An aluminum alloy brazing sheet is disclosed including a core material made of pure aluminum or aluminum alloy, one side or both sides of the core material, being clad with a brazing material, with an intermediate material interposed between the core material and the brazing material, the intermediate material including 0.4 to 6 mass % of Mg, further including at least one of Mn, Cr, and Zr, and the balance being Al and inevitable impurities, having the Mn content not more than 2.0 mass %, the Cr content not more than 0.3 mass %, and the Zr content not more than 0.3 mass %, with the total content of Mn, Cr, and Zr being at least 0.1 mass %, the brazing material including 4 to 13 mass % of Si, and the balance being Al and inevitable.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 8, 2020
    Assignee: UACJ Corporation
    Inventors: Atsushi Fukumoto, Yasunaga Itoh, Shoichi Sakoda, Tomoki Yamayoshi
  • Patent number: 8820614
    Abstract: The method of producing a magnesium alloy joined part has the following steps: a joining step of joining a reinforcing material made of metal to a plate material made of magnesium alloy without allowing an organic material to remain at the joined portion and a plastic-working step of performing plastic working on the plate material to which the reinforcing material is joined. A desirable means of joining the reinforcing material to the plate material can be to use an inorganic adhesive. Because the magnesium alloy joined part is formed by a structure in which the reinforcing material is joined to the plate material, in comparison with the case where the reinforcing material is formed by machining or the like, the magnesium alloy structural member can be obtained with high production efficiency.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatada Numano, Ryuichi Inoue, Nobuyuki Okuda, Nozomu Kawabe, Koji Mori, Nobuyuki Mori, Yukihiro Oishi, Takahiko Kitamura
  • Patent number: 8722201
    Abstract: A connection is between a monolithic metal component and a continuous-fiber reinforced laminate component wherein the metal component and the laminate component are joined at the ends thereof. A method allows for the production of the connection between the monolithic metal component and the continuous-fiber reinforced laminate component.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: May 13, 2014
    Inventors: Patrick Schiebel, Christoph Hoffmeister, Claus Thomy, Axel Herrmann, Frank Vollertsen
  • Patent number: 8671575
    Abstract: Provided is a method of manufacturing a tail trim using a clad metal plate, and a tail trim made of a clad metal plate, which thus enables decrease in weight and improved corrosion resistance, and which further enables increased heat resistance. The method includes rolling two washed metal materials to obtain an initial clad metal plate, and then heat treating and further rolling the initial clad metal plate to obtain a final clad metal plate; pressing the final clad metal plate, thus forming a main tail trim and a housing, the housing including a tail trim upper cover and a tail trim lower cover; and subjecting the main tail trim and the housing to tungsten inert gas welding, thus manufacturing the tail trim.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 18, 2014
    Assignee: Hyundai Motor Company
    Inventors: Chang Yeol Yoo, Gwang Min Yoon
  • Publication number: 20130256390
    Abstract: The disclosed junction material, manufacturing method thereof, and manufacturing method of junction structure utilize lead-free materials and ensure a high reliability of the junction between a semiconductor element and a frame or substrate, or, between a metal plate and another metal plate. For junctions between a semiconductor element and a frame or substrate, by using as the JUNCTION MATERIAL a laminate material comprising a Zn-based metallic layer (101), Al-based metallic layers (102a, 102b) on both sides thereof, and X-based metallic layers (103a, 103b) (X=Cu, Au, Ag or Sn) on the outside of both the Al-based metallic layers (102a, 102b), even in an oxygen-rich environment, the superficial X-based metallic layers protect the Zn and Al from oxidation until said junction material melts, preserving the wettability and bondability of said junction material as solder and securing the high reliability of the junction.
    Type: Application
    Filed: July 28, 2011
    Publication date: October 3, 2013
    Applicant: Hitachi Cable, Ltd.
