Airplane And Fluid Sustained Patents (Class 244/12.1)
  • Patent number: 10293931
    Abstract: A tri-wing aircraft includes a fuselage having a longitudinally extending fuselage axis. Three wings extend generally radially outwardly from the fuselage axis and are circumferentially distributed generally uniformly about the fuselage at approximately 120-degree intervals. The wings have airfoil cross-sections including first and second surfaces having chordwise channels therebetween. A distributed propulsion system includes a plurality of propulsion assemblies. Each propulsion assembly includes a variable thrust cross-flow fan disposed within one of the chordwise channels of one of the wings. At least two variable thrust cross-flow fans are disposed within the chordwise channels of each of the wings. A flight control system is operably associated with the distributed propulsion system such that the flight control system and the distributed propulsion system are operable to generate a triaxial dynamic thrust matrix.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 21, 2019
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Daniel Bryan Robertson, Kirk Landon Groninga
  • Patent number: 10248742
    Abstract: Various embodiments for analyzing flight data using predictive models are described herein. In various embodiments, a quadratic least squares model is applied to a matrix of time-series flight parameter data for a flight, thereby deriving a mathematical signature for each flight parameter of each flight in a set of data including a plurality of sensor readings corresponding to time-series flight parameters of a plurality of flights. The derived mathematical signatures are aggregated into a dataset. A similarity between each pair of flights within the plurality of flights is measured by calculating a distance metric between the mathematical signatures of each pair of flights within the dataset, and the measured similarities are combined with the dataset. A machine-learning algorithm is applied to the dataset, thereby identifying, without predefined thresholds, clusters of outliers within the dataset by using a unified distance matrix.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 2, 2019
    Assignee: University of North Dakota
    Inventors: Travis Desell, James Higgins, Sophine Clachar
  • Patent number: 10232940
    Abstract: Described herein are methods and systems for picking up, transporting, and lowering a payload coupled to a tether of a winch system arranged on an unmanned aerial vehicle (UAV). For example, the winch system may include a motor for winding and unwinding the tether from a spool, and the UAV's control system may operate the motor to lower the tether toward the ground so a payload may be attached to the tether. The control system may monitor an electric current supplied to the motor to determine whether the payload has been attached to the tether. In another example, when lowering a payload, the control system may monitor the motor current to determine that the payload has reached the ground and responsively operate the motor to detach the payload from the tether. The control system may then monitor the motor current to determine whether the payload has detached from the tether.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: March 19, 2019
    Assignee: Wing Aviation LLC
    Inventors: Trevor Shannon, Andre Prager
  • Patent number: 10227923
    Abstract: A system for preventing icing on an aircraft surface includes a plasma actuator which is applied onto an aircraft surface operationally exposed to air and which is arranged for generating at least one plasma discharge (D) for inducing a flow (F) of ionized hot-air particles towards the surface.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 12, 2019
    Assignee: ALENIA AERMACCHI S.P.A.
    Inventors: Emanuele Merlo, Alessandro Gurioli, Ermanno Magnoli, Giordano Mattiuzzo, Roberto Pertile
  • Patent number: 10137977
    Abstract: An aircraft comprises a wing, a wing tip device at the tip of the wing and an actuator. The actuator is arranged to effect movement of the wing tip device between a flight configuration for use during flight and a ground configuration in which the wing tip device is moved away from the flight configuration such that the span of the aircraft is reduced. The aircraft comprises a carriage guide, such as a track assembly, fixed relative to the wing, and a carriage arranged to move along the track assembly as the wing tip device moves between the flight and ground configurations. The carriage carries the wing tip device on a pivot, such that the wing tip device is rotatable relative to the carriage, about the pivot, as the carriage moves along the track assembly.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: November 27, 2018
    Assignee: AIRBUS OPERATIONS LIMITED
    Inventor: Robert Ian Thompson
  • Patent number: 10005554
    Abstract: An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: June 26, 2018
    Assignee: Singapore Technologies Aerospace Ltd.
