Titanium Or Zirconium Member Patents (Class 228/262.71)
-
Patent number: 11654470Abstract: According to an embodiment, a mold structure comprises an upper mold having a convex portion in a lower surface thereof to press-form a thin aluminum sheet, a lower mold including a main mold part having a forming recess for forming the thin aluminum sheet placed thereon and an auxiliary mold part supporting the main mold part, a back plate spaced apart from an inside of the forming recess and supporting a lower surface of the aluminum sheet, and vacuum generator connected with air passages formed from two opposite sides of the auxiliary mold part to a bottom surface of the forming recess.Type: GrantFiled: August 3, 2021Date of Patent: May 23, 2023Inventor: Hyuk Ahn
-
Patent number: 9016551Abstract: The invention relates to a mounting device in an aircraft. In one aspect of the invention, a method is disclosed for assembling a metal securement member of the mounting device. In another aspect of the invention, a mounting device is disclosed. In another aspect of the invention, a method is disclosed for installing and using a mounting device in an aircraft.Type: GrantFiled: November 2, 2006Date of Patent: April 28, 2015Assignee: The Boeing CompanyInventors: Brad L. Kirkwood, Paul S. Gregg, Gerry D. Miller, Jeff D. Will, David W. Evans
-
Publication number: 20140277316Abstract: In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a first portion and a second portion, wherein the first portion defines an exposed outer surface of the electrode and is electrically coupled to the second portion along a first interface, wherein the second portion is electrically coupled to the lead wire along a second interface different from the first interface via welding to couple the lead wire to the electrode, wherein an electrical signal may be transferred between the lead wire and exposed outer surface of the first portion via the second portion, and wherein the first portion is formed from a first material having a first composition, and the second portion is formed from a second material having a second composition different from the first composition.Type: ApplicationFiled: March 13, 2014Publication date: September 18, 2014Applicant: Medtronic, Inc.Inventors: Xingfu Chen, Bernard Q. Li, Richard T. Stone, Dale F. Seeley, Alan Shi
-
Patent number: 8695195Abstract: A process for manufacturing a metal part reinforced with ceramic fibers including machining at least one housing for an insert in a metal body having an upper face. At least one insert formed from ceramic fibers in a metal matrix is placed in the housing. The insert is covered with a cover. A vacuum is created in the interstitial space around the insert and the interstitial space is hermetically sealed under vacuum. The assembly, namely the metal body with the cover, is treated by hot isostatic pressure. The treated assembly is machined in order to obtain the part. The cover includes an element covering the insert in the slot and projecting from the upper face, and a sheet covering the upper face with said element. In particular, the insert is straight and the housing for the insert in the metal body forms a straight slot.Type: GrantFiled: July 3, 2009Date of Patent: April 15, 2014Assignee: Messier-Bugatti-DowtyInventors: Patrick Dunleavy, Richard Masson
-
Patent number: 8608049Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.Type: GrantFiled: October 10, 2007Date of Patent: December 17, 2013Assignee: Zimmer, Inc.Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
-
Patent number: 8602290Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.Type: GrantFiled: April 22, 2011Date of Patent: December 10, 2013Assignee: Zimmer, Inc.Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
-
Patent number: 8505806Abstract: Method for producing coated assembly parts for chemical device elements including the following series of steps: (a) the formation of an initial assembly including a steel support part, typically a plate, a zirconium or zirconium alloy coating, typically a sheet having dimensions similar to those of the steel plate, and at least one brazing material between the support part and the coating, wherein said brazing material is an alloy including silver and copper; (b) the insertion of the initial assembly into a brazing chamber with a controlled atmosphere; (c) the formation of a controlled atmosphere in said chamber; (d) the reheating of said assembly to a temperature at least equal to the melting temperature of said brazing material; wherein, prior to the formation of said initial assembly, the deposition of a titanium or titanium alloy layer on said zirconium (or zirconium alloy) coating is performed, and in that said coating is placed so that its titanium- or (titanium alloy-) coated surface is in contact wType: GrantFiled: March 9, 2006Date of Patent: August 13, 2013Assignee: Mersen France PY SASInventors: Ernest Totino, Emmanuel Kelbert