    Inventors: Takuto Yamaguchi, Masahide Okamoto, Osamu Ikeda, Hiromitsu Kuroda, Kazuma Kuroki, Shohei Hata, Yuichi Oda
  • Patent number: 8492005
    Abstract: In joining a magnesium alloy material 1 (first material) and a steel material (second material), a zinc-plated steel plate 2 plated with zinc (metal C) is used as a steel material, Al (metal D) is added to the magnesium alloy material 1. Next, eutectic melting of Mg and Zn is caused so as to remove a product produced by the eutectic melting with an oxide film 1f and impurities from a joint interface. Moreover, an Al—Mg system intermetallic compound such as Al3Mg2 and an Fe—Al system intermetallic compound such as FeAl3 are produced, whereby regenerated surfaces of both materials 1 and 2 are joined via a compound layer 3 containing those intermetallic compounds.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 23, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeyuki Nakagawa, Kenji Miyamoto, Minoru Kasukawa, Masao Aihara, Sadao Yanagida, Akio Hirose
  • Patent number: 8492675
    Abstract: In joining an Fe-based metallic member comprising an Fe-based material and an Al-based metallic member comprising an Al-based material by a Zn-based filler metal, a joined part of the Fe-based metallic member is heated at a temperature higher than a melting point of the Fe-based material.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: July 23, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Taisei Wakisaka, Tokuji Okumura, Takanori Suzuki
  • Patent number: 8420226
    Abstract: A structural member comprising at least two aluminum alloy parts displaying different property balances, said at least two parts being welded and wherein one of said parts either is (i) selected from an aluminum alloy different from the other of said at least two parts and/or (ii) is selected from an initial temper different from the other of said at least two parts, and wherein at least one of said at least two parts has been pre-aged prior to being welded, and, wherein said structural member has undergone a post-welding thermal treatment conferring a final temper to each of said at least two parts. The parts are advantageously welded by friction stir welding. Another subject of the invention is a method for manufacturing a structural member.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: April 16, 2013
    Assignee: Constellium France
    Inventors: Jean-Christophe Ehrstrom, Henri Gérard
  • Patent number: 8308051
    Abstract: A method of welding dissimilar metal materials, wherein a high melting-point material and a low melting-point material which are dissimilar metal materials having melting points different from each other are positioned to a planned welding position, and a rotatable tool is pressed to and then inserted into the high melting-point material to thereby perform a friction-stir-welding between the high melting-point material and the low melting-point material to each other. The friction-stir-welding between the high melting-point material and the low melting-point material is performed by disposing an intervening piece made from a same material as the high melting-point material between the rotatable tool and the high melting-point material.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 13, 2012
    Assignee: Suzuki Motor Corporation
    Inventors: Tomonobu Hatakeyama, Gouki Yotsuya
  • Patent number: 8309178
    Abstract: Provided are methods and initial structures for fabricating corrosion resistant steels that incorporate an aluminum rich corrosion resistant surface layer. The initial structures utilize layering and/or patterning for reducing the effective diffusion length Deff to a value well below the total thickness of the aluminum alloy protective layer X1 by providing vertical and/or lateral laminated structures that provide ready sources of Fe atoms during subsequent heat treatment processes.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Alan Seid, Masayuki Narita
  • Patent number: 8227091
    Abstract: Disclosed is an aluminum alloy brazing sheet for heat exchangers, which has high strength after brazing, high corrosion resistance and excellent brazability. Specifically disclosed is an aluminum alloy brazing sheet (1a) for heat exchangers comprising a core member (2), a sacrificial member (3) formed on one side of the core member (2), and a brazing filler metal (4) formed on the other side of the core member (2) and composed of an Al—Si alloy. The sacrificial member (3) contains 0.03-0.30% by mass of Fe, 0.01-0.40% by mass of Mn, 0.4-1.4% by mass of Si, 2.0-5.5% by mass of Zn, not more than 0.05% by mass of Mg and the balance of Al and unavoidable impurities. In addition, the sacrificial member (3) has a crystal grain size of 100-400 & mgr;m after 5-minute heat treatment at 600 & ring;C during the brazing.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 24, 2012
    Assignees: Kobe Steel, Ltd., Denso Corporation
    Inventors: Toshiki Ueda, Akihiro Tsuruno, Fumihiro Koshigoe, Keiichi Okazaki, Takahiko Nagaya, Kenji Negura
  • Patent number: 8210423