    Inventor: Keen Ian Chan
  • Patent number: 9944356
    Abstract: A shape shifting foil alters the shape of a fluid foil contour by rotating a leading edge structure. A skin that forms the fluid foil contour is at least partially attached to the leading edge structure, and is wrapped around the leading edge structure so two edges of the skin form the trailing edge of the fluid foil. The two edges forming the trailing edge slide with respect to one another, thereby permitting the skin to shift when the leading edge structure is rotated.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 17, 2018
    Inventor: Alexander T. Wigley
  • Patent number: 9905134
    Abstract: An intrusion prevention system includes an unmanned aerial vehicle (UAV), a UAV controller, and a restricted area data aggregator. The restricted data aggregator collects and stores restricted area data. The UAV controller is coupled to communicate with the UAV and the restricted area data aggregator, wherein the UAV controller receives positional data from the UAV and restricted area data from the restricted area aggregator. The UAV controller determines based on the received positional data and the received restricted area data whether the UAV is currently intruding within a restricted area or is predicted to intrude within a restricted area and wherein the UAV controller initiates actions to prevent unauthorized intrusions into restricted areas.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 27, 2018
    Assignee: AEROBOTIC INNOVATIONS, LLC
    Inventors: Alexander J. Kube, Luke Huls, Shawn P. Muehler
  • Patent number: 9868523
    Abstract: A fixed wing type Vertical Take-Off and Landing (VTOL) aircraft retains a conventional seating arrangement and utilizes a single point VTOL lift source, in the form of a counter-rotating centrifugal compressor assembly having co-axially aligned upper and lower impellers. Air is fed to the upper impeller through a central intake, and to the lower impeller through either a VTOL mode intake or a flight mode intake. Air is exhausted from the impellers through a plurality of main air outlets. Each main air outlet is fitted with a thrust augmentation duct that can be pivoted downward for VTOL, or rearward for forward flight. A controller alternately closes the flight mode intake when the thrust augmentation ducts are in the downwardly pointing VTOL position, and closes the VTOL mode intakes when the thrust augmentation ducts are in the rearwardly pointing flight position.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: January 16, 2018
    Assignee: Hi-Lite Aircraft
    Inventor: Jeffrey Hymer
  • Patent number: 9804595
    Abstract: A control system for a vehicle using a primary three axis orientation sensor and a reference three axis orientation sensor spaced apart from the primary sensor. At least one auxiliary control can be used for thrust. A wearable processor can be configured to receive the primary sensor signal and the reference sensor signal. The reference sensor signal can use a conditioning formula and the wearable processor can filter the conditioned signals using a Kalman filter. The filtered signals can form merged signals and apply operator configurations on wrist reference locations to the merged signals. Operation commands can use the merged signals to control the vehicle with four channels of control to a transmitter that communicates with the vehicle.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: October 31, 2017
    Inventor: Samuel E. Denard
  • Patent number: 9771146
    Abstract: An aircraft active flow control dielectric barrier discharge (DBD) device may include a machinable ceramic dielectric support having an aerodynamic surface shaped to form an exposed flush part of an airfoil surface on an aircraft. The DBD device may include at least two electrodes configured to be oppositely charged and spaced apart from each other on the dielectric support.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 26, 2017
    Assignee: The Boeing Company
    Inventor: Dejan Nikic
  • Patent number: 9745047
    Abstract: The invention discloses an aircraft generating a larger lift from its interior. The fluid channel inside the aircraft communicates with the engine and the ports on the upper surface of the outer shell. With the powerful suction of the engine, the fluid on the upper surface of the outer shell is quickly sucked into the fluid channel via respective ports under conditions of long path, large area, high speed and low air pressure, which results in large lift from the interior of the aircraft. In the course of generating the lift, the fluid resistances of the fluid wall and the fluid hole are sucked into the fluid channel through the ports at the front and the surrounding area of the aircraft, then high-speed fluid is emitted from the rear port. This approach contributes greatly to the transformation of the existing aircraft. The unified big wing significantly improves the lift, the speed and the carrying capacity of the existing aircraft with lowered energy consumption.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: August 29, 2017