-
Patent number: 8393528Abstract: A method for hardfacing a metal component surface (14, 16), especially a shroud surface of a turbine blade made of a TiAl alloy, with at least one metal material (18, 20), in particular a Co—Cr alloy. The hardfacing coating is produced separately from the component surface and is then joined to the component surface in a high-temperature soldering process. A turbine blade including such a hardfacing coating, primarily in a shroud region (2).Type: GrantFiled: July 8, 2010Date of Patent: March 12, 2013Assignee: MTU Aero Engines GmbHInventors: Karl-Hermann Richter, Ulrich Knott, Piotr Kowalczyk
-
Patent number: 8093531Abstract: A joining of a titanium material with an aluminium material, wherein the parts made of the two substances are connected with each other in a substance-to-substance manner. Preferably, the joining is effected by a laser beam or an electron beam.Type: GrantFiled: January 12, 2009Date of Patent: January 10, 2012Assignee: Airbus Deutschland GmbHInventors: Rainer Kocik, Joerg Schumacher, Sebastian Kaschel, Michael Kreimeyer, Frank Vollertsen
-
Patent number: 7922065Abstract: According to one aspect of the present disclosure, a part for an article of equipment includes a fluid conducting first region including a corrosion resistant first material, and a fluid conducting second region including a second material. The first region and the second region are either directly or indirectly joined by solid state welding to form a unitary fluid conducting part. According to another aspect of the present disclosure, a method for replacing at least one fluid conducting part of an article of equipment is disclosed wherein a replacement part is provided that includes a fluid conducting first region including a corrosion resistant first material, and a fluid conducting second region including a second material. The second material is substantially identical to the material of a region of the equipment on which the replacement part is mounted. The first and second regions are either directly or indirectly joined by solid state welding to form a unitary fluid conducting replacement part.Type: GrantFiled: February 18, 2005Date of Patent: April 12, 2011Assignee: ATI Properties, Inc.Inventors: Richard C. Sutherlin, Brett J. Herb, Ronald A. Graham
-
Patent number: 7896221Abstract: A method of manufacturing an aerofoil structure to have a portion with an increased erosion resistance, the method comprising: providing one or more titanium elements (2, 4, 6) and a beta-stabilizing material (8); wherein the one or more elements (2, 4, 6) have an alpha-beta microstructure; assembling the one or more elements (2, 4, 6) and the beta-stabilizing material (8) such that the beta-stabilizing material (8) is adjacent to the one or more elements (2, 4, 6); and heating the assembly such that the beta-stabilizing material (8) diffuses into an adjacent portion of the one or more elements (2, 4, 6), causing the adjacent portion of the one or more elements (2, 4, 6) to have a beta microstructure which provides an increased erosion resistance.Type: GrantFiled: April 9, 2010Date of Patent: March 1, 2011Assignee: Rolls-Royce PLCInventor: Michael J Wallis
-
Patent number: 7896222Abstract: This invention discloses a method, using pure niobium as a transient liquid reactive braze material, for fabrication of cellular or honeycomb structures, wire space-frames or other sparse builtup structures or discrete articles using Nitinol (near equiatomic titanium-nickel alloy) and related shape-memory and superelastic alloys. Nitinol shape memory alloys (SMAs), acquired in a form such as corrugated sheet, discrete tubes or wires, may be joined together using the newly discovered technique. Pure niobium when brought into contact with Nitinol at elevated temperature, liquefies at temperatures below the melting point and flows readily into capillary spaces between the elements to be joined, thus forming a strong joint. A series of diagrams of the interface at various stages of brazing is illustrated by FIG. 10.Type: GrantFiled: September 30, 2005Date of Patent: March 1, 2011Assignees: Regents of The University of Michigan, Board of Trustees of Michigan State UniversityInventors: John A. Shaw, David S Grummon