    Abstract: The present disclosure relates to a method for fabricating the above-described a magnesium-based composite material. The method includes providing at least two magnesium-based plates, providing at least one nanoscale reinforcement film, sandwiching the at least one nanoscale reinforcement film between the at least two magnesium-based plates to form a preform, and hot rolling the preform to achieve the magnesium-based composite material.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 3, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li, Kai-Li Jiang
  • Patent number: 8196804
    Abstract: The invention relates to a method for soldering components, in particular heat exchanger, in particular made of aluminum materials, aluminum alloys or wrought alloys, in a soldering furnace, in particular a continuous soldering furnace or a batch-type soldering furnace, which comprises a muffle, which is flushed with protective gas in order to create a protective atmosphere. In order to make the production of soldered components easier, during the soldering of the components the muffle is supplied with such a greatly increased amount of gas, in particular protective gas or reaction gas, that a low-oxygen protective atmosphere is created.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 12, 2012
    Assignee: Behr GmbH & Co. KG
    Inventors: Bradley David Abell, Klaus Dieter Förster, Bernd Grünenwald, Andreas Jenseit, Cord Völker
  • Patent number: 8188010
    Abstract: A thin film superconductive wire material (16) and an electro conductive tape (15) are immersed in a solder bath (35) containing a solder, which includes Sn(tin) and Bi (bismuth), to bond the thin film superconductive wire material (16) and the electro conductive tape (15) and a composite superconductive wire material (10) is formed.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: May 29, 2012
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Center, The Juridical Foundation
    Inventors: Masashi Yagi, Hirao Hirata, Shinichi Mukoyama, Yuh Shiohara
  • Patent number: 8142907
    Abstract: An aluminum alloy brazing sheet having high strength comprising: a core alloy; an Al—Si-based filler alloy cladded on one side or both sides of the core alloy, wherein the core alloy is composed of an aluminum alloy containing 0.3-1.2% (mass %, the same applies the below) Si, 0.05-0.4% Fe, 0.3-1.2% Cu, 0.3-1.8% Mn, 0.05-0.6% Mg, and containing one or more elements selected from the group consisting of 0.02-0.3% Ti, 0.02-0.3% Zr, 0.02-0.3% Cr and 0.02-0.3% V, the balance of Al and unavoidable impurities; and wherein, after the aluminum alloy brazing sheet is subjected to brazing, the core alloy features a metallic structure in which a density of intermetallic compounds having a grain diameter of at least 0.1 ?m is at most ten grains per ?m2.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 27, 2012
    Assignees: Furukawa-sky Aluminum Corp, Denso Corporation
    Inventors: Atsushi Fukumoto, Hiroshi Kano, Akio Niikura, Yoichiro Bekki, Kenji Negura, Tatsuo Ozaki, Toshihide Ninagawa, Keiichi Okazaki
  • Patent number: 8093531
    Abstract: A joining of a titanium material with an aluminium material, wherein the parts made of the two substances are connected with each other in a substance-to-substance manner. Preferably, the joining is effected by a laser beam or an electron beam.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: January 10, 2012
    Assignee: Airbus Deutschland GmbH
    Inventors: Rainer Kocik, Joerg Schumacher, Sebastian Kaschel, Michael Kreimeyer, Frank Vollertsen
  • Patent number: 8079509
    Abstract: A laminate aluminum block for forming an article includes a series of aluminum laminate plates to collectively form a tool body for forming an article in a forming operation. A series of aluminum brazing layers are formed for brazing together adjacent aluminum laminate plates. The series of aluminum laminate plates and the series of aluminum brazing layers are deoxidized. Draining apertures are formed through a plurality of the series of aluminum laminate plates. The series of aluminum laminate plates are stacked alternating with the aluminum brazing layers between adjacent aluminum laminate plates without a flux. The stacked series of alternating aluminum plates and aluminum brazing layers are pressed. The stacked series of alternating aluminum plates and aluminum brazing layers are heated in a vacuum furnace to a temperature wherein the aluminum brazing layers braze the aluminum laminate plates together and excess braze material drains from the draining apertures.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: December 20, 2011
    Assignee: FloodCooling Technologies, LLC
    Inventors: Matthew T. Lowney, Michael Wasylenko, Anthony Nicholas Tanascu
  • Patent number: 8043711