    Inventor: Xiaoyi Zhu
  • Patent number: 9725160
    Abstract: A flow body and method for taking in and/or blowing out fluid through a plurality of openings in a flow surface section of a flow body is disclosed. In some aspects, the flow body includes a flow surface section that extends in a flow body wingspan direction and a flow body chord direction and with a plurality of fluid lines that lead into the flow surface section and respectively form an opening therein. In some aspects, the method includes taking in and/or blowing out fluid through at least one fluid line that leads into a flow surface section of a flow body and respectively forms an opening therein.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 8, 2017
    Assignee: Airbus Operations GmbH
    Inventors: Burkhard Gölling, Erik Wassen, Tobias Hoell, Frank Thiel
  • Patent number: 9688396
    Abstract: The present invention is a winged VTOL aircraft of novel configuration that utilizes a single-axis rotor mounted at an oblique angle within a forward-facing, bifurcating duct, that is controlled by a plurality of servo driven vanes, producing a mechanically simple, redundantly controlled vehicle that can carry cargo, people, or otherwise, directly from point to point. The configuration uses sets of vanes to produce both moments and forces referenced around the vehicle's center of gravity, thereby, allowing the vehicle to translate in a level position, or stay stationary relative to the ground while at a slight pitch or roll attitude. This feature is very important for autonomous vehicles to accurately pick up and drop off payloads on unlevel terrain or in windy conditions. Other rotor vehicles require pitch or roll attitude to translate or compensate for wind.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: June 27, 2017
    Assignee: AVERY AEROSPACE CORPORATION
    Inventor: John Leonard Avery, III
  • Patent number: 9573690
    Abstract: A bi-fold valve door and method for controlling aircraft cabin pressure are provided. The bi-fold valve door includes an aft door section and a forward door section, and only the forward door section is selectively rotated about one rotational axis to a position between a closed position and a full-open position, while the aft door section is maintained in its closed position. The forward door section is selectively rotated about the rotational axis to a full-open position to engage the aft door section, while the aft door section is maintained in its closed position. When the forward door section is in the full-open position, the aft door section and the forward door section are simultaneously rotated about another rotational axis.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: February 21, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Darrell Horner, Andrew Timothy Brown, Ondrej Dvorak, Michael Thomas Dzurak, Francisco Adolfo Olea, Joseph Daniel Rainey, Timur Safen Suleymanov
  • Patent number: 9465019
    Abstract: A sensor system runs real-time software on the processor to receive and log temperature and humidity data from the sensors. A processor processes the data, reformats the data packaged with GPS information provided by the centralized sensor control system for transmission to the platform receiver (including error checking), and provides a diagnostic interface for displaying logged data and status information. This data is time stamped and transmitted to the centralized sensor control system across the external control/data interface.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: October 11, 2016
    Assignee: Blue Storm Associates, Inc.
    Inventors: Mary Lockhart, Thomas Wallace, Randal Brumbaugh, Malcolm Robbie, Brian Patterson, Donna Blake, Andreas Goroch
  • Patent number: 9308986
    Abstract: A holonomic floating mobile object is operated under gravity and includes a main body and six or more thrusters for generating thrust by changing the momentum of a fluid. The six or more thrusters are controlled independently of one another such that the thrust is set at a desired value. The six or more thrusters are arranged in a fuselage coordinate system defined on the main body, such that the range in which a total thrust vector obtained by combining vectors of the thrust generated by all of the thrusters can be generated spans a six-dimensional space with three directions of translation and three directions of rotation. Incoming and outgoing flows to and from one of the thrusters are spaced apart from incoming and outgoing flows to and from the other thrusters and even apart from every other fuselage structure aside from that one thruster.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 12, 2016
    Assignee: The Ritsumeikan Trust
    Inventor: Katsuya Kanaoka
  • Patent number: 9313667
    Abstract: A cellular communication network utilizes cellular communication receivers and cellular communication transmitters in a plurality of unmanned aerial vehicles that are deployed or flown in a point to point line or mesh like environment enabling a ground to air, air to air and air to ground cellular datalink communications network.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 12, 2016
