Air Control Patents (Class 236/35)
-
Patent number: 11905876Abstract: A passive cooling system includes a fan configured to generate an air flow path for a radiator, the air flow path extending from the fan to the radiator and a cooling pipe extended between a turbocharger and an intake manifold, the cooling path positioned in the air flow path between the fan and the radiator.Type: GrantFiled: December 14, 2021Date of Patent: February 20, 2024Inventors: Chad Stenson, William Gysi, Adam Clouse
-
Patent number: 11781471Abstract: A turbo-compounding system according to an exemplary embodiment of the present invention includes: a turbocharger including a turbine which is rotated by using pressure of exhaust gas discharged from the engine and a compressor which is rotated by using rotation power of the turbine and compresses new external air and supplies the compressed air to the engine; a motor-generator configured to be rotated by using rotation power of the compressor of the turbocharger to generate power or add rotation power to the compressor of the turbocharger; and a control device configured to operate the motor-generator as a motor or a generator according to a current rotation speed of the engine and may collect power wasted from the engine.Type: GrantFiled: December 9, 2019Date of Patent: October 10, 2023Assignee: DOOSAN INFRACORE CO., LTD.Inventors: Youngdeok Han, Dockoon Yoo, Junjung Park, Jongyoon Lee, Jayun Cho, Euna Kang
-
Patent number: 11644243Abstract: A reversible flow heat exchange system includes a heat exchanger system that includes a canister configured to receive a first fluid from a machine and a heat exchanger disposed within the canister. The reversible flow heat exchange system also includes a cooling system coupled to the heat exchanger and configured to circulate a second fluid between the heat exchanger system and the cooling system and a reversing valve coupled to the heat exchanger and configured to selectively direct a flow of the first fluid in a first direction through the canister and in a second direction through the canister that is opposite the first direction.Type: GrantFiled: November 8, 2021Date of Patent: May 9, 2023Assignee: Hyfra Industriekuhlanlagen GmbHInventors: Gerhard Lahnstein, Berthold Adomat
-
Patent number: 11642958Abstract: A heat exchange system includes a first thermal circuit, a second thermal circuit, and a controller. A first thermal circuit includes a first device, a first pump, and a first flow path and a second flow path configured to cool the first device. A second thermal circuit includes a second device, a second pump, and a third flow path and a fourth flow path configured to cool the second device. A controller is configured to switch, when the controller switches a flow path of the first thermal circuit from the first flow path to the second flow path and switches a flow path of the second thermal circuit from the fourth flow path to the third flow path, the fourth flow path to the third flow path and the first flow path to the second flow path.Type: GrantFiled: June 14, 2022Date of Patent: May 9, 2023Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Takayuki Kawabe
-
Patent number: 11597375Abstract: A vehicle control device 40 of a vehicle 200 provided with a cooling circuit 20 using a circulating cooling liquid to cool motors 112, 114 for driving a vehicle or a PCU 118 and a refrigerant circuit 30 discharging heat of the circulating refrigerant for air-conditioning a passenger compartment to the cooling liquid of the cooling circuit 20 and driven by jointly using the outputs of the motors 112, 114 and the output of an engine 12, which control device comprising a cooling mode switching part 42 switching a cooling mode from a normal control mode to a cooling priority control mode cooling the passenger compartment with priority when a predetermined condition stands and a vehicle control part 43 making the outputs of the motors 112, 114 decrease and making the output of the engine 12 increase when the normal control mode is switched to the cooling priority control mode.Type: GrantFiled: September 28, 2020Date of Patent: March 7, 2023Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Hiroyuki Sugihara
-
Patent number: 11549427Abstract: A system includes an engine having a crankshaft and an electric motor having a shaft, the shaft including a first end and a second end. The system further includes a power source in electrical communication with the electric motor, the power source configured to provide electrical power to the electric motor, a reduction drive coupled to the crankshaft and to the first end of the shaft of the electric motor, and a fan coupled to the second end of the shaft of the electric motor, wherein rotation of the shaft of the electric motor drives rotation of the fan.Type: GrantFiled: April 17, 2020Date of Patent: January 10, 2023Assignee: Caterpillar Inc.Inventor: Tryg Carl Tow
-
Patent number: 11358436Abstract: A vehicle-mounted temperature controller includes a low temperature circuit and a refrigeration circuit. The low temperature circuit has a heat generating equipment heat exchanger exchanging heat with heat generating equipment, a radiator, a first heat exchanger, and a three-way valve. The refrigeration circuit has a second heat exchanger discharging heat from the refrigerant to a high temperature circuit to make the refrigerant condense, and the first heat exchanger making the refrigerant absorb heat from the cooling water to make the refrigerant evaporate. The low temperature circuit includes a first partial circuit through which the cooling water flows through the radiator and the first heat exchanger, and a second partial circuit through which the cooling water flows through the heat generating equipment heat exchanger without passing through the radiator and the first heat exchanger. The cooling water circulates simultaneously and separately at these first partial circuit and second partial circuit.Type: GrantFiled: March 12, 2020Date of Patent: June 14, 2022Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Hidefumi Aikawa, Manabu Orihashi, Yoshio Hasegawa, Takashi Ogawa, Yuji Miyoshi, Kunihiko Hayashi
