By Remote Radio Signal Patents (Class 244/189)
  • Patent number: 8838289
    Abstract: A system and method for safely flying an unmanned aerial vehicle (UAV), unmanned combat aerial vehicle (UCAV), or remotely piloted vehicle (RPV) in civilian airspace uses a remotely located pilot to control the aircraft using a synthetic vision system during at least selected phases of the flight such as during take-offs and landings.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: September 16, 2014
    Inventor: Jed Margolin
  • Patent number: 8818581
    Abstract: A method is described that includes performing a), b) and c) below with an electronic control unit of a parafoil: a) after being dropped from an airborne vehicle, wirelessly receiving the parafoil's desired landing location; b) determining a flight path for the parafoil that lands at the desired landing location; and, c) controlling the parafoil's flight path consistently with the determined flight path.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 26, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene Bourakov, Oleg Yakimenko
  • Patent number: 8798817
    Abstract: The disclosed embodiments relate to methods and systems for requesting and retrieving aircraft data during flight of an aircraft. This aircraft data can be used to perform additional monitoring of aircraft sub-systems to detect an abnormal condition, and/or to identify one or more sources that are causing the abnormal condition. In one embodiment, aircraft data for one or more relevant parameters can be requested from the ground, measured on-board the aircraft, and stored in a data file that is then communicated back to personnel on the ground. The real-time aircraft data for one or more relevant parameters can then be analyzed to identify the one or more sources that are causing the abnormal condition.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: August 5, 2014
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Robert O'Dell, Jim Gallagher, Keith Conzachi, Noëlle Britt, William Kerekesh, Robert J. Geary
  • Patent number: 8761964
    Abstract: In a method for controlling an unmanned aerial vehicle (UAV) in a flight space using a computing device, a 3D sample database is created and store in a storage device of the computing device. The computing device includes a depth-sensing camera that captures a 3D scene image of a scene in front of a user, and senses a depth distance between the user and the depth-sensing camera. A 3D person image of the user is detected from the 3D scene image, and gesture information of the user is obtained by comparing the 3D person image with human gesture data stored in the 3D sample database. The method converts the gesture information of the user into one or more flight control commands, and drives a driver of the UAV to control the UAV to fly in a flight space according to the flight control commands.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Patent number: 8742904
    Abstract: A control device of a machine tool includes a first determination unit determining an amount of rotation, rotational speed, and direction of rotation of a rotary handle based on a pulse signal generated by rotation of the rotary handle at a manual pulse generator, and a second determination unit determining which of position control and rotational speed control is selected by selection of an axis through an axis selector switch, based on a signal generated by an axis selection signal generator at an operation device including the manual pulse generator. When a determination is made that position control is selected, the control device controls the amount and direction of travel of a spindle based on the amount of rotation and direction of rotation of the rotary handle. When a determination is made that rotational speed control is selected, the control device controls the rotational speed and direction of rotation of a table based on the rotational speed and direction of rotation of the rotary handle.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 3, 2014
    Assignee: DMG Mori Seiki Co., Ltd.
    Inventors: Koji Tsuchimochi, Takashi Noguchi
  • Patent number: 8688408
    Abstract: A method is provided to measure an aircraft under simulated flight-loads while the aircraft is not in flight. Simulated flight-loads may be applied to the aircraft, while the aircraft is not in flight, in order to substantially simulate flight pressure distribution loads the aircraft would experience during flight. A position of one or more portions of the aircraft may be measured, while the aircraft is under the simulated flight-loads, to determine an effect of the simulated flight-loads on the aircraft.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: April 1, 2014
    Assignee: The Boeing Company
    Inventors: Bob J Marsh, Kinson VanScotter
  • Patent number: 8660710
    Abstract: The channel assignment data is generated by assigning a channel of the radio control transmitter for the trainee 1B associated with the same controlled object to a channel of the radio control transmitter for the trainer 1A, and stored in the radio control transmitter for the trainer 1A. The radio control transmitter for the trainer 1A converts the channel of the received trainer signal into the steering signal according to the channel assignment data, and transmits the steering signal.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 25, 2014
    Assignee: Futaba Corporation
    Inventor: Masahiro Tanaka
  • Patent number: 8640804
    Abstract: A vehicle for towing an airplane by receiving thereupon a nose landing gear of the airplane having an airplane longitudinal axis. The vehicle having a vehicle longitudinal axis and is configured to tow the airplane along a straight or curved path and comprises a controller for directing its operation, including maintaining the vehicle's in-phase position in which the vehicle longitudinal axis is parallel to the airplane longitudinal axis.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Israel Aerospace Industries Ltd.