    Assignee: The Boeing Company
    Inventor: Daniel J. Daoura
  • Patent number: 9085355
    Abstract: The disclosure generally pertains to a vertical take-off and landing (VTOL) aircraft comprising a fuselage and at least one fixed wing. The aircraft may include at least two powered rotors located generally along a longitudinal axis of the fuselage. The rotor units may be coupled to the fuselage via a rotating chassis, which allows the rotors to provide directed thrust by movement of the rotor units about at least one axis. By moving the rotor units, the aircraft can transition from a hover mode to a transition mode and then to a forward flight mode and back.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: July 21, 2015
    Assignee: DeLorean Aerospace, LLC
    Inventor: Paul J. DeLorean
  • Patent number: 9022312
    Abstract: A lift-fan airplane lands vertically on dirt, kicking up debris but bringing a landing pad for use by others. The landing pad comprises many long slats hinged to each other at the sides. The slats are of generally increasing widths for rolling up into a tight spiral. This compact state allows low-drag air transport. After landing, the spiral is unrolled. A central slat has two stub axles sticking out the ends. Two men place a large wheel onto each stub axle, then push on the wheels to unroll the landing pad on the ground. An upturned wall at the end of the pad deflects upward the downwash from landing lift-fan VTOL airplanes, creating a shadow zone free of flying debris. This creates safe parking for massed operations. Inflated balloons, wedge-shaped to streamline necessary protuberances, detach and fill any large potholes under the landing pad.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: May 5, 2015
    Inventor: Patrick A. Kosheleff
  • Patent number: 9014877
    Abstract: An aircraft with aerofoils including a main wing and a control flap that includes an adjustment flap. The aircraft includes an actuator for the control flap, as well as a sensor device for acquiring the position of the control flap, an arrangement of flow-influencing devices for influencing the fluid that flows over a segment of the main wing, and flow-state sensor devices for measuring the flow state. The aircraft includes a flight control device connected to the sensor device for acquiring the position of the control flap and to the flow-state sensor devices, and connected to the actuator and flow-influencing devices for transmitting actuating commands, and a flight-state sensor device connected to the flight control device for transmitting flight states. The flight control device includes a function that selects the flow-influencing devices that are operated for optimizing local lift coefficients on the aerofoil, depending on the flight state.
    Type: Grant
    Filed: June 16, 2012
    Date of Patent: April 21, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Burkhard Gölling, Frank Haucke, Matthias Bauer, Wolfgang Nitsche, Inken Peltzer
  • Publication number: 20150048200
    Abstract: This invention can take-off like a helicopter and then roll forward as a single unit to fly faster and further than any conventional helicopter. Just like the seats in a Ferris wheel, the payload of passengers or freight can remain upright and comfortable as this aircraft rotates from take-off to fast forward and back to landing mode. Prior inventions claiming similar performance generate lift for take-off and landing by relative rotation of major aircraft components or by vectoring a thrust through large angles of deflection which produces inherently unstable flight characteristics. This invention requires neither rotation of major assemblies nor highly vectorable thrust, making it simpler and more reliable than the aircraft with major rotating assemblies and more stable and efficient than aircraft relying on vectored thrust for lift.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventor: Geoffrey Byron Greene
  • Patent number: 8919691
    Abstract: The invention concerns a life-saving vehicle (10) designed as a hollow body with the form of a sphere or disk essentially flattened along a vertical axis (16) that demonstrates its greatest width in a horizontal plane (15) and which body, composed of an upper part (11) and a lower part (13), limits an internal passenger compartment (25), whereby the body comprises a stabilizing arrangement (12) that stabilizes the vehicle when it is in water, a telescopic arrangement (40), a stabilization means (14) arranged at the lower part, which stabilization means can be displaced in a vertical direction downwards from the lower part through activation of the telescopic arrangement (40). The vehicle, in order for it to travel not only in the air but also in water, comprises: a first and second rotor (52, 17), a motor (55) with an associated transmission (54), a pair of propulsion units (60) and a stabilizing fin (65).