-
Patent number: 11085449Abstract: Pump assembly for recirculating a cooling fluid of a heat engine, comprising: a pump body, an impeller driven by a driven shaft and inserted in a chamber of the circuit for recirculating the cooling fluid of the heat engine; at least a reversible friction clutch, adapted to transmit the motion from motion generating means, coupled to the motor shaft of the vehicle, to the driven shaft, an electric motor to drive said driven shaft independently of the heat engine; wherein said electric motor and said friction clutch are arranged in an axially external position with respect to the motion generating means of the clutch. Preferably, said electric motor is axially opposed to the friction clutch with respect to the motion generating means, and is axially adjacent to the chamber of the impeller in the axial direction.Type: GrantFiled: April 30, 2015Date of Patent: August 10, 2021Assignees: FPT INDUSTRIAL S.p.A., BARUFFALDI S.p.A.Inventors: Massimiliano Modica, Mariano Turco
-
Patent number: 10352024Abstract: A bulldozer includes a steering clutch, a steering brake, a hydraulic pump that discharges a lubricating oil, a first lubricating oil supply path, a second lubricating oil supply path, a third lubricating oil supply path, and a flow amount switching valve disposed on the second lubricating oil supply path. The first lubricating oil supply path supplies a portion of the lubricating oil discharged by the hydraulic pump to the steering clutch The second lubricating oil supply path supplies a portion of the lubricating oil discharged by the hydraulic pump to the steering brake. The third lubricating oil supply path supplies, to the steering brake, a portion of the lubricating oil that has passed through the steering clutch. The flow amount switching valve switches an amount of the lubricating oil supplied to the steering brake.Type: GrantFiled: October 4, 2016Date of Patent: July 16, 2019Assignee: KOMATSU LTD.Inventors: Naoya Akiyama, Hiroaki Takeshima
-
Patent number: 9902501Abstract: A propeller for a turbomachine intended to be driven in rotation about a propeller rotation axis and including variable pitch blades. The propeller further includes a structure for radial retention of the blades in the event of them breaking. The retaining structure extends around the propeller rotation axis and has the aerodynamic part of each blade of the propeller pass through it. Moreover, each aerodynamic part is equipped with an abutment configured to be retained radially by the retaining structure in the event of a blade fracture causing a fracture in the aerodynamic part radially inside the abutment.Type: GrantFiled: December 21, 2015Date of Patent: February 27, 2018Assignee: Airbus Operations (SAS)Inventors: Julien Guillemaut, Guillaume Gallant
-
Patent number: 9784126Abstract: A cooling air flow path through an air cycle machine can include an inlet, at least one bearing downstream from the inlet and in fluidic connection with the inlet, an outlet downstream from the at least one bearing and in fluidic connection with the at least one bearing, and an adjustment device downstream from the at least one bearing and in fluidic connection with the at least one bearing and the outlet with the adjustment device configured to vary a flow of cooling air through the flow path by adjusting the cross-sectional area of the flow path.Type: GrantFiled: December 14, 2015Date of Patent: October 10, 2017Assignee: Hamilton Sundstrand CorporationInventors: Donald E. Army, Christopher McAuliffe
-
Patent number: 9309840Abstract: Embodiments for monitoring fuel system degradation are provided. In one example, a method comprises driving a cooling fan with an electric motor in a vehicle, and during selected conditions, also driving a vacuum pump with the electric motor through a clutch. In this way, fuel system degradation may be indicated without use of a separate motor to drive a pressure building device.Type: GrantFiled: October 2, 2012Date of Patent: April 12, 2016Assignee: Ford Global Technologies, LLCInventors: Robert Roy Jentz, Aed M. Dudar
-
Publication number: 20150107539Abstract: An arrangement for controlling the temperature of air being fed to a vehicle engine includes an engine compartment in which the engine is arranged. The engine compartment is provided with an ambient air intake allowing an airflow into the engine compartment. The engine is provided with an engine air intake arranged inside the engine compartment. The arrangement further includes an air fan for forcing the airflow via the ambient air intake into the inside of the engine compartment. The engine air intake is arranged in a position allowing at least a substantial part of the airflow to enter the engine air intake.Type: ApplicationFiled: June 7, 2012Publication date: April 23, 2015Applicant: VOLVO CONSTRUCTION EQUIPMENT ABInventor: Joakim Haegerstam
-