-
Patent number: 7770779Abstract: A guide wire includes a wire member having a first wire disposed on the distal side of the guide wire, and a second wire disposed on the proximal side from the first wire. The second wire is made from a material having an elastic modulus larger than that of the first wire. For example, the first wire is made from a superelastic alloy, and the second wire is made from a stainless steel. The first wire is joined to the second wire at a welded portion by welding. A coil is disposed on the distal side from the first wire. A cover layer is formed on the outer peripheral surface of the wire member in such a manner as to cover at least the welded portion. The cover layer is made from a material capable of reducing the friction of the cover layer, for example, a fluorocarbon resin or a hydrophilic material, to thereby improve the sliding performance of the guide wire. Such a guide wire is excellent in operationality and kink resistance.Type: GrantFiled: June 26, 2009Date of Patent: August 10, 2010Assignee: Terumo Kabushiki KaishaInventors: Hiraku Murayama, Akihiko Umeno, Jun Iwami, Yutaka Itou, Youki Aimi
-
Patent number: 7748598Abstract: A method for joining clad metal plates having a protective layer (27), e.g. titanium, and a substrate layer (28), e.g. carbon steel, includes firstly removing margins (29) of protective layer along edges of the clad metal plates to be joined. The substrate layers are then welded together to form an exposed substrate weld (31). Covering material (38) of the same type as the protective layer (27) is then located along the exposed substrate weld (31) to a level substantially flush with an outer surface of the protective layer (27). The substrate layer (28) is heated prior to welding the covering material so that the covering material is pre-stressed when cooled. The method may be used to fabricate reaction vessels having seams that do not stand proud of the remainder of the interior surface of the vessel. The low profile seams are less susceptible to erosion than has been the case in the past so that longer-life vessels can be produced.Type: GrantFiled: August 10, 2005Date of Patent: July 6, 2010Assignee: W. E. Smith Engineering Pty LtdInventor: Donald Joseph Want
-
Publication number: 20080286600Abstract: Fabrication techniques for and examples of metallic composite materials with high toughness, high strength, and lightweight for various structural, armor, and structural-armor applications. For example, various advanced materials based on metallic-intermetallic laminate (MIL) composite materials are described, including materials with passive damping features and built-in sensors.Type: ApplicationFiled: June 15, 2005Publication date: November 20, 2008Inventors: Kenneth S. Vecchio, Aashish Rohatgi, John Kosmatka
-
Patent number: 7025248Abstract: The invention relates to a roll-bonded titanium sheet (6), a shaped component manufactured therefrom (10) and a method for manufacturing the titanium sheet (6) and the shaped component (10). In order to achieve a high-temperature-resistant shaped component (10), a titanium sheet (2) is roll-bonded at least on one side with aluminium foil (4) whose thickness (d) is small compared with the thickness (D) of the titanium sheet (2). As a result of heat treatment of the roll-bonded titanium sheet (6), the aluminium and titanium from the adjoining region are converted to an aluminium-titanium alloy. The outer titanium-aluminium-alloy layer of the titanium sheet (6) thus formed is converted by contact with oxygen into a titanium-aluminium-mixed oxide layer which gives the titanium sheet (6) good corrosion protection. The forming of the shaped component (10) preferably takes place before the heat treatment for alloy formation because the roll-bonded titanium sheet (6) is then still slightly deformable.Type: GrantFiled: January 24, 2002Date of Patent: April 11, 2006Assignee: Deutsche Titan GmbHInventor: Heinz Sibum
-