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: December 30, 2014
    Assignee: Well-Head Rescue AB
    Inventors: Jan-Evert Lindmark, Juhani Niinivaara
  • Patent number: 8910903
    Abstract: The invention discloses an aircraft generating a larger lift from its interior. The fluid channel inside the aircraft communicates with the engine and the ports on the upper surface of the outer shell. With the powerful suction of the engine, the fluid on the upper surface of the outer shell is quickly sucked into the fluid channel via respective ports under conditions of long path, large area, high speed and low air pressure, which results in large lift from the interior of the aircraft. In the course of generating the lift, the fluid resistances of the fluid wall and the fluid hole are sucked into the fluid channel through the ports at the front and the surrounding area of the aircraft, then high-speed fluid is emitted from the rear port. This approach contributes greatly to the transformation of the existing aircraft. The unified big wing significantly improves the lift, the speed and the carrying capacity of the existing aircraft with lowered energy consumption.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: December 16, 2014
    Inventor: Xiaoyi Zhu
  • Publication number: 20140339354
    Abstract: The invention is to an optionally piloted aircraft that can takeoff and land conventionally or vertically, and can convert between the two. The aircraft is immune to one or more engine failures during vertical flight through multiple engines and the use of a virtual nozzle. Aerodynamic controls are similarly redundant. Hovering flight is enabled with a novel stabilization system. Long range efficient cruise is achieved by turning off some engines in flight and sealing them into an aerodynamic fairing to achieve low drag. The resulting aircraft is capable of CTOL and VTOL, and is capable of converting between the two modes while in the air or on the ground. The aircraft can also be easily taxied on the ground in the conventional manner. Automatic controls considerably reduce the amount of training a pilot needs to fly and land the aircraft in either VTOL or CTOL mode.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 20, 2014
    Inventors: Ian Todd Gaillimore, Kenneth Dean Driver
  • Publication number: 20140158815
    Abstract: A zero transition vertical take-off and landing (VTOL) aircraft, which is stable in all levels of flight, especially the transition phase from vertical to horizontal flight. The zero transition VTOL aircraft is capable of achieving both vertical and horizontal flight without changing the positioning of thrusters, such as through the use of tiltable or rotatable nacelles or wings. Rather a front thruster assembly and a rear thruster assembly are positioned at specific angles in relation to each other along at least one fuselage in order to generate the desired ratio of vertical to horizontal thrust. At least one wing is also positioned at a specific wing angle in order to achieve a desired angle of attack when in horizontal flight. The attitude of the zero transition VTOL aircraft can be controlled through the use of differential thrust alone, or in conjunction with control surfaces.
    Type: Application
    Filed: May 28, 2013
    Publication date: June 12, 2014
    Inventor: Joseph Raymond RENTERIA
  • Publication number: 20140103158
    Abstract: An aircraft with a wide fuselage having a longitudinal axis, a left and right forward swept wing mounted well back on the fuselage, a tail section extending from the aft portion of the fuselage, a first and second brushless ducted fan with air accelerator ring stationary and integrated into the left and right lateral fuselage, a third brushless ducted fan with integrated air accelerator ring rotatable mounted to the aft tail portion, a solar turbine based external solar film applied on the fuselage and wing surfaces and lateral fan regenerative drive that powers all ducted electric fans, that powers one internal-mounted central master impeller motor, that powers a brushless electric motor that spins three supercharger impellers via pulley chains to enable all three air accelerator rings with super compressed forced air thrust, that recharges ultracapacitors for aircraft propulsion of persistent flight endurance targeted for 30 to 90 days.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Inventor: Benjamin Lawrence Berry
  • Patent number: 8667774
    Abstract: Secondary air flow is provided for a ducted fan having an engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides a first flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: March 11, 2014
    Assignee: The Boeing Company
    Inventors: Mark S. Kuehn, Daniel A. Nyhus, Timothy G. Brewer
  • Patent number: 8636241
    Abstract: A fixed-wing VTOL aircraft features an array of electric lift fans distributed over the surface of the aircraft. A generator is (selectively) coupled to the gas turbine engine of the aircraft. During VTOL operation of the aircraft, the engine drives the generator to generate electricity to power the lifting fans. Power to the lifting fans is reduced as the aircraft gains forward speed and is increasingly supported by the wings.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: January 28, 2014
    Inventors: Richard H. Lugg, Harold Youngren
  • Patent number: 8622335
    Abstract: A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, a pilot's compartment formed in the fuselage between the lift-producing propellers and substantially aligned with one side of the fuselage, a payload bay formed in the fuselage between the lift-producing propellers and opposite the pilot's compartment, and two pusher fans located at the rear of the vehicle. Many variations are described enabling the vehicle to be used not only as a VTOL vehicle, but also as a multi-function utility vehicle for performing many diverse functions including hovercraft and ATV functions. Also described is an Unmanned version of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: January 7, 2014
    Assignee: Urban Aeronautics, Ltd.