    Abstract: Disclosed herein is an aluminum alloy clad sheet for a heat exchanger including a core layer, a sacrificial layer formed on one surface of the core layer, and a filler layer including an Al—Si based alloy formed on the other surface of the core layer. The core layer includes a predetermined amount of Si, Cu, Mn, Ti, and Mg, the remainder including Al and inevitable impurities, and the sacrificial layer includes a predetermined amount of Si, Mn, and Zn, the remainder including Al and inevitable impurities. The core layer has a crystal grain size after the brazing heat treatment at 595° C. for 3 minutes of at least 50 ?m and less than 300 ?m. The filler layer and the sacrificial layer are defined for their thickness, and the number of intermetallic compounds in the core layer is also defined to a predetermined range. By such constitution, the aluminum alloy clad sheet has improved fatigue life and post-braze strength, high corrosion resistance, and excellent erosion resistance and brazeability.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 25, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Fumihiro Koshigoe, Toshiki Ueda, Shimpei Kimura, Masao Kinefuchi, Katsushi Matsumoto, Eiichi Tamura
  • Patent number: 8020749
    Abstract: According to a metal joining method of the present invention, first and second dissimilar metals are joined together by interposing between the first and second metal materials a third metal material dissimilar to the first and second metal materials and causing eutectic melting at least either at an interface between the first and third metal materials or at an interface between the second and third metal materials.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 20, 2011
    Assignees: Nissan Motor Co., Ltd., Kojiro Kobayashi
    Inventors: Kojiro Kobayashi, Akio Hirose, Shigeyuki Nakagawa, Kenji Miyamoto, Minoru Kasukawa, Masayuki Inoue, Tetsuji Morita
  • Patent number: 7984840
    Abstract: According to a metal joining method of the present invention, first and second dissimilar metals are joined together by interposing between the first and second metal materials a third metal material dissimilar to the first and second metal materials and causing eutectic melting at least either at an interface between the first and third metal materials or at an interface between the second and third metal materials.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: July 26, 2011
    Assignees: Nissan Motor Co., Ltd.
    Inventors: Kojiro Kobayashi, Akio Hirose, Shigeyuki Nakagawa, Kenji Miyamoto, Minoru Kasukawa, Masayuki Inoue, Tetsuji Morita
  • Patent number: 7850059
    Abstract: According to a metal joining method of the present invention, first and second dissimilar metals are joined together by interposing between the first and second metal materials a third metal material dissimilar to the first and second metal materials and causing eutectic melting at least either at an interface between the first and third metal materials or at an interface between the second and third metal materials.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 14, 2010
    Assignees: Nissan Motor Co., Ltd.
    Inventors: Kojiro Kobayashi, Akio Hirose, Shigeyuki Nakagawa, Kenji Miyamoto, Minoru Kasukawa, Masayuki Inoue, Tetsuji Morita
  • Patent number: 7829151
    Abstract: The invention relates to a method for modifying piece surfaces consisting in bringing pieces into contact with at least one type of a modifying agent in such a way that the modification of the surface is carried out.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 9, 2010
    Assignee: BEHR GmbH & Co. KG
    Inventors: Snjezana Boger, Peter Englert, Mathias Pfitzer, Ingo Trautwein, Sabine Sedlmeir
  • Publication number: 20100247954
    Abstract: System and method of producing multi-layered aluminum alloy products are disclosed. A multi-layered aluminum alloy product may be formed by first heating a first aluminum alloy to a first temperature where the first temperature is at least about 5° C. lower than the eutectic temperature of the first aluminum alloy, second heating a second aluminum alloy to a second temperature where the second temperature is at least about 5° C. higher than the liquidus temperature of the second aluminum alloy, and coupling the second aluminum alloy to the first aluminum alloy to produce a multi-layered aluminum alloy product.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Men G. Chu, Jeffrey J. Shaw
  • Patent number: 7780066
    Abstract: A method for manufacturing a power capacitor including at least one capacitor element and equipment for carrying out the method. The capacitor element includes a roll of alternate dielectric films and electrode films. The roll has first and second end surfaces facing away from each other. The electrode films are connectably exposed. A solder tip is preheated in a pot with a preheated solder. The solder tip is coated with solder, whereupon at least one of the surfaces of the capacitor element is coated with solder by bringing the solder tip into contact with the end surface. The contact is brought to cease. At least one lead is fixed by soldering to the end surface.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: August 24, 2010
    Assignee: ABB Technology Ltd
    Inventor: Per Milwertz
  • Patent number: 7771840