    Inventors: Raphael E. Levy, Ran Braier, Arie Perry
  • Patent number: 8600304
    Abstract: A system and method for remote device control are disclosed. A system incorporating teachings of the present disclosure may include a radio controlled toy and a controller for controlling the toy. In some embodiments, the controller may have an input mechanism and a housing component that defines a cavity, within which may be located a wireless wide area transceiver and a wireless local area transceiver. Some controllers may also have an operating system for the controller and an application resident on the controller and operable to convert inputs received via the input mechanism into commands for the toy. The controller may have a microprocessor operable to execute the application and to cause the commands to be communicated to the toy using the wireless local area transceiver.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 3, 2013
    Assignee: Rejoice Holdings, GP
    Inventors: Harlie D. Frost, William Reber
  • Publication number: 20130306800
    Abstract: The invention relates to a flight guidance system for the flight support of a aircraft (1), said system comprising a plurality of fixed ground stations (4a to 4e) respectively comprising a transmitting and/or receiving unit (5a to 5e), and at least one transmitting and/or receiving unit (6) that is arranged on the aircraft (1), the transmitting units being act up to send position signals (7) and the receiving units being set up to receive said position signals (7).
    Type: Application
    Filed: November 25, 2011
    Publication date: November 21, 2013
    Applicant: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.
    Inventors: Ute Marita Meissner, Klaus-Uwe Hahn
  • Patent number: 8584989
    Abstract: The invention relates to a method of managing movement of an aircraft on the ground, the aircraft including at least one left main undercarriage and at least one right main undercarriage, each comprising wheels associated with torque application members for applying torque to the wheels in response to a general setpoint, the general setpoint comprising a longitudinal acceleration setpoint and an angular speed setpoint, the method including the successive steps of braking down the general setpoint into general torque setpoints for generating by the torque application members associated with each of the wheels.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 19, 2013
    Assignee: Messier-Bugatti-Dowty
    Inventors: David Lemay, David Frank, Michel Basset, Yann Chamaillard
  • Patent number: 8478456
    Abstract: Some embodiments relate to a method of controlling a flight of a flight vehicle according to a first mode of operation and changing the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation. Other embodiments relate to a flight-control system for a flight vehicle configured to control a flight of a flight vehicle according to a first mode of operation and to control the flight of the flight vehicle according to a second mode of operation to use less energy than the first mode of operation. Other embodiments relate to a control actuation system configured to control positions of aerodynamic elements in a flight vehicle in response to commands from a guidance system according to a first mode of operation and to change the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 2, 2013
    Assignee: Raytheon Company
    Inventors: Jeffery P. Sowers, Karl F. Spiessbach, Donald E. Croft
  • Publication number: 20130126679
    Abstract: A portable device for presenting situation awareness information is provided. The portable device is operable onboard an aircraft and includes a communications module configured to communicate with a data center to receive situation awareness information that includes at least a real-time position for each of a plurality of additional aircraft, a sensor module configured to determine a real-time position of the portable device, and a display device configured to overlay a moving map display with the situation awareness information and the real-time position of the portable device.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Regina I. Estkowski, Ted Dell Whitley, Richard Baumeister, Graham Spence
  • Patent number: 8437956
    Abstract: Methods of communicating the location of an unmanned aerial system (UAS). Implementations of the method may include receiving position data for a UAS with an air traffic control reporting system (ATC-RS) from a ground control station (GCS) in communication with the UAS, where the ATC-RS and the GCS are coupled together and located on the ground. The method may include transmitting the position data using one or more telecommunication modems included in the ATC-RS to an air traffic control center (ATC) and transmitting the position data using an automatic dependent surveillance broadcast (ADS-B) and traffic information services broadcast (TIS-B) receiver to one or more aircraft.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 7, 2013
    Assignee: Kutta Technologies, Inc.