Patent number: 6905061Abstract: A method of making a titanium golf club head includes steps. One adopts Ti-4-6 Titanium alloy as SPDF material under isothermal forging conditions, sets the SPDF temperature at between 870-970 degrees Celsius, while heating the molds and workpieces simultaneously in a high frequency stove. One also moves the molds and workpieces from the stove to the forging machine, adjusting the forging machine reacting speed rate within the range of 10?2/s to 10?4/s.Type: GrantFiled: September 25, 2003Date of Patent: June 14, 2005Inventor: Yuan-Lin Song
-
Patent number: 6857558Abstract: A method of forge welding laminates of titanium and titanium alloys includes interleaving first and second pluralities of metal pieces in an enclosure, filling the enclosure with an inert gas, heating the enclosure and the first and second pluralities of metal pieces, and mechanically pressing the enclosure on a first axis with a force sufficient to cause the first and second pluralities of metal pieces to forge-weld together. The first and second pluralities of metal pieces may be metallurgically dissimilar from each other, and may each comprise a percentage of titanium.Type: GrantFiled: February 26, 2003Date of Patent: February 22, 2005Inventors: Robert Thomas Ferry, III, William Cottrell, Charles Bybee
-
Patent number: 6732909Abstract: A backing plate of Ti for supporting a Ti sputtering target is formed of at least two components welded together. The backing plate is welded by interposing a Cu or Zr foil or powder between faces to be welded, and then heating the assembly to a reaction temperature high enough to melt one of the Ti and Cu or Zr to produce a liquid phase. The heating temperature is retained for a time long enough to permit diffusion of the Cu or Zr into the Ti to produce a liquid phase diffusion weld. By permitting diffusion to occur, a separate metallic compound is not produced at the welding face. In effect welding is accomplished without producing a welding face, whereby no interface exists in the finished weld. The resulting weld has a strength substantially equal to the strength of the Ti material, and very good welding qualities.Type: GrantFiled: June 11, 2002Date of Patent: May 11, 2004Assignee: Komatsu, Ltd.Inventors: Kazuya Kuriyama, Takayuki Furukoshi
-
Patent number: 6475637Abstract: A liquid interface diffusion bonded composition comprises a metal honeycomb core such as a titanium honeycomb core and a metal facing sheet such as a titanium facing sheet bonded thereto. The composition is prepared by a method comprising: (a) providing a metal honeycomb core having a faying surface and a metal facing sheet having a faying surface; (b) placing together the honeycomb core faying surface and the facing sheet faying surface, and providing therebetween a metal foil typically formed by a rapid solidification process or a melt spinning process, with the metal foil comprising about 10.5-12.5 wt. % zirconium, about 20-24 wt. % copper, about 10.5-16 wt. % nickel, and the balance being titanium; (c) subjecting the faying surfaces and metal foil therebetween to sufficient positive pressure to maintain position and alignment for joining; and (d) heating the faying surfaces and metal foil therebetween in a protective atmosphere to a temperature in the range of 1700-1800 degrees F.Type: GrantFiled: December 14, 2000Date of Patent: November 5, 2002Assignee: Rohr, Inc.Inventors: Andrew J. Strutt, Brian Norris
-
Patent number: 6410165Abstract: A welding method that enables the joining of at least two dissimilar, metallic alloys to form a weld that is free of cracks is disclosed. The method incorporates a pure (99.00% minimum by weight) nickel fill-wire, integrally assembled into the joint between the two alloyed metals to be joined. The alloys joined by this method are an iron-based, low expansivity, gamma-prime strengthened superalloy (i.e., Incoloy®) and a high carbon, powder metallurgical tool steel high in refractory metal alloying agents (i.e., CPM REX 20). Welding of the joint results in the formation of a nickel rich region within the weld, thus “inoculating” the weld against cracks. The weld joint formed by the method of the present invention can be used in the fabrication of a rotating anode bearing shaft assembly for use in an x-ray generating device.Type: GrantFiled: November 28, 2000Date of Patent: June 25, 2002Assignee: General Electric CompanyInventors: John Warren, Paul Neitzke, Craig Higgins