Publication number: 20150101789Abstract: First circulation portions switch a flow of a heat medium such that one of the heat media for two systems selectively circulates through a radiator flow path or a first bypass flow path. Second circulation portions switch the flow of the heat medium such that the heat media for the two systems selectively circulate with respect to a second flow path group. The first circulation portions and the second circulation portions are adapted to switch the flow of the heat medium so as to form a first circulation circuit for allowing the heat medium to circulate among a first flow path group, the second flow path group, and a first pump, as well as a second circulation circuit for allowing the heat medium to circulate among the first flow path group, the second flow path group, and a second pump.Type: ApplicationFiled: May 16, 2013Publication date: April 16, 2015Inventors: Norihiko Enomoto, Nobuharu Kakehashi, Michio Nishikawa, Yasumitsu Omi, Takashi Yamanaka, Masayuki Takeuchi
-
Patent number: 8973845Abstract: An air-conditioning apparatus includes a temperature sensor for detecting a heat exchanger temperature or an inlet air temperature, a controller that performs variable control of the direction of the indoor unit air blow vane or the air flow speed or rate of the blower fan, and a remote controller that remote-controls indoor unit operation, wherein temperatures set via the remote controller are divided into two set temperature ranges and during heating operation the controller sets at least the air blow vane to a horizontal or downward direction on the basis of the two set temperature ranges and the heat exchanger temperature or the inlet air temperature.Type: GrantFiled: August 12, 2011Date of Patent: March 10, 2015Assignee: Mitsubishi Electric CorporationInventors: Osamu Kanaya, Taro Hattori
-
Patent number: 8162086Abstract: A control system for a variable pitch radiator fan is disclosed. The control system is capable of varying the blade pitch of the radiator fan from a normal position to a full reverse position. The control system can change the blade pitch based on a number of factors, including vehicle speed. In systems with a plurality of fans, the control system is also capable of independently controlling the blade pitch of each of the fans. In systems with multiple fans, the control system can produce a circulation mode.Type: GrantFiled: August 24, 2011Date of Patent: April 24, 2012Assignee: Honda Motor Co., Ltd.Inventor: James S. Robinson
-
Patent number: 8130505Abstract: This invention patent is a utility type of car fan controller. The controller has a housing and inside the housing is a circuit. The housing has a top cover forming a cavity and flat bottom plate. The circuit has a circuit board and an adjustment device with other electronic components. The circuit board has a socket connector and a wire harness connector. The top cover has socket connector aligned with socket connector opening. The top cover also has a wire harness connector aligned to wire harness connector socket. The modular practical new type of invention design facilitates faster assembly and more convenient flexible use.Type: GrantFiled: October 16, 2009Date of Patent: March 6, 2012Inventor: James Hsu Schurz
-
Patent number: 8073570Abstract: An unified controller for controlling a plurality of air-conditioning systems which are capable of air-conditioning individual air-conditioning rooms of a building using different schemes. The unified controller is located under a Building Management System (BMS) controller which simultaneously manages a plurality of systems corresponding to arrangements of the building, and simultaneously controls a multiple air-conditioning system acting as one of the air-conditioning systems and a central air-conditioning system acting as the other one of the air-conditioning systems using a single control command. The unified controller performs error correction, addition of a new function, and update of pre-loaded functions upon receiving a request from the remote controller.Type: GrantFiled: May 21, 2008Date of Patent: December 6, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Suhgoo Kim, Tanabe Takeshi, Hyeong Joon Seo, Gyoung Rok Kim, Jae Hyo Jeong
-
Publication number: 20110011356Abstract: A fan drive control device includes: a hydraulic motor driving a cooling fan by a hydraulic oil supplied from a hydraulic pump driven by an engine; a flow rate adjuster adjusting a flow rate of the hydraulic oil flowed into the hydraulic motor; a temperature sensor detecting a temperature of a fluid cooled by a cooling fan; an accelerator pedal angle sensor detecting an accelerator pedal angle for controlling an engine power based on a detected value by the temperature sensor; a target flow rate setting unit setting a target flow rate of the hydraulic oil flowed into the hydraulic motor; a target flow rate compensation unit compensating the target flow rate based on a detected value by the accelerator pedal angle sensor; and a control command generator generating a control command to the flow rate adjuster according to the target flow rate by the target flow rate compensation unit.Type: ApplicationFiled: March 18, 2009Publication date: January 20, 2011Applicant: KOMATSU LTD.Inventors: Satoshi Tanaka, Kizuki Hagiwara
-