    Inventors: Douglas V. Limbaugh, David H. Barnhard, Thomas H. Rychener
  • Publication number: 20130041527
    Abstract: Some embodiments relate to a method of controlling a flight of a flight vehicle according to a first mode of operation and changing the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation. Other embodiments relate to a flight-control system for a flight vehicle configured to control a flight of a flight vehicle according to a first mode of operation and to control the flight of the flight vehicle according to a second mode of operation to use less energy than the first mode of operation. Other embodiments relate to a control actuation system configured to control positions of aerodynamic elements in a flight vehicle in response to commands from a guidance system according to a first mode of operation and to change the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Inventors: Jeffery P. Sowers, Karl F. Spiessbach, Donald E. Croft
  • Patent number: 8374737
    Abstract: A low visibility landing system is provided for guiding aircraft on landing approaches. The low visibility landing system may aid a pilot during landing in low visibility conditions such that an aircraft may descend to lower altitudes without visual contact with the runway than is possible with other landing systems. The system may use various navigational systems to produce a hybrid signal that may be more stable than individual signals of those navigational systems. The hybrid signal is compared to a predetermined landing approach plan to determine the deviation of the aircraft from the landing approach plan and to provide guidance to the pilot to get the aircraft back onto the landing approach plan. The system may also use multiple navigational systems to perform checks on an operation of a primary navigational system to ensure that the primary navigational system is operating accurately.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 12, 2013
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Robert S. Takacs, Gary M. Freeman, Glenn L. Connor
  • Publication number: 20130009014
    Abstract: A method is described that involves establishing a wireless network between a wireless access node of an existing network and a remote location by wirelessly linking a plurality of electronic processing circuits each transported by a respective parafoil. The wirelessly linked processing circuits are to route packets from the wireless access node to the remote location.
    Type: Application
    Filed: April 8, 2011
    Publication date: January 10, 2013
    Inventors: Alex BORDETSKY, Oleg Yakimenko, Eugene Bourakov
  • Publication number: 20120286102
    Abstract: A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in at least two dimensions relative to the horizontal during takeoff, and which may also control regular flight in some aspects by the use of differential thrust of the engines. A tailless airplane which uses a control system that takes inputs for a traditional tailed airplane and translates those inputs to provide control utilizing non-traditional control methods.
    Type: Application
    Filed: March 28, 2012
    Publication date: November 15, 2012
    Inventors: Pranay Sinha, Jeffrey Kyle Gibboney, JoeBen Bevirt, Piotr Esden-Tempski, Christopher Allen Forrette, Gregory Mainland Horn
  • Publication number: 20120256055
    Abstract: An aircraft rotary wing motion control fluid device providing motion control and with wireless sensing of at least one fluid property inside the fluid device is provided. The wireless sensing system is integrated with at least one of the first and second aircraft rotary wing motion control fluid device bodies. The wireless sensing system includes at least one fluid property sensor in sensing proximity to the at least one fluid chamber and a communications device for wirelessly conveying a measurement made by the at least one fluid property sensor to a remote location.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Inventors: Mark R. Jolly, Zachary Fuhrer, Robert E. Fogle, David M. Catanzarite
  • Publication number: 20120248258
    Abstract: A method and apparatus for changing a flight path of an air platform. A change for the flight path of the air platform is identified. A weight system associated with the air platform is moved during flight of the air platform such that a center of mass of the air platform changes in a manner that causes the flight path of the air platform to change.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: THE BOEING COMPANY
    Inventor: Benjamin A. Harber
  • Patent number: 8275492
    Abstract: The present disclosure relates to a method and a set of means for piloting an aircraft used, first of all, for detecting emergency situations and for removing the consequences thereof, which make it possible perform all possible control modes for piloting the same aircraft in the form of an aircraft hand-flown by a pilot with the aid of flight control means, an aircraft remotely flown by instructions of a control station technical means and an independent automated aircraft flown by instructions of the aircraft equipment. In order to carry out the remote, automatic and independent control of the aircraft, the power drive units of control equipment, a system for the switch-on and off thereof and technical supporting means are provided on the aircraft board and on the control station.