-
Patent number: 6331214Abstract: Its basic means is a monolithically bonded construct prepared by monolithically bonding together a rare-earth magnet 2 and a an alloy material that is a high melting point metal or a high specific-tenacity material through the solid phase diffusion bonding by the hot isostatic pressing treatment, and a monolithically bonded construct with an interposal of a thin layer of the high melting point metal between a rare-earth magnet 2 and an alloy material 3, 4 that is a high specific-tenacity material.Type: GrantFiled: September 21, 1998Date of Patent: December 18, 2001Assignees: Kabushiki Kaisha Meidensha, Sumitomo Special Metals Co., LTDInventors: Masaki Koga, Nobutaka Suzuki, Hitoshi Saitoh, Kenshiro Oyamada, Koki Tokuhara, Shuji Mino, Naoyuki Ishigaki, Hitoshi Yamamoto
-
Patent number: 6319869Abstract: A refractory material powder of a carbide-forming metal or alloy is formed into an intermediate body having a shape and size corresponding to the desired shape and size of the article. The intermediate body is exposed to a gaseous hydrocarbon or a mixture of hydrocarbons at a temperature exceeding the decomposition temperature for the hydrocarbon or hydrocarbons until the mass of the intermediate body has increased by at least 3%. The intermediate body is thereafter exposed to a temperature of 1000-1700° C. in an inert atmosphere if the temperature during exposure to the hydrocarbon or hydrocarbons was too low to ensure a complete carbidization of the intermediate body.Type: GrantFiled: December 27, 1999Date of Patent: November 20, 2001Assignee: Frenton Ltd.Inventors: Anatoly Birukov, Sergey Gordeev, Vladimir Morozov, Sergey Zhukov
-
Patent number: 6213383Abstract: A Ni—Ti alloy part (6) constituting a frame for a pair of spectacles is inserted in and then caulked to a bore (3) formed in a joint piece (2) that is made of a resistance-weldable or resistance-brazeable titanium material. The joint piece (2) has a weldable or brazeable portion (5) that is located remote from the bore (3). This piece (2) will subsequently be resistance welded or brazed to a skeleton member (7) also constituting the frame and made of the same or a different titanium material also weldable or brazeable, so that the Ni—Ti alloy part can firmly and reliably be secured to the skeleton member.Type: GrantFiled: November 29, 1999Date of Patent: April 10, 2001Assignee: Nakanishi Optical CorporationInventor: Eiichi Nakanishi
-
Patent number: 6209777Abstract: A fusion welding method for binding the surfaces of two metals including the steps of (a) coating a layer of a powdery media capable of forming eutectics with both the two metals for lowering the melting points of the two metals, onto at least one of the binding surfaces of the two metal to be bound; and (b) sintering, in a vacuum furnace, the two metals with said powdery media being coated on their binding surfaces as produced in step (a) until the two metals are fused together by eutectic welding, and the sintering temperature being controlled at a temperature higher than the eutectic points of the two metals and the powdery medium, but lower than the melting points of the two metals.Type: GrantFiled: September 13, 1999Date of Patent: April 3, 2001Assignee: New Century Technology Co., Ltd.Inventors: Chao-nien Tung, Tien-tzu Chuang
-
Patent number: 6206269Abstract: The present invention relates to a method of soldering a semiconductor chip to a substrate, such as to a capsule in an RF-power transistor, for instance. The semiconductor chip is provided with an adhesion layer consisting of a first material composition. A solderable layer consisting of a second material composition is disposed on this adhesion layer. An antioxidation layer consisting of a third material composition is disposed on said solderable layer. The antioxidation layer is coated with a layer of gold-tin solder. The chip is placed on a solderable capsule surface, via said gold-tin solder. The capsule and chip are exposed to an inert environment to which a reducing gas is delivered and the capsule and chip are subjected to a pressure substantially beneath atmospheric pressure whilst the gold-tin solder is heated to a temperature above its melting point.Type: GrantFiled: October 1, 1999Date of Patent: March 27, 2001Assignee: Telefonaktiebolaget LM Ericsson (publ)Inventor: Lars-Anders Olofsson