    Abstract: There are provided an aluminum alloy plate having high strength and excellent corrosion resistance even though the plate is made thinner, and a heat exchanger formed thereof. In an aluminum alloy plate having a core material and a surface material cladded on at least one side of the core material, the surface material includes 0.030-0.30% by mass of Fe, 0.40-1.9% by mass of Mn, 0.40-1.4% by mass of Si, and 2.0-5.5% by mass of Zn, the rest comprises Al and inevitably included impurities, and an area ratio of an intermetallic compound containing Al and Mn to a whole surface of the surface material is 1% or less.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Toshiki Ueda, Akihiro Tsuruno, Fumihiro Koshigoe
  • Patent number: 7735718
    Abstract: A brazing product for fluxless brazing comprises a substrate and a filler metal-forming composition applied to the substrate. The substrate preferably comprises aluminum, an aluminum alloy or another metal and may include at least one layer of a ceramic, carbide or nitride. The filler metal-forming composition comprises a liquid-forming layer comprising silicon and a braze-promoting layer comprising one or more metals selected from the group comprising nickel, cobalt, palladium and iron. The liquid-forming layer comprises one or more material layers. Where the liquid-forming layer comprises a plurality of layers, it may include at least one layer consisting essentially of silicon.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 15, 2010
    Assignee: Dana Canada Corporation
    Inventors: Michael E. Graham, Richard A. Hoffman, Margaret Anna Hoffman, legal representative, Brian E. Cheadle, Kostas F. Dockus, Stefanija Kisielius, legal representative, Robert H. Krueger
  • Publication number: 20100129683
    Abstract: Al—Mg and Al—Mg—Zn weld filler alloy compositions for use with fusion weldable 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy base metals are disclosed. The weld filler alloys may be used for joining a first aluminum base metal segment to a second aluminum base metal segment, where the base metal segments is at least one of 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy. The weld filler alloys, in wire or rod form, may also be used to repair a defective weld.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 27, 2010
    Inventors: Jen C. LIN, Israel STOL, Kyle L. WILLIAMS
  • Patent number: 7669327
    Abstract: Methods of applying an ozone-depleting catalytic coating to a heat exchanging device for producing a durable surface with optimal ozone depletion characteristics are provided. An adhesively coated metallic substrate is exposed to a concentration of ozone-depleting catalytic particles, wherein the receptive surface of the coated substrate binds the ozone-depleting catalytic coating.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: March 2, 2010
    Assignee: JW Aluminum Company
    Inventor: Mark Thompson
  • Patent number: 7624906
    Abstract: A method of ultrasonic brazing metal matrix composite, which forms a reinforced composite bond without filling welding wire with reinforcement or adding alloy element to generate ceramic phase, includes the steps of setting a filler metal; introducing ultrasonic vibration to braze in air; dissolving the base materials, and introducing ultrasonic wave again. The method performs the aluminum brazing at low temperature. The periodic time of brazing is shorter and the cost is lower than the conventional brazing methods. The strength, service temperature and dimensional stability of the joint are close to the base article.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: December 1, 2009
    Assignee: Harbin Institute of Technology
    Inventors: Jiuchun Yan, Weiwei Zhao, Huibin Xu, Dacheng Li, Zhiwu Xu, Shiqin Yang, Yang Zhang, Zhipeng Ma
  • Patent number: 7494043
    Abstract: A method for constructing a welded construction, including the steps of: (a) providing separate component parts of the construction and (b) welding the separate parts together with an Al—Mg—Mn weld filler alloy having a good corrosion resistance and improved strength levels. The separate component parts having the following composition (in weight percent): Mg 4.9 to 6.0; Mn 0.6 to 1.2; Zn 0.25 to 1.5; Zr 0.05 to 0.25; Cr 0.3 max.; Ti 0.2 max.; Fe 0.5 max.; Si 0.5 max.; Cu 0.25 max.; Sc 0.3 max., balance inevitable impurities and aluminium. The Al—Mg—Mn weld filler alloy having the following composition (in weight percent): Mg 7.0-9.5; Mn 0.9-2.0; Zn 0.2-0.9 Zr?0.3; Cr?0.5; Sc?2.8; Cu?0.5; Fe?0.5; Si?0.5; Ti?0.3, the balance aluminium and incidental elements and impurities.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: February 24, 2009
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Klaus Alfons Mechsner, Huibrecht Adriaan Wouters
  • Publication number: 20080286600
    Abstract: Fabrication techniques for and examples of metallic composite materials with high toughness, high strength, and lightweight for various structural, armor, and structural-armor applications. For example, various advanced materials based on metallic-intermetallic laminate (MIL) composite materials are described, including materials with passive damping features and built-in sensors.