    Type: Grant
    Filed: September 5, 2005
    Date of Patent: September 25, 2012
    Assignee: IRKUT Corporation
    Inventors: Gennady Ivanovich Volkov, Yury Anatol {grave over ( )}evich Za {grave over ( )}tsev, Aleksandr Vasil {grave over ( )}evich Koldaev, Aleksandr Ur {grave over ( )}evich Kondrashina, Michail Vadimovich Korzhuev, Yury Ivanovich Malov, Aleksandr Mikhaylovich Morzhin, Valery Victorovich Podkidov, Aleksandr Nikolaevich Pronin, Vladimir Alekseevich Savin
  • Patent number: 8275317
    Abstract: A system and method for remote device control are disclosed. A system incorporating teachings of the present disclosure may include a radio controlled toy and a controller for controlling the toy. In some embodiments, the controller may have an input mechanism and a housing component that defines a cavity, within which may be located a wireless wide area transceiver and a wireless local area transceiver. Some controllers may also have an operating system for the controller and an application resident on the controller and operable to convert inputs received via the input mechanism into commands for the toy. The controller may have a microprocessor operable to execute the application and to cause the commands to be communicated to the toy using the wireless local area transceiver.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 25, 2012
    Assignee: Rejoice Holding, GP
    Inventors: Harlie D. Frost, William Reber
  • Patent number: 8245980
    Abstract: A method for transferring airplanes and an unmanned airplane transfer system. The airplane transferring system includes: receiving a transfer signal responsive of a movement of an airplane control component; and transferring an airplane, by an unmanned airplane transfer system, in response to the transfer signal.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: August 21, 2012
    Assignee: Israel Aerospace Industries Ltd.
    Inventors: Arie Perry, Ran Braier
  • Patent number: 8214088
    Abstract: The device (10) for piloting a drone (8) comprises a housing having a tilt detector (12) for detecting tilts of the housing, and a touchpad (16) displaying a plurality of touch zones (30, 32, 34, 36, 38, 40, 42). A self-contained stabilizer system to stabilizes the drone in hovering flight in the absence of any user commands. The device comprises a controller controlled by a touch zone (30) forming an activation/deactivation button to cause the drone piloting mode to switch in alternation between an activation mode in which the self-contained stabilizer system of the drone is activated, in which mode said piloting commands transmitted to the drone result from transforming signals delivered by the touch zones and a deactivation mode in which the self-contained stabilizer system of the drone is deactivated, in which mode the piloting commands transmitted to the drone result from transforming signals emitted by the tilt detector of the housing.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Parrot
    Inventor: Martin Lefebure
  • Patent number: 8200376
    Abstract: A system and method for monitoring vehicle performance including multi-level caching. The system includes a vehicle portion with sensors, a vehicle caching data server, and a wireless transceiver and a monitoring station portion with monitoring workstations, a monitoring caching data server, and a wireless transceiver. The monitoring caching data server receives and aggregates requests for vehicle performance data from the monitoring workstations based on request priority and available bandwidth. The vehicle caching data server stores vehicle performance data from the sensors and selectively transmits a subset of the vehicle performance data to the monitoring caching data server in response to aggregate requests.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 12, 2012
    Assignee: Symvionics, Inc.