    Inventor: Raphael Yoeli
  • Patent number: 8596570
    Abstract: An aircraft provides hovercraft power via fabric fans that produce lift for supporting the craft above an underlying support surface. Fabric fans are specially configured for maximum efficiency. In one embodiment, a helicopter utilizes the fan as part of a tail rotor assembly.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: December 3, 2013
    Inventor: David Carambat
  • Patent number: 8509968
    Abstract: Systems and methods for real-time efficiency and aircraft performance monitoring and delta efficiency calculations between various user- or system-selected phases of flight by determining an efficiency messaging index that gets translated into a messaging profile. That messaging profile is then used to obtain necessary flight and other information from multiple sources. The efficiency calculations and deltas can be used to determine real-time or post-processed benefits, which can then be used to optimize flight(s). Additionally, data is post-processed, which allows the calculation, storage and subsequent usage of efficiency coefficients to enhance the accuracy of the efficiency calculations. There are a number of ways to implement the architecture and order of processing.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 13, 2013
    Assignee: The Boeing Company
    Inventors: Gregory T. Saccone, Ryan D. Hale, Nicholas P. G. Impert, Louis J. Bailey
  • Patent number: 8473123
    Abstract: In exemplary embodiments of this invention, a programmable surface comprises an array of cells. Each of the cells can communicate electronically with adjacent cells in the array, can compute, and can generate either normal thrust or shear thrust. Distributed computing is employed. The programmable surface may cover all or part of the exterior of a craft, such as an aircraft or marine vessel. Or, instead, the programmable surface may comprise the craft itself, which may, for example, take the form of a “flying carpet” or “flying sphere”. The thrust generated by the programmable surface can be employed directly to provide lift. Or it can be used to control the orientation of the craft, by varying the relative amount of thrust outputted by the respective cells. The number of cells employed may be changed on a mission-by-mission basis, to achieve “span on demand”. Each cell may carry its own payload.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 25, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Amy Sun, Neil Gershenfeld
  • Patent number: 8448892
    Abstract: The invention discloses an aircraft generating a larger lift from its interior. The fluid channel inside the aircraft communicates with the engine and the ports on the upper surface of the outer shell. With the powerful suction of the engine, the fluid on the upper surface of the outer shell is quickly sucked into the fluid channel via respective ports under conditions of long path, large area, high speed and low air pressure, which results in large lift from the interior of the aircraft. In the course of generating the lift, the fluid resistances of the fluid wall and the fluid hole are sucked into the fluid channel through the ports at the front and the surrounding area of the aircraft, then high-speed fluid is emitted from the rear port. This approach contributes greatly to the transformation of the existing aircraft. The unified big wing significantly improves the lift, the speed and the carrying capacity of the existing aircraft with lowered energy consumption.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: May 28, 2013
    Inventor: Xiaoyi Zhu
  • Publication number: 20130099048
    Abstract: A method of unmanned aerial vehicle(UAV) flight includes providing horizontal thrust in-line with the direction of forward flight of the UAV(110)using at least one electric motor(120), providing primary vertical lift for the UAV(110) during the forward flight using a fixed and non-rotating wing(125), repositioning the at least one electric motor(120?)to provide vertical thrust during transition of the UAV(110)to vertical flight(A) for descent(E),landing the UAV(110)on a surface(270) using a vertical approach after the motor repositioning, and deploying an anchor(150) to secure the UAV(110)to a surface(270).
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: AEROVIRONMENT, INC.
    Inventor: AEROVIRONMENT, INC.
  • Patent number: 8342441
    Abstract: A VTOL vehicle includes a forward rotor, an aft rotor and a fuselage, the forward and aft rotor lying in a longitudinal axis of the vehicle, with the fuselage located axially between the forward and aft rotors. The vehicle has an in-flight configuration wherein the forward rotor is tilted downwardly at a negative tilt angle relative to the fuselage and the aft rotor is tilted upwardly at a positive tilt angle relative to the fuselage.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 1, 2013
    Assignee: Urban Aeronautics Ltd.
    Inventor: Raphael Yoeli
  • Publication number: 20120280091
    Abstract: The lift, propulsion and stabilising system for vertical takeoff and landing aircraft of the invention consists of applying during vertical flight on, below or in the interior of the fixed-wing aircraft one or more rotors or large fans each one with two or more horizontal blades, said rotors are activated by means of turboshafts, turbofans or turboprops with a mechanical, hydraulic, pneumatic or electrical transmission, and the respective motors. Using lifting and/or stabilising and/or controlling fans and/or oscillating fins and/or air blasts. Placing the horizontal lifters near at least one end of the longitudinal axis and of the transverse axis of the aircraft. Generally said stabilising elements form 90° with one another and with the central application point of the rotor or application of that which results from the lift forces.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 8, 2012
    Inventor: Manuel Munoz Saiz
  • Patent number: 8256705
    Abstract: A torque production vehicle includes a plenum body having a wall with a central port and a radial port formed within the wall, an impeller disposed within the plenum body to move air through the central port, an engine coupled to the impeller to rotate the impeller about an axis, at least one arm coupled to the plenum body, and a plurality of foils disposed in the radial port to direct air about the plenum body to provide a torque force about the plenum body.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 4, 2012
    Assignee: Raytheon Company
    Inventor: Timothy D. Smith
  • Publication number: 20120119016
    Abstract: The invention is a modular vehicle having an air vehicle that can be coupled to cargo containers, land vehicles, sea vehicles, medical transport modules, etc. In one embodiment the air vehicle has a plurality of propellers positioned around a main airframe, which can provide vertical thrust and/or horizontal thrust. The propellers are mounted on supports which have an airfoil shape to generate additional lift. One or more of the propellers may be configured to tilt forward, backward, and/or side-to-side with respect to the airframe.