Patent number: 7863839Abstract: A fan speed control system for a machine is disclosed. The control system may include a fan to provide a flow of coolant to the machine. The system may further include a first sensor configured to generate a first signal indicative of an operational parameter of the machine, a second sensor associated with the fan to generate a second signal indicative of an actual speed of the fan, and a controller communicatively coupled to the fan, the first sensor, and the second sensor. The controller may be configured to generate a third signal indicative of a desired fan speed based on the first signal, and a fourth signal indicative of a difference between the desired fan speed and the actual fan speed. The controller may drive the fan based on the third signal and the fourth signal.Type: GrantFiled: March 30, 2007Date of Patent: January 4, 2011Assignee: Caterpillar IncInventors: Scott Richard Schuricht, Douglas I. Norman, Paul W. Peresta, Arvil Duane Wilson
-
Publication number: 20090025661Abstract: In a cooling fan drive system for a travel type working machine, the rotational speed of a cooling fan is controlled to the optimum rotational speed in accordance with temperature increase of the temperature of an engine cooling water, and the engine rotational speed is smoothly increased when the engine rotational speed is increased under travel acceleration. A fourth fan target rotational speed calculator 35e and a minimum value selector 35f are provided, and under non-operation, the fan target rotational speed is set to a low rotational speed irrespective of the temperature. When an acceleration pedal 12 is depressed to increase the rotational speed of the engine under travel acceleration, the increase of the drive pressure of a hydraulic motor 23 due to increase of the rotation of the cooling fan 9 is suppressed, and the load on the engine 1 is reduced.Type: ApplicationFiled: October 24, 2006Publication date: January 29, 2009Inventors: Kentarou Itoga, Tsuyoshi Nakamura, Kazunori Nakamura
-
Patent number: 7066114Abstract: A system for reducing the time that it takes a vehicle fuel cell engine to reach its operating temperature at vehicle start-up. The system includes a radiator and a fan, where a cooling fluid from the engine is directed through the radiator where it is cooled by airflow from the fan during high load conditions. The radiator also receives ambient air through a front grill from movement of the vehicle. During vehicle start-up, when the engine is below its optimal operating temperature, the fan is operated in a reverse direction at variable speeds depending on the speed of the vehicle, so that the airflow through the grill that may otherwise convectively cool the engine is significantly reduced or eliminated.Type: GrantFiled: December 10, 2004Date of Patent: June 27, 2006Assignee: General Motors CorporationInventors: Uwe Hannesen, Roberto Diesel, Jan Meschkat
-
Patent number: 7021071Abstract: A driving load of a cooling fan unit is selectively determined from a plurality of predetermined loads corresponding to vehicle parameters including a coolant temperature and a vehicle speed. Also, on the basis of a plurality of coolant temperature ranges and a plurality of vehicle speed ranges. The cooling fan unit is driven with the determined driving load. The vehicle parameters preferably further include a refrigerant pressure and a state of an air/con switch.Type: GrantFiled: December 31, 2003Date of Patent: April 4, 2006Assignee: Hyundai Motor CompanyInventor: Chang Hyun Kim
-
Patent number: 6999906Abstract: The invention relates to a reconfiguration method designed to be implemented in a computer system, for compensating failures of a sensor system (1). The sensor system includes at least one sensor (2, 50) for measuring (12, 22) system states of an application system (11, 21) and at least one system model (4) for describing the application system, which together form at least one first observer (6) for estimating system states in order to provide system states for an allocated data processing device (14, 24). According to the method, failure states for a first observer are determined from deviations, which occur as a result of the comparison between a number of states measured by the sensor or sensors and a state estimated by the system model.Type: GrantFiled: July 18, 2002Date of Patent: February 14, 2006Assignee: EADS Deutschland GmbHInventors: Thomas Koehler, Winfried Lohmiller
-
Patent number: 6824067Abstract: A method is provided for facilitating the cooling of engine coolant flowing through a radiator operatively connected to the engine. The method includes the steps of monitoring the temperature of the engine coolant flowing through the radiator and positioning a fan adjacent the radiator. The fan is initially rotated at a predetermined speed. Thereafter, the speed of the fan is varied in response to the temperature of the engine coolant.Type: GrantFiled: March 17, 2003Date of Patent: November 30, 2004Assignee: Generac Power Systems, Inc.Inventors: Robert D. Kern, Gerald C. Ruehlow, Bret Baird, Allen Gillette
-
Patent number: 6374780Abstract: A method and apparatus for controlling engine temperature in a closed circuit cooling system 12 of an automobile 10 having an electric water pump 34, a flow control valve 42, and electric fan 40. A powertrain control module 20 electrically coupled to the electric water pump 34, flow control valve 42 and electric fan 40 interprets inputs from various sensors to adjust the pumping speed of an electric water pump 34, adjust the rotational speed of an electric fan 40, and/or adjust the flow rate through a flow control valve 42 to the radiator 46 according to a look up table as a function of fuel economy, emissions, thermal management and electrical load management.Type: GrantFiled: July 7, 2000Date of Patent: April 23, 2002Assignee: Visteon Global Technologies, Inc.Inventors: Cindy Marie Rutyna, Peter Langer, Paul Raymond Murray
-
System for controlling an electric motor of a fan associated with heat exchangers in a motor vehicle