    Inventors: Patrick Mattingly, James Bretz, Michael Burt
  • Patent number: 8170730
    Abstract: A flight control system is configured for controlling the flight of an aircraft through windshear conditions. The system has means for measuring values of selected flight performance states of the aircraft and a control system for operating flight control devices on the aircraft. A windshear detection system located on the aircraft uses at least some of the measured values of the selected flight performance states to calculate a gust average during flight for comparison to pre-determined values in a table for determining whether windshear conditions exist. The control system then operates at least some of the flight control devices in response to an output of the windshear detection system.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 1, 2012
    Assignee: Textron Innovations Inc.
    Inventor: Shyhpyng Jack Shue
  • Publication number: 20120061521
    Abstract: An airplane transfer system for transferring an airplane comprising an airplane control component. The system comprises: a transfer module comprising at least one motor and adapted to transfer an airplane; and a controller coupled to the transfer module and configured to: i) receive a at least one transfer signal that is responsive to one or more commands provided via the airplane control component; and ii) control the transfer module in response to the transfer signal, wherein the commands are a priori capable of controlling the airplane or components thereof.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 15, 2012
    Applicant: ISRAEL AEROSPACE INDUSTRIES LTD.
    Inventors: Arie PERRY, Ran BRAIER
  • Patent number: 8115149
    Abstract: A Hybrid Projectile is provided for delivering an explosive payload to a target wherein the Hybrid Projectile may be steered in flight using relatively inexpensive means. The Hybrid Projectile is exteriorly configured in the same physical exterior configuration of conventional ammunition of various standard types so it can be launched in conventional manner from the same weapon systems. However, internal features allow the Hybrid Projectile to be transformed in flight from a command signal to deploy wings and fins, and in some projectiles to telescope open to deploy such wings and fins. An inexpensive televisual means is activated in the fore region of the round which through RF uplink command can be used to select a path, while motors on the wings can then be used to more precisely glide the projectile to a target, or otherwise to abort the target run.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leon R. Manole, Ernest L. Logsdon, Jr., Mohan J. Palathingal, Anthony J. Sebasto
  • Patent number: 8089033
    Abstract: A method and apparatus for attacking a plurality of dispersed targets are herein presented. In particular, the method and apparatus herein presented allow the user to upload target data onto a pod mounted on a host aircraft. Upon reaching the pre loaded target location, the pod releases a plurality of individually targeted Micro Air Vehicles (MAVs), thereby allowing the user to attack a plurality of dispersed targets from a single aircraft standing off at a significant distance from the target area.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 3, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul A. Zank, Paul D. Zemany
  • Patent number: 8000847
    Abstract: A flight control system is configured for controlling the flight of an aircraft through windshear conditions. The system has means for measuring values of selected flight performance states of the aircraft and a control system for operating flight control devices on the aircraft. A windshear detection system located on the aircraft uses at least some of the measured values of the selected flight performance states to calculate a gust average during flight for comparison to pre-determined values in a table for determining whether windshear conditions exist. The control system then operates at least some of the flight control devices in response to an output of the windshear detection system.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: August 16, 2011
    Assignee: Textron Innovations Inc.
    Inventor: Shyhpyng Jack Shue
  • Patent number: 7931239
    Abstract: A homeostatic flying hovercraft preferably utilizes at least two pairs of counter-rotating ducted fans to generate lift like a hovercraft and utilizes a homeostatic hover control system to create a flying craft that is easily controlled. The homeostatic hover control system provides true homeostasis of the craft with a true fly-by-wire flight control and control-by-wire system control.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 26, 2011
    Inventors: Brad Pedersen, Peter Spirov
  • Patent number: 7840317
    Abstract: A method and apparatus for controlling the flight of an aircraft in the event of an in-flight emergency is disclosed.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: November 23, 2010
    Inventors: Jeffrey A. Matos, Karl F. Milde, Jr.