    Type: Application
    Filed: June 15, 2005
    Publication date: November 20, 2008
    Inventors: Kenneth S. Vecchio, Aashish Rohatgi, John Kosmatka
  • Patent number: 7451906
    Abstract: A brazing product for low temperature fluxless brazing comprises a filler metal-forming composition which melts in the range from about 380-575° C. The filler metal-forming composition comprises zinc optionally in combination with aluminum and/or silicon, and further comprises at least one braze promoter selected from nickel, cobalt, iron and palladium. The filler metal-forming composition may comprise a single layer or may comprise a number of distinct layers. The brazing product may take the form of a brazing preform or a brazing sheet or casting in which the filler metal-forming composition is deposited on a non-consumable substrate. The substrate may preferably comprise aluminum or an aluminum alloy, but may instead be comprised of one or more metals other than aluminum.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: November 18, 2008
    Assignee: Dana Canada Corporation
    Inventors: Stefanija Kisielius, legal representative, Brian E. Cheadle, Robert H. Krueger, Feng Liang, Mark S. Kozdras, Kostas F. Dockus
  • Patent number: 7407714
    Abstract: Disclosed is a process for producing an Al—Mn alloy sheet with improved liquid film migration resistance when used as core alloy in brazing sheet, including the steps of: casting an ingot having a composition comprising (in weight percent): 0.5<Mn?1.7, 0.06<Cu?1.5, Si?1.3, Mg?0.25, Ti<0.2, Zn?2.0, Fe?0.5, at least one element of the group of elements of 0.05<Zr?0.25 and 0.05<Cr?0.25; other elements <0.05 each and total <0.20, balance Al; homogenisation and preheat; hot rolling; cold rolling (including intermediate anneals whenever required), and wherein the homogenisation temperature is at least 450° C. for a duration of at least 1 hour followed by an air cooling at a rate of at least 20° C./h and wherein the pre-heat temperature is at least 400° C. for at least 0.5 hour.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 5, 2008
    Assignees: Aleris Aluminum Koblenz GmbH, Aleris Aluminum Canada S.E.C.
    Inventors: Scott W. Haller, Job Anthonius Van Der Hoeven, Klaus Vieregge, Achim Bürger, Sampath Desikan
  • Patent number: 7401724
    Abstract: A flux based on alkali fluoroaluminate is described which is highly suitable for dry application (“dry fluxing”). This is a flux which is free of fine-grained fraction, which is defined by a range of grain-size distribution.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: July 22, 2008
    Assignee: Solvay Fluor und Derivate GmbH
    Inventors: Hans-Walter Swidersky, Alfred Ottmann, Heinz-Joachim Belt
  • Patent number: 7150924
    Abstract: Discloses is a metal-based resistance heat-generation element. The element comprises a core made of a platinum group metal or refractory metal, and a coating film formed on the core. The coating film has at least two layers including a core-side inner layer of a Re—Cr based ? (sigma) phase and a surface-side outermost layer of an aluminide or silicide. Alternatively, the element may comprise a core made of an alloy containing a platinum group metal or refractory metal and Re and Cr diffused therein, and a coating film formed on the core. The coating film has at least one layer including an aluminide or silicide layer.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 19, 2006
    Assignee: Agency of Industrial Science and Technology
    Inventor: Toshio Narita
  • Patent number: 7073703
    Abstract: An aluminum plate 12 having a purity of 99.5% or more, preferably 99.9% or more, is caused to contact at least one side of a ceramic substrate 10 of aluminum nitride or alumina to be heated at a temperature of 620 to 650° C. in an inert gas to bond the aluminum plate 12 directly to the ceramic substrate 10.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: July 11, 2006
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Takayuki Takahashi, Hideyo Osanai, Makoto Namioka
  • Patent number: 7041385