Patent number: 6337949Abstract: The system comprises a pressure sensor for providing a signal indicative of the pressure of the refrigerant fluid of the air-conditioning system at the output or delivery of the compressor of the system, a sensor for detecting the temperature of the liquid flowing through the engine-cooling system (R), an activation sensor for providing a signal when the air-conditioning system is activated, a sensor for detecting the speed of forward movement of the motor vehicle, and a control and operating unit connected to the sensors and to the electric motor and arranged for: determining a first speed for the electric motor in accordance with a function of the pressure of the refrigerant fluid of the air-conditioning system and of the speed of the vehicle, determining a second speed for the electric motor in accordance with a function of the temperature of the engine-coolant liquid and of the speed of forward movement of the vehicle, and sending to the electric motor control signals to bring its speed of rotation toType: GrantFiled: February 21, 2001Date of Patent: January 8, 2002Assignee: Gate S.p.A.Inventors: Lionel Muron, Kamal Mourad -
Patent number: 6336592Abstract: A cooling system for a test and measurement instrument including a variable-speed fan, useful with different instruments having different configurations, employs a plurality of sensors disposed at predetermined locations within an enclosure of the instrument, and is software programmable with predetermined parameters of each particular configuration of each particular instrument. At least one of the sensors measures the temperature of a component that dissipates power at a substantially constant rate, and at least one of the sensors does not include a heat source to provide heat for measurement.Type: GrantFiled: December 9, 1999Date of Patent: January 8, 2002Assignee: Tektronix, Inc.Inventors: Brian G. Russell, Robert R. Kreitzer, Christopher R. Coleman, Theodore S. Hetke
-
Patent number: 6182902Abstract: A thermal control method and device for automatically regulating the rotational speed of the fan cooler are disclosed in the present invention. The thermal control device comprises a control-voltage generator having a temperature-sensing device for sensing a temperature and generating a control voltage, a pulse modulator for modulating the pulse width of a clock signal with respect to the control voltage to generate a pulse modulation signal, and a fan driver for regulating the rotational speed of the fan cooler, modulating the refrigerant efficiency, and maintain the internal temperature of an apparatus, thereby consuming moderate power and making less noise.Type: GrantFiled: July 22, 1999Date of Patent: February 6, 2001Assignee: Mitac Technology Corp.Inventor: Min-Tien Shih
-
Patent number: 6126079Abstract: A fan control system for a vehicle cooling system includes forward and reverse relays connected to a microprocessor based timer control. A third relay is controlled by a single temperature responsive switch or thermostat and selects either the high speed or low speed winding of an electric radiator fan or similar engine cooling device dependent on the temperature sensed by the thermostat. The thermostat also provides an input to the timer control to adjust or interrupt preselected timing functions for certain fan conditions. Upon start-up of the engine, the control initiates a first delay period during which the fan is maintained in the off condition regardless of the temperature of the coolant. After the initial delay, a second and longer delay period is initiated to maintain the fan in the off condition provided the sensed temperature remains below a preselected level.Type: GrantFiled: July 15, 1999Date of Patent: October 3, 2000Assignee: Deere & CompanyInventor: Jim Milton Shoemaker
-
Patent number: 6016965Abstract: A vehicle cooling system including a motor control apparatus that controls operation of a system motor when a cooling fan driven by the motor locks due to foreign matter interference or freezing. When motor input current is detected to be overcurrent, the controller limits the current flow. When current flowing to the electric motor is detected to be overcurrent and ambient air temperature is at or above a predetermined temperature, the controller stops energization of the motor. Thus, when the cooling fan freezes and locks, energization of the motor is maintained until ambient air temperature reaches or exceeds the predetermined temperature. Therefore, when the frozen-locked state is eliminated due to a subsequent temperature rise, an ordinary operating state can again be obtained without the controller subsequently detecting surge current, generated as a result of the motor being re-started from a fully stopped state, as overcurrent and therefore incorrectly stopping motor energization.Type: GrantFiled: December 15, 1998Date of Patent: January 25, 2000Assignee: Denso CorporationInventors: Satoshi Yoshimura, Junji Sugiura, Toshiki Sugiyama, Kazuhiro Takeuchi
-
Patent number: 5947189Abstract: A heat exchanging system includes two cooling fans for cooling heat exchanging medium of a heat exchanger, and a control device for controlling rotational speeds of the cooling fans. The control device is attached to an outer surface of a fan shroud so that radiation fins of the control device is disposed inside the fan shroud. Further, the radiation fins of the control device is disposed between two fan accommodating portions each having a cylindrical shape. That is, the control device is disposed in a comparatively large space formed by two fan accommodating portions. Therefore, the control device can be readily attached to the fan shroud on a vehicle, and the size of the radiation fins can be made larger. Thus, the heat exchanging system cools the control device sufficiently while improving ventilation performance of the cooling fans.Type: GrantFiled: March 10, 1998Date of Patent: September 7, 1999Assignee: Denso CorporationInventors: Kazuhiro Takeuchi, Toshiki Sugiyama, Takuya Usami