    Type: Application
    Filed: May 10, 2011
    Publication date: May 17, 2012
    Inventor: Donald Orval Shaw
  • Publication number: 20120119017
    Abstract: A system and method to control flight of an aircraft. The aircraft having an engine with a rotatably nozzle assembly configured to create forward propulsion and yaw control of the aircraft. The engine exhaust passing through the nozzle is redirected with a valve disposed within the nozzle. Lift is created with a lift system carried by the wing of the aircraft. Additional lift is created during flight with a retractable wing extension disposed within the wing of the aircraft.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 17, 2012
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Daniel B. Robertson, Kirk L. Groninga
  • Patent number: 8074917
    Abstract: A flying cycle apparatus comprises a fuselage and a pair of wings extending laterally from the fuselage to provide lift. A jet engine is mounted within the fuselage with the air intake thereof extending through the front of the fuselage. The jet engine has a jet exhaust extending through the rear thereof with one or more jet exhaust ports extending downwardly through the bottom thereof. The one or more jet exhaust ports provide vertical take off and landing capability. A pilot seat is positioned on top of the fuselage with the pilot seat being adapted to have a pilot's legs straddle the fuselage. The pilot seat if further adapted to have an occupant able to access to a control panel. The control panel has means for controlling the proportion of jet exhaust exiting from each of the jet exhaust and jet exhaust ports. The control panel further including a control joystick which allows the user to maintain a stable position during vertical take off and landing maneuvers and to turn and bank when flying.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: December 13, 2011
    Inventor: Jeffrey L. Harrison
  • Publication number: 20110168832
    Abstract: A multi-wing, airfoil fuselage aircraft that is capable of flying in a ground-effect mode includes a main airfoil fuselage wing, a fin that extends vertically from this wing, a pivot mount that is affixed to the fin, an auxiliary wing that connects to the pivot mount so as to allow its angle of attack to be adjusted and changed during different flight conditions, a main landing gear, an adjustable-length, stabilizing landing gear, assorted control surfaces that are movably affixed to the auxiliary wing and fin, and a ground-effect control system that is adapted to control the operation and movement of these control surfaces when the aircraft is flying in a ground-effect mode of flight.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 14, 2011
    Inventor: Stephen H. Funck
  • Publication number: 20110168834
    Abstract: A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, a pilot's compartment formed in the fuselage between the lift-producing propellers and substantially aligned with one side of the fuselage, a payload bay formed in the fuselage between the lift-producing propellers and opposite the pilot's compartment, and two pusher fans located at the rear of the vehicle. Many variations are described enabling the vehicle to be used not only as a VTOL vehicle, but also as a multi-function utility vehicle for performing many diverse functions including hovercraft and ATV functions. Also described is an Unmanned version of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
    Type: Application
    Filed: November 3, 2010
    Publication date: July 14, 2011
    Applicant: Urban Aeronautics Ltd.
    Inventor: Raphael YOELI
  • Publication number: 20110168833
    Abstract: The present invention describes an aircraft having a rotating engine. The aircraft comprises a means for rotating the engine 360° to allow directional control of the aircraft via rotation of the engine's thrust output. The aircraft can further comprise a plurality of flap members located on the wings of the aircraft and in communication with the rotating gas turbine engine to further control and stabilize flight of the aircraft. The gas turbine engine of the aircraft can comprise a compressor, a combustion chamber, and at least two turbines mounted oppositely to the combustion chamber, such that the gas turbine engine is capable of generating more thrust from a single engine.