    Abstract: The invention relates to a coiled composite sheet material far brazing, the composite sheet material having a structure comprising a substrate, the substrate including an aluminium substrate and/or an aluminium alloy substrate, on at least one side coupled to a carrier layer having a thickness of at most 150 ?m and additionally a polymer being homopolymers of olefin, or a copolymer of an olefin and a non-olefinic comonomer copolymerizable with the olefin being vinyl monomer, acrylic acid, methacrylic acid and/or acetic acid as a carder filled with a brazing flux material.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: May 9, 2006
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventor: Adrianus Jacobus Wittebrood
  • Patent number: 7025248
    Abstract: The invention relates to a roll-bonded titanium sheet (6), a shaped component manufactured therefrom (10) and a method for manufacturing the titanium sheet (6) and the shaped component (10). In order to achieve a high-temperature-resistant shaped component (10), a titanium sheet (2) is roll-bonded at least on one side with aluminium foil (4) whose thickness (d) is small compared with the thickness (D) of the titanium sheet (2). As a result of heat treatment of the roll-bonded titanium sheet (6), the aluminium and titanium from the adjoining region are converted to an aluminium-titanium alloy. The outer titanium-aluminium-alloy layer of the titanium sheet (6) thus formed is converted by contact with oxygen into a titanium-aluminium-mixed oxide layer which gives the titanium sheet (6) good corrosion protection. The forming of the shaped component (10) preferably takes place before the heat treatment for alloy formation because the roll-bonded titanium sheet (6) is then still slightly deformable.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: April 11, 2006
    Assignee: Deutsche Titan GmbH
    Inventor: Heinz Sibum
  • Patent number: 7000823
    Abstract: A method of manufacturing an article of manufacture for use in a fluxless brazing process is disclosed. The method comprises the step of applying a braze-promoting layer including one or more metals selected from the group consisting of nickel, cobalt and iron, onto a bonding layer which comprises one or more metals selected from the group consisting of zinc, tin, lead, bismuth, nickel, antimony and thallium and which is disposed on a substrate including aluminum.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: February 21, 2006
    Assignee: Dana Canada Corporation
    Inventors: Kostas F. Dockus, Robert H. Krueger, Brian E. Cheadle, Mark S. Kozdras, Feng Liang
  • Patent number: 6994919
    Abstract: The invention relates to a brazing sheet product including a core sheet, on at least one side of the core sheet a clad layer of an aluminum alloy including silicon in an amount in the range of 4 to 14% by weight, and further including on at least one outersurface of the clad layer a plated layer of nickel-tin alloy, such that the clad layer and all layers exterior thereto form a metal filler for a brazing operation and have a composition with the proviso that the mol-ratio of Ni:Sn is in the range of 10:(0.5 to 9).
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: February 7, 2006
    Assignees: Corus Aluminium Walzprodukte GmbH, Corus Technology BV
    Inventors: Jacques Hubert Olga Joseph Wijenberg, Adrianus Jacobus Wittebrood, Joop Nicolaas Mooij
  • Patent number: 6840431
    Abstract: The invention encompasses a method of bonding a first mass to a second mass. A first mass of first material and a second mass of second material are provided and joined in physical contact with one another. The first and second masses are then diffusion bonded to one another simultaneously with the development of grains of the second material in the second mass. The diffusion bonding comprises solid state diffusion between the first mass and the second mass. A predominate portion of the developed grains in the second material have a maximum dimension of less than 100 microns. The invention also encompasses methods of forming a physical vapor deposition target bonded to a backing plate.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: January 11, 2005
    Assignee: Honeywell International Inc.