-
Patent number: 5778693Abstract: An engine cooling system and method and apparatus for controlling hydraulic fluid flow between a plurality of hydraulic components in a hydraulic system is shown. The system and method utilized at least one hydraulic sensor for actuating a hydraulic valve which controls the fluid delivery to the hydraulic components. At least one of the hydraulic sensors includes a thermosensitive material which causes the sensor to deliver hydraulic pressure to an actuator on the valve when the material is heated in response to an increase in temperature of, for example, a coolant associated with the engine.Type: GrantFiled: December 20, 1996Date of Patent: July 14, 1998Assignee: ITT Automotive Electrical Systems, Inc.Inventor: Michael J. Mientus
-
Patent number: 5718373Abstract: A system for controlling an automobile cooling fan utilizes a temperature-sensitive negative resistance device having a resistance which decreases as the temperature rises, and which increases as the temperature falls. Thus, if the cooling water temperature does not exceed a certain level, the cooling fan motor is not driven. If the temperature exceeds a certain level, the cooling fan motor is driven in proportion with the dynamic temperature variations. Therefore, a variable cooling fan speed is possible, and therefore, the cooling operation becomes efficient.Type: GrantFiled: April 22, 1996Date of Patent: February 17, 1998Assignee: Samsung Electronics Co., Ltd.Inventors: Yong-ho Kim, Young-sik Lee
-
Patent number: 5465589Abstract: When the driver parks a truck for the purpose of sleeping in the cab's bunk space and desires to have the air conditioner operate, fan clutch cycling, which may create objectionable noise that disturbs sleep, is avoided by the inclusion of a branch circuit off of the air conditioner switch that comprises a parking brake switch in series with a relay coil. When the air conditioner is on and the parking brakes are set, this relay coil is energized to open a circuit to the engine fan clutch solenoid, preventing the fan clutch from being disengaged, and thereby keeping the fan in driven relation to the engine crankshaft so that fan clutch cycling does not occur.Type: GrantFiled: July 21, 1994Date of Patent: November 14, 1995Assignee: Navistar International Transportation Corp.Inventors: Burnell L. Bender, Brian P. Marshall
-
Patent number: 5307644Abstract: An electronic engine fan control device is disclosed. The control device includes means for detecting engine coolant temperature, operation of the vehicle air conditioning load, and vehicle road speed. The control device also includes means for generating first and second temperature signals in response to engine coolant temperature. The control device further includes override signal generating means for generating first and second override signal under certain temperature, or certain load and speed conditions. The control device finally includes means for comparing the first and second temperature signals and the first and second override signals for generating a control signal to operate the vehicle fan. A method for controlling an engine fan is also disclosed including the steps of detecting engine coolant temperature, air conditioning load and road speed and generating corresponding signals.Type: GrantFiled: October 28, 1992Date of Patent: May 3, 1994Assignee: Ford Motor CompanyInventors: James M. Cummins, John I. Snoke, Gene R. Burnham
-
Patent number: 4955431Abstract: A device and method for cooling an internal combustion engine is disclosed in which a simple control circuit constructed of relatively inexpensive components enables the rotational speed of an electric motor employed in the cooling device to be controlled in adaptation to various temperature levels of a cooling circuit. The control circuit includes a power semiconductor which is used to drive the electric motor in certain speed ranges associated with predetermined temperature levels. The control circuit also incorporates a bypass circuit that permits the electrical motor to be driven in particular speed ranges without the use of the power semiconductor. Thus, the electric motor can be driven at one hundred percent of its speed capacity by eliminating a voltage drop associated with the power semiconductor.Type: GrantFiled: February 11, 1988Date of Patent: September 11, 1990Assignee: Behr-Thomson Dehnstoffregler GmbHInventors: Roland Saur, Rolf Schaper
-
Patent number: 4875521Abstract: There is disclosed an over-the-road truck having an internal combustion engine of at least 200 hp including a radiator and an electric fan assembly therefor consisting of an electric motor to which is attached an axial flow propeller fan and operating only when necessary and of a minimum wattage determined by W=1.75E wherein E is the engine horsepower provided that the core size (in.sup.2) of the radiator is 3E and the air flow (CFM) therethrough is at least 22.5E.Type: GrantFiled: February 27, 1987Date of Patent: October 24, 1989Inventor: Roger Clemente
-