  • Patent number: 7793890
    Abstract: A control system for an aircraft includes a main unit and a separate auxiliary unit in communication with the main unit. The main unit includes an arm support allowing attachment to an arm of an operator. The main unit also includes a control stick supported by the structural element and movable in a plurality of directions. The main unit further includes sensors for sensing movement of the control stick. The auxiliary unit includes a transmitter for sending a transmitter signal encoding the movement of the control stick to the aircraft.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: September 14, 2010
    Inventor: Patrick L. Scherer
  • Patent number: 7778744
    Abstract: A modular avionics system for an Unmanned Aerial Vehicle (UAV) has a control module that executes flight control and vertical and lateral guidance algorithms to generate control commands. A data link module communicates with a remote control station and receives control commands from the remote control station. A data acquisition module communicates with the control module and the data link module. The data acquisition module is configured to receive and process data from one or more onboard sensors and to actuate a plurality of servo motors in response to control commands. A switching module selectively couples the data acquisition module to the control module or to the data link module responsive to an input from the remote control station to respectively switch between a fully autonomous mode of UAV operation and a manual mode of UAV operation. Power may be provided by a power module.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 17, 2010
    Assignee: Honeywell International Inc.
    Inventors: Manaswini Rath, Yogesh Patel, Nitin Anand Kale, Mallikarjun Kande
  • Patent number: 7756637
    Abstract: Methods and systems for a position indicating display system for an aircraft are provided. The system includes a map display unit configured to display a map representative of an area being traversed by the aircraft, and an overlay comprising an own ship depiction, said overlay displayed on the map for a period of time in response to an input from at least one of a user and an aircraft sensor.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 13, 2010
    Assignee: The Boeing Company
    Inventors: Patrick Ralf Wipplinger, Richard William Ellerbrock
  • Patent number: 7734254
    Abstract: A system and method for remote device control are disclosed. A system incorporating teachings of the present disclosure may include a radio controlled toy and a controller for controlling the toy. In some embodiments, the controller may have an input mechanism and a housing component that defines a cavity, within which may be located a wireless wide area transceiver and a wireless local area transceiver. Some controllers may also have an operating system for the controller and an application resident on the controller and operable to convert inputs received via the input mechanism into commands for the toy. The controller may have a microprocessor operable to execute the application and to cause the commands to be communicated to the toy using the wireless local area transceiver.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: June 8, 2010
    Assignee: Affinity Labs of Texas, LLC
    Inventors: Harlie D. Frost, William Reber
  • Patent number: 7693614
    Abstract: An emergency navigational system that monitors the navigation of an aircraft by comparing actual flight parameter data to predefined flight parameter data to thereby determine if the actual flight parameter data deviates beyond a defined value, and if so, activating a navigational controller to at least partially control the navigation of the aircraft.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: April 6, 2010
    Inventor: Brian E. Turung
  • Patent number: 7603207
    Abstract: A control system for remotely controlling a mobile platform includes a ground-based control station and a surrogate processor. The surrogate processor is remotely located from both the mobile platform and the ground-based control station and includes a communication gateway and software. The communication gateway is in communication with the software, the ground-based control station, and the mobile platform and is capable of transmitting information therebetween. The software generates a control message based on commands received from the ground-based control station to adjust an operational characteristic of the mobile platform. Locating the software and the gateway remotely from the mobile platform also enables a less costly and less complex mobile platform to be constructed.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: October 13, 2009
    Assignee: The Boeing Company
    Inventors: Michael R Abraham, Brian C Gray
  • Patent number: 7596438
    Abstract: Disclosed is a beacon-based traffic control system installed in a motor vehicle for receiving a wireless signal from one of a plurality of beacons that arranged in multiple geographic locations, each beacon being defined to have a respective identification code, each beacon having a short-distance wireless transmitter for transmitting a wireless signal for receiving by the beacon-based traffic control system so that when the motor vehicle is moving to a different geographic location, the beacon-based traffic control system fetches the identification code from the wireless signal of the local beacon and searches the memory thereof to find a corresponding action command and then to execute the action command, controlling the operation of the electronic component of the motor vehicle subject to the action command.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: September 29, 2009
    Assignee: Sin Etke Technology Co., Ltd.