    Inventor: Jaeyeon Kim
  • Patent number: 6779713
    Abstract: A method for joining metal parts in which an aluminum rich surface is produced on a first metal part by selective removal of the beryllium component of a beryllium-aluminum alloy, as by said etching. The aluminum rich surface may then be joined to another aluminum rich surface by a brazing.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: August 24, 2004
    Assignee: The Peregrine Falcon Corporation
    Inventors: John L. Emmons, Robert E. Hardesty
  • Patent number: 6753094
    Abstract: The invention relates to a composite sheet material for brazing, the composite sheet material having a structure comprising an aluminium or aluminium alloy substrate on at least one side coupled to a layer comprising a polyolefin/acrylic acid copolymer as a carrier filled with brazing flux material, and optionally also with a metal powder, in an amount sufficient to achieve brazing. The invention further relates to a method of manufacturing composite sheet material for brazing, which method comprises the steps (a) mixing the polyolefin/acrylic acid copolymer with the brazing flux material and/or metal powder, and (b) applying to at least one surface of the metal substrate a mixture of said copolymer filled with the brazing flux material and/or metal powder, in an amount sufficient to achieve subsequent brazing.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: June 22, 2004
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventor: Adrianus Jacobus Wittebrood
  • Patent number: 6743396
    Abstract: The present invention relates to a method for producing AlMn strips or sheets for producing components by soldering, wherein a precursor material is produced from a melt which contains (in weight-percent) Si: 0.3-1.2%, Fe: ≦0.5%, Cu: ≦0.1%, Mn: 1.0-1.8%, Mg: ≦0.3%, Cr+Zr: 0.05-0.4%, Zn: ≦0.1% , Ti: ≦0.1% , Sn: ≦0.15%, and unavoidable companion elements, whose individual amounts are at most 0.05% and whose sum is at most 0.15%, as well as aluminum as the remainder, wherein the precursor material is preheated at a preheating temperature of less than 520° C. over a dwell time of at most 12 hours, wherein the preheated precursor material is hot rolled into a hot strip using a final hot rolling temperature of at least 250° C., wherein the hot strip is cold rolled into a cold strip without intermediate annealing.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: June 1, 2004
    Assignee: Hydro Aluminium Deutschland GmbH
    Inventors: Pascal Wagner, Wolf-Dieter Finkelnburg, Dietrich Wieser, Manfred Mrotzek
  • Patent number: 6706992
    Abstract: A welding apparatus spot welds two or more overlapping sheets having a coating, such as zinc coated steel or aluminum alloy with an oxide coating. A hole is formed in the upper sheet at the desired point of spot welding. A clamping cup of a plasma arc passes surrounds the hole and contacts the upper surface of the upper sheet. The torch heats the sheet, allowing entrapped vapors in the coating on the lower sheet to vent freely. Filler wire is added to fill the hole and to secure the overlapping sheets together. If the overlapping sheets are zinc coated steel, preferably the filler wire is copper based.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: March 16, 2004
    Assignee: International Aluminum Holdings Limited
    Inventor: Russell Vernon Hughes
  • Patent number: 6679417
    Abstract: An efficient and effective process for manufacturing of hardened aluminum components is achieved by coordinating the material preparation steps with the forming steps. The resulting product is a hardened aluminum component with desirable strength characteristics. The process includes initial heating of sheet material in order to prepare it for further processing. The sheet material is then quenched to promote appropriate material conditioning. A product forming sub-process is then undertaken in a relatively short period of time following the quenching. The product forming is done while the material is in a relatively ductile condition, thus easing forming operations, and avoiding product spring-back problems. Lastly, the component is naturally aged, to provide the final hardening operations. The resulting product has very desirable strength characteristics, due to the combined forming and hardening process.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: January 20, 2004
    Assignee: Tower Automotive Technology Products, Inc.
    Inventors: Lawrence M. Dziadosz, Clarence W. Fulton
  • Patent number: 6648214
    Abstract: In a method for partial or complete coating of surfaces of components of aluminum and its alloys with a uniform layer of homogeneously distributed solder, fluxing agent and binder for brazing of the components to one another, the solder, fluxing agent and binder are applied in powder form at high speeds up to 180 m/min onto the surfaces provided for brazing by electrostatic powder coating. The powder particles have a particle size of 5 to 30 &mgr;m. The proportion of binder relative to the total quantity of powder is smaller than 35% by weight. The uniform layer of homogeneously distributed solder, fluxing agent and binder has only a thickness of less than 50 &mgr;m. Heat is used melting this layer.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: November 18, 2003
    Assignee: Erbslöh AG
    Inventor: Norbert-William Sucke
  • Patent number: 6629353
    Abstract: The invention concerns a dome (34) consisting of a round-shaped vessel (30) provided with an opening (28) at the top and by a cap (33) welded on said basin to close said opening (28). The basin is obtained by hot forming under pressure of a truncated blank (5) made of non tempered aluminum alloy.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: October 7, 2003
    Assignee: Eads Launch Vehicles
    Inventors: Georges Favre-Marinet, Jean-Pierre Bonnafe, Jacques Chanteranne, Joël Delmotte