Patent number: 4804139Abstract: A cooling system for a water-cooled vehicle engine has a radiator through which cooling water flows and which can be exposed to cooling air by an electric fan (9). A first heat sensor (F1) on the engine block senses the water outflow temperature, while a second heat sensor (F2) senses the radiator outflow temperature. The sensed values from both sensors are fed to an electronic control unit (11) which also stores temperature threshold values for both sensor, at which certain functions have to be performed. In the event of failure of either sensor, the electronic control unit (11) takes over the function of the sensor: from the temperature value sensed by the other sensor a temperature equivalent value is formed by adding or subtracting the temperature difference which exists between the two sensors at running temperature. The control unit then activates the appropriate function if the relevant threshold value is reached or exceeded.Type: GrantFiled: November 9, 1987Date of Patent: February 14, 1989Assignee: Audi AGInventor: Axel Bier
-
Patent number: 4687132Abstract: An automotive vehicle engine having a coolant circulation system with a radiator, a fan, and a thermostatic valve for controlling coolant flow through the radiator. This thermostatic valve starts to open at a first temperature, is fully opened at a second temperature, and is partly opened at an intermediate third temperature. A system for coupling the fan to a rotation engine member includes: a first member rotationally coupled to the rotating member; a second member rotationally coupled to the fan; and a mechanism for providing rotational coupling between the first and second members. The degree of rotational coupling is lower when a first control valve is closed than opened, and is lower when a second control valve is closed than opened.Type: GrantFiled: April 9, 1986Date of Patent: August 18, 1987Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin Seiki Kabushiki KaishaInventors: Shunkichi Suzaki, Toshiaki Shirai, Hisanobu Adachi, Masaharu Hayashi, Kenji Hattori, Yoshinari Takakura
-
Patent number: 4658595Abstract: A cooling system for radiator and condenser with an air conditioner having first and second electrically driven blowers for cooling the radiator and condenser, and a cooling cycle operation switch which comprises a control circuit provided on at least one side of the first and second blowers for either stopping or operating at low speed the one of the first and second blowers when any electrical equipment of vehicle such as headlights, wipers, is operated during the cooling cycle, an engine cooling water temperature switch operative to turn on and off the first blower by releasing the control of the control circuit when any of the electrical equipments is operated, and/or a thermal load switch operative to turn of and off the second blower in accordance with the outside temperature conditions by releasing the control of the control circuit, when any of the electrical equipments is operated.Type: GrantFiled: November 26, 1985Date of Patent: April 21, 1987Assignee: Nissan Motor Co., Ltd.Inventors: Yukio Shimada, Yutaka Obata, Takahisa Takeoka, Toyotoshi Katoh
-
Patent number: 4651922Abstract: A cooling system for a radiator in an internal combustion engine is provided with a pair of fans connected to a first motor for a small electric current and a second motor for a large electric current, respectively. Relays are provided for operating the first and/or second motor sequentially in accordance with the degree of cooling requirement of the engine. A delay device is provided for delaying the operation of the relay(s) for attaining a stronger cooling requirement for a predetermined short period just after the engine is started. A generation of rush current in the relay contacts is prevented.Type: GrantFiled: April 25, 1986Date of Patent: March 24, 1987Assignee: Toyota Jidosha Kabushiki KaishaInventor: Masahiko Noba
-
Patent number: 4590772Abstract: An air-conditioning system for a vehicle is configured so as to adjust draft volume to a condensor for an air conditioner on the basis of the pressure of refrigerant circulated through a condensor and atmospheric temperature to optimize draft volume to be distributed to the condensor and the radiator. The air-conditioning system comprises a plurality of motor-fans for the condensor and the radiator, a refrigerant pressure sensor provided at the input and output of the condensor, an atmospheric temperature sensor, and an operational mode control unit responsive to the refrigerant pressure sensor and to the atmospheric temperature sensor.Type: GrantFiled: October 5, 1984Date of Patent: May 27, 1986Assignee: Nissan Motor Co., Ltd.Inventors: Toshimitsu Nose, Toshio Ohashi
-
Patent number: 4570849Abstract: Disclosed is a fan drive, in particular one for cooling installations of rail vehicles. The fan drive comprises a hydraulic motor and a control valve which regulates a bypass as a function of temperature, thus affecting the flow of a pressure medium driving the motor. The control valve comprises a control piston subjected to a control pressure in the direction of closing the bypass, and a counterbalancing pressure in the opposite direction from the source of the pressure medium. The control valve also comprises a control spring which biases the control piston in the direction of closing the valve, and a pilot valve which affects the control pressure. The pilot valve is actuated by an electromechanical servo component. The pilot valve is located in an insert which is arranged within the control piston. A central bore of the control piston is slidingly guided on the convex surface of the insert so as to form a seal.Type: GrantFiled: November 16, 1984Date of Patent: February 18, 1986Assignee: Sueddeutsche Kuehlerfabrik Julius Fr. Behr GmbH & Co. KGInventors: Thomas Klaucke, Franz Pigisch