    Inventors: Kuo-Rong Chen, Chun-Chung Lee, Cheng-Hung Huang
  • Patent number: 7581702
    Abstract: Controlling an unmanned aerial vehicle (UAV) may be accomplished by using a wireless device (e.g., cell phone) to send a control message to a receiver at the UAV via a wireless telecommunication network (e.g., an existing cellular network configured primarily for mobile telephone communication). In addition, the wireless device may be used to receive communications from a transmitter at the UAV, wherein the wireless device receives the communications from the transmitter via the wireless network. Examples of such communications include surveillance information and UAV monitoring information.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 1, 2009
    Assignee: Insitu, Inc.
    Inventors: Steven J. Olson, Matt Wheeler
  • Publication number: 20090179114
    Abstract: A method and system for preventing the control of an aircraft from the cockpit. In an exemplary embodiment, the system could be triggered externally. For example, an air traffic control (ATC) station could determine that the aircraft has deviated from its planned flight path. If personnel at the ATC station decide that the deviation is not attributable to the actions of the authorized flight crew, the personnel can transmit a signal to the aircraft that disables all normal cockpit control of the aircraft. Once normal flight controls are disabled, the aircraft may execute a preprogrammed emergency flight plan via its autopilot system, with or without the use of a flight management system (FMS). The emergency flight plan could cause the aircraft to fly to a sparsely populated area and enter a holding pattern, or it could cause the aircraft to land in a sparsely populated area or at an airport using an autoland system.
    Type: Application
    Filed: November 27, 2001
    Publication date: July 16, 2009
    Inventor: James P. Conner
  • Patent number: 7551989
    Abstract: The present invention is directed to a control system for use on a fly-by-wire (FBW) aircraft. The system includes a controller coupled to the FBW aircraft. The controller is configured to generate a plurality of simulated pilot control signals from at least one aircraft maneuver command. The plurality of simulated pilot control signals are generated in accordance with a predetermined control law. The at least one aircraft maneuver command is derived from at least one command telemetry signal received from a remote control system not disposed on the FBW aircraft. The plurality of simulated pilot control signals are configured to direct the FBW aircraft to perform an aircraft maneuver in accordance with the at least one aircraft maneuver command.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 23, 2009
    Assignee: Calspan Corporation
    Inventors: Louis H. Knotts, Eric E. Ohmit
  • Patent number: 7451951
    Abstract: An apparatus is described comprising: an aircraft having one or more control surfaces; and one or more micro-electro mechanical systems (“MEM S”) actuators to control the movement of the one or more control surfaces.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: November 18, 2008
    Assignee: Rearden, LLC
    Inventor: Stephen G. Perlman
  • Publication number: 20080223993
    Abstract: A homeostatic flying hovercraft preferably utilizes at least two pairs of counter-rotating ducted fans to generate lift like a hovercraft and utilizes a homeostatic hover control system to create a flying craft that is easily controlled. The homeostatic hover control system provides true homeostasis of the craft with a true fly-by-wire flight control and control-by-wire system control.