    Type: Application
    Filed: April 6, 2010
    Publication date: July 14, 2011
    Inventor: Kamyar Brothers
  • Publication number: 20110163198
    Abstract: One embodiment of a Vertical Take-off and Landing (VToL) air-vehicle (FIG. 1.) having a horizontal rotor, a. providing lift and propulsion, and communicating at or near its centre to structural elements, or fuselage, b. Upon or within the fuselage structure is attached a platform, to which a payload, or occupant or pilot, d. is secured in such a manner as to permit a movement, or range-of-motion, of the payload, as a means of weight-shifting, or mass-balancing, of the vehicle for stability and control in flight. At least two planar elements, or descent-vanes, c.i & c.ii are connected to a structural element of the fuselage at a location which provides vertical and horizontal separation between the rotor and the descent-vanes, thus creating a tandem, biplane arrangement of two aerodynamically active elements which are aerodynamically balanced to provide stability and controllability in hovering flight, in forward flight, and in un-powered gliding and vertical descents.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 7, 2011
    Inventor: Glenn Leaver
  • Publication number: 20110101155
    Abstract: A torque production vehicle includes a plenum body having a wall with a central port and a radial port formed within the wall, an impeller disposed within the plenum body to move air through the central port, an engine coupled to the impeller to rotate the impeller about an axis, at least one arm coupled to the plenum body, and a plurality of foils disposed in the radial port to direct air about the plenum body to provide a torque force about the plenum body.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 5, 2011
    Applicant: Raytheon Company
    Inventor: Timothy D. Smith
  • Publication number: 20110084162
    Abstract: An unmanned aerial vehicle (UAV) for making partial deliveries of cargo provisions includes a UAV having one or more ducted fans and a structural interconnect connecting the one or more fans to a cargo pod. The cargo pod has an outer aerodynamic shell and one or more internal drive systems for modifying a relative position of one or more cargo provisions contained within the cargo pod. Control logic is configured to, after delivery of a partial portion of the cargo provisions contained within the cargo pod, vary a position of at least a portion of the remaining cargo provisions to maintain a substantially same center of gravity of the UAV relative to a center of gravity prior to delivery of the partial portion. Other center of gravity compensation mechanisms may also be controlled by the control logic to aid in maintaining the center of gravity of the UAV.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Emray Goossen, Katherine Goossen
  • Publication number: 20110042508
    Abstract: A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in least two dimensions relative to the horizontal during takeoff. An aerial vehicle which uses a rotating platform of engines in fixed relationship to each other and which rotates relative to the wings of the vehicle for takeoff and landing.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 24, 2011
    Inventor: JOEBEN BEVIRT
  • Publication number: 20110001000
    Abstract: The invention discloses an aircraft generating a larger lift from its interior. The fluid channel inside the aircraft communicates with the engine and the ports on the upper surface of the outer shell. With the powerful suction of the engine, the fluid on the upper surface of the outer shell is quickly sucked into the fluid channel via respective ports under conditions of long path, large area, high speed and low air pressure, which results in large lift from the interior of the aircraft. In the course of generating the lift, the fluid resistances of the fluid wall and the fluid hole are sucked into the fluid channel through the ports at the front and the surrounding area of the aircraft, then high-speed fluid is emitted from the rear port. This approach contributes greatly to the transformation of the existing aircraft. The unified big wing significantly improves the lift, the speed and the carrying capacity of the existing aircraft with lowered energy consumption.
    Type: Application
    Filed: February 3, 2010
    Publication date: January 6, 2011
    Inventor: Xiaoyi Zhu
  • Publication number: 20100283253
    Abstract: A tethered airborne electrical power generation system which may utilize a strutted frame structure with airfoils built into the frame to keep wind turbine driven generators which are within the structure airborne. The primary rotors utilize the prevailing wind to generate rotational velocity. Electrical power generated is returned to ground using a tether that is also adapted to fasten the flying system to the ground. The flying system is adapted to be able to use electrical energy to provide power to the primary turbines which are used as motors to raise the system from the ground, or mounting support, into the air. The system may then be raised into a prevailing wind and use airfoils in the system to provide lift while the system is tethered to the ground. The motors may then resume operation as turbines for electrical power generation. The system may be somewhat planar in that many turbines may have their rotors substantially in one or more planes or planar regions.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 11, 2010
    Inventor: JoeBen Bevirt