-
Patent number: 4555910Abstract: A variable speed fan drive, operated in response to the sensed coolant temperature in an internal combustion engine for a vehicle, blows a controlled amount of air through the engine's radiator to maintain the coolant temperature in a desired narrow operating range. The air pulled in by the fan also cools the refrigerant flowing through the condenser of the vehicle's air conditioning system, the condenser being positioned in front of the coolant radiator. If insufficient condenser cooling occurs, even though the coolant may be adequately cooled, the refrigerant temperature rises and causes the compressor discharge pressure in the air conditioning system to increase. That pressure is monitored or sensed and if it exceeds a predetermined maximum allowable level the normal operation of the control system is overriden and the fan is driven at its maximum speed to maximize the air blown through the condenser and radiator, thereby decreasing the refrigerant temperature and thus the discharge pressure.Type: GrantFiled: January 23, 1984Date of Patent: December 3, 1985Assignee: Borg-Warner CorporationInventor: Fred D. Sturges
-
Patent number: 4487255Abstract: A fan drive system (10) controls the start-up of a fluid driven fan motor (16) in response to an engine being started. Since the fan motor (16) is many times located remote from the engine, it is important to start the fan motor (16) turning simultaneously when the engine is started. A control mechanism (32) changes the displacement of a pump (12) to operate at an operative position for a predetermined time period from initial start-up to ensure that the motor (16) starts to turn the fan (22). The control mechanism (32) automatically reduces the pump displacement to a standby position at the expiration of the predetermined time period to conserve energy.Type: GrantFiled: December 17, 1981Date of Patent: December 11, 1984Assignee: Caterpillar Tractor Co.Inventors: Donald L. Bianchetta, Robert W. White
-
Patent number: 4485624Abstract: A highly supercharged engine with a high mean effective pressure (m.e.p.) is equippped with a cooling system including a radiator for the liquid cooling of the engine and a radiator for the supercharging air delivered by a turbocompressor. The liquid radiator is positioned upstream of the air radiator in the air-flow generated by a common blower.Type: GrantFiled: September 10, 1981Date of Patent: December 4, 1984Inventor: Jean F. Melchior
-
Patent number: 4446697Abstract: A vehicle engine accessory drive system is disclosed including a hydraulic fan motor (M) and a power steering gear mechanism (SG) in series flow relationship. The system includes a variable displacement power steering pump assembly (P) which is the sole source of fluid for the system, and includes a variable displacement pumping element (PE) and a displacement control valve (CV). The displacement control valve includes a pilot valve (35) which is responsive to the demand for cooling to vary the fluid pressure in a signal chamber (63). The displacement control valve is operable to communicate a control fluid pressure to a stroking cylinder (SC) to control the fluid delivery rate of the pumping element. At a first relatively lower temperature, the displacement control valve maintains the fluid delivery rate of the pumping element at Z, and at a second relatively higher temperature, to maintain the fluid delivery rate at X.Type: GrantFiled: December 4, 1979Date of Patent: May 8, 1984Assignee: Eaton CorporationInventor: Edward J. Goscenski, Jr.
-
Patent number: 4445583Abstract: Two embodiments of V-belt tensioning devices are employed in a cooling system of a vehicle having an engine (20) transversely mounted for rocking motion relative the vehicle frame (42). The cooling system includes an engine cooling radiator (22) mounted forwardly of the engine and substantially parallel to the rotational axis of the engine crankshaft; a cross-flow fan (24) having a rotational axis fixed against movement relative to the vehicle frame, substantially parallel to the crankshaft axis, and between the crankshaft axis and the plane of the radiator; a V-belt drive (32, 34 36) for rotating the fan in response to rotation of the crankshaft; and the two embodiments of the tensioning devices which maintain the V-belt tension as the distance between the crankshaft and fan axes varies in response to rocking motion of the engine. In one embodiment the tensioning device (90) is a split pulley (36). In the other embodiment the tensioning device (108) is a spring loaded idler pulley (110).Type: GrantFiled: September 4, 1980Date of Patent: May 1, 1984Assignee: Eaton CorporationInventor: Joseph S. Mazur
-
Patent number: 4425766Abstract: A power control system for an electric motor driven cooling fan that directs air over the radiator and air conditioning condenser of a motor vehicle. The system includes a pulse width modulated voltage control device for controlling the voltage applied to the cooling fan motor from the vehicle engine driven generator. The voltage applied to the cooling fan motor can be controlled in response to engine coolant temperature, vehicle road speed, engine speed and the "on"/"off" state of the vehicle air conditioning system. A digital system that determines voltage pulse width in accordance with the above-mentioned variables is disclosed.Type: GrantFiled: May 17, 1982Date of Patent: January 17, 1984Assignee: General Motors CorporationInventor: George M. Claypole