    Type: Application
    Filed: August 13, 2007
    Publication date: September 18, 2008
    Inventors: Peter Spirov, Brad Pedersen
  • Patent number: 7362234
    Abstract: A control system which provides directional control over various real and virtual vehicles, craft and moveable subjects. The control system includes a housing, a controller in the housing having an electronic radio control PC board or an electronic video control PC board and tilt switches which are fixed relative to the housing at preferred orientations. The switches are connected to control terminals of the electronic control PC board. With the tilt switches fixed relative to the housing, orientation of the housing can result in the electronic control PC board transmitting signals to a remote vehicle, craft or virtual subject. Rather than tilt switches, the control system can include pots having shafts orthogonally arranged relative to the housing. The pots are connected to control terminals of the electronic control PC board. Pendulums are fixed to the shafts of the pots.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: April 22, 2008
    Inventors: Clayton R. Golliher, James D. Moore
  • Patent number: 7350748
    Abstract: Apparatus is disclosed for disabling on-board pilot operation of an aircraft and transferring aircraft operation to an alternate source of control. The aircraft has an aircraft control system for controlling at least one controlled component, such as an aircraft attitude control surface or an aircraft engine throttle. The apparatus is of modular construction, and includes two control modules. A first control module has an interruptible link that passes the first control signals from the control device to the aircraft control system. This first control module has a first connecting device for (i) interrupting the link and (ii) directing said first control signals to a second control module. The second control module is adapted to be connected to (e.g. plugged into) the first control module, and has a second connecting device.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: April 1, 2008
    Inventor: Jeffrey A. Matos
  • Patent number: 7271740
    Abstract: The present invention relates to a system and a process for providing improved operational safety for aircraft. The system/process of the instant invention utilizes real-time, two-way transmission of voice and/or text and flight-critical data between an aircraft and a ground-based computer workstation, where transmitted information monitored and acted upon as necessary by a qualified flight safety person, e.g., a appropriately trained individual (including but not limited to a safety pilot or other person trained in safety procedures). This safety person can perform a number of functions that would enhance flight safety, such as reducing the workload of the primary pilot(s), assisting in the performance of routine checklists, monitoring communications with air traffic control, and advising the pilot in the aircraft on how to handle any in-flight situations that may arise.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: September 18, 2007
    Inventor: Mark R. Fischer
  • Patent number: 7195208
    Abstract: Control system for radio-controlled aircraft. The control system includes a control master for simultaneously controlling a group of flight control means, for example, a group of ailerons. A control bar is slidably mounted in the control master and connected to a servo-controller. A plurality of controller cables or push rods, one for each flight control means in the group, are connected to the control bar. A sliding movement of the control bar effects a repositioning of the flight-control means.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: March 27, 2007
    Inventor: Roger G. Caron
  • Patent number: 7183946
    Abstract: The present invention is a computer system designed to use the conventional devices and special programming of the present invention that will ensure the safe operation of aircraft. The present invention is an anti-terrorist and Anti-Crash System to ensure and maintain complete control of an aircraft on the ground, during taxiing and even in the air. With the present invention in place, an aircraft can be kept a safe distance from any building and other aircraft, and the aircraft can be remotely controlled. The system provides greater national security. Utilizing the On-Demand audio and visual monitoring components of the present invention, simultaneously, proper authorities can access all factual data from all onboard flight systems before a crash is imminent. Equipment lockouts are in place as well, so that if an aircraft is commandeered, the actual person in the cockpit is unable to effect aircraft travel, virtually eliminating human error.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: February 27, 2007
    Inventor: Gary Jon Boudrieau
  • Patent number: RE42496
    Abstract: A control system which provides directional control over various real and virtual vehicles, craft and moveable subjects. The control system includes a housing, a controller in the housing having an electronic radio control PC board or an electronic video control PC board and tilt switches which are fixed relative to the housing at preferred orientations. The switches are connected to control terminals of the electronic control PC board. With the tilt switches fixed relative to the housing, orientation of the housing can result in the electronic control PC board transmitting signals to a remote vehicle, craft or virtual subject. Rather than tilt switches, the control system can include pots having shafts orthogonally arranged relative to the housing. The pots are connected to control terminals of the electronic control PC board. Pendulums are fixed to the shafts of the pots.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: June 28, 2011
    Inventor: Clayton R. Golliher