Of Pilotless Aircraft Patents (Class 244/190)
  • Patent number: 8951086
    Abstract: An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: February 10, 2015
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Adam John Woodworth, James Peverill, Greg Vulikh, Jeremy Scott Hollman
  • Patent number: 8954206
    Abstract: The present disclosure relates to an unmanned aerial vehicle (UAV) able to harvest energy from updrafts and a method of enhancing operation of an unmanned aerial vehicle. The unmanned aerial vehicle with a gliding capability comprises a generator arranged to be driven by a rotor, and a battery, wherein the unmanned aerial vehicle can operate in an energy harvesting mode in which the motion of the unmanned aerial vehicle drives the rotor to rotate, the rotor drives the generator, and the generator charges the battery. In the energy harvesting mode regenerative braking of the generator reduces the forward speed of the unmanned aerial vehicle to generate electricity and prevent the unmanned aerial vehicle from flying above a predetermined altitude.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 10, 2015
    Assignee: The Boeing Company
    Inventor: Alfredo Criado
  • Patent number: 8953933
    Abstract: Aerial photogrammetry is provided by using two or more flying vehicles, each equipped with a GPS device and an image pickup unit. This method comprises setting up two or more photographing points and setting up a photographing point area, respectively, with each of the photographing points as the center, measuring a position of the flying vehicle by the GPS device, a step where each of the flying vehicle reaches each corresponding photographing point area and maintains the position of the photographing point area, acquiring a time when the flying vehicle finally reaches the photographing point area, setting up a shutter timing time after a predetermined time from the moment when the flying vehicle has finally reached the photographing point area, and taking aerial photographs by the two or more flying vehicles at the shutter timing time.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Fumio Ohtomo, Hitoshi Otani, Kazuki Osaragi, Tetsuji Anai
  • Patent number: 8948928
    Abstract: An electrically powered of the vertical takeoff and landing aircraft configured for use with a tether station having a continuous power source is provided including at least one rotor system. The vertical takeoff and landing aircraft additionally has an autonomous flight control system coupled to the continuous power source. The autonomous flight control system is configured to operate an electrical motor coupled to the at least one rotor system such that the vertical takeoff and landing aircraft continuously hovers above the tether station in a relative position. The vertical takeoff and landing aircraft also includes a detection system for detecting objects at a distance from the vertical takeoff and landing aircraft.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: February 3, 2015
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Mark R. Alber, Timothy Fred Lauder, Jonathan Hartman, Bryan Clark Holasek
  • Patent number: 8905358
    Abstract: An unmanned air vehicle includes a body having front and rear sections with at least one pair of end plates connected to the body, wherein one end plate within the at least one pair of end plates is connected to the left side of the body and another end plate within the at least one pair of end plates is connected to the right side of the body, each end plate having upper and lower sections, wherein: a) the upper section is positioned above a mean line of the body; b) the lower section is positioned below the mean line of the body; and c) a ratio of the area of the upper section to the area of the lower section is less than 1.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: December 9, 2014
    Assignee: Israel Aerospace Industries Ltd.
    Inventor: Abraham Abershitz
  • Patent number: 8886368
    Abstract: The present invention discloses a control stick for controlling an UAV formed by a bar with buttons on the bar head and a GUI displaying airplane like icons providing feedback of current steering control status of a UAV.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Prox Dynamics AS
    Inventors: Petter Muren, Dag Henning Paulsen
  • Patent number: 8880241
    Abstract: Extended-range monitoring and surveillance of facilities and infrastructure—such as oil, water, and gas pipelines and power lines—employs autonomous vertical take-off and landing (VTOL) capable, small unmanned aerial system (sUAS) aircraft and docking platforms for accommodating the sUAS aircraft. Monitoring and surveillance of facilities using one or more embodiments may be performed continually by the sUAS flying autonomously along a pre-programmed flight path. The sUAS aircraft may have an integrated gas collector and analyzer unit, and capability for downloading collected data and analyzer information from the sUAS aircraft to the docking platforms. The gas collector and analyzer unit may provide remote sensing and in-situ investigation of leaks and other environmental concerns as part of a “standoff” (e.g., remote from operators of the system or the facilities) survey that can keep field operators out of harm's way and monitor health of the environment.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 4, 2014
    Inventor: Farrokh Mohamadi
  • Publication number: 20140263823
    Abstract: Systems, devices, and methods for a transformable aerial vehicle are provided. In one aspect, a transformable aerial vehicle includes: a central body and at least two transformable frames assemblies respectively disposed on the central body, each of the at least two transformable frame assemblies having a proximal portion pivotally coupled to the central body and a distal portion; an actuation assembly mounted on the central body and configured to pivot the at least two frame assemblies to a plurality of different vertical angles relative to the central body; and a plurality of propulsion units mounted on the at least two transformable frame assemblies and operable to move the transformable aerial vehicle.
    Type: Application
    Filed: January 29, 2014
    Publication date: September 18, 2014
    Applicant: SZ DJI TECHNOLOGY CO., Ltd
    Inventors: Tao Wang, Tao Zhao, Hao Du, Mingxi Wang
  • Patent number: 8838289
    Abstract: A system and method for safely flying an unmanned aerial vehicle (UAV), unmanned combat aerial vehicle (UCAV), or remotely piloted vehicle (RPV) in civilian airspace uses a remotely located pilot to control the aircraft using a synthetic vision system during at least selected phases of the flight such as during take-offs and landings.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: September 16, 2014
    Inventor: Jed Margolin
  • Publication number: 20140246545
    Abstract: An aircraft for distributing granular material on a target area is provided. The aircraft includes an electric sifter, which includes a motor to distribute the granular material on the target area and a screen on the bottom surface of the electric sifter. The screen allows the granular material to pass through the screen to the target area. The aircraft also includes a circuit to activate the motor, one or more power sources to power the motor and the circuit, and an interface for an operator to control the circuit. The granular material is stored in the electric sifter. The operator manipulates the interface to signal the circuit to activate the motor. The electric sifter distributes the granular material when the motor is activated.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Inventor: Michael Beaugavin Markov
  • Patent number: 8798817
    Abstract: The disclosed embodiments relate to methods and systems for requesting and retrieving aircraft data during flight of an aircraft. This aircraft data can be used to perform additional monitoring of aircraft sub-systems to detect an abnormal condition, and/or to identify one or more sources that are causing the abnormal condition. In one embodiment, aircraft data for one or more relevant parameters can be requested from the ground, measured on-board the aircraft, and stored in a data file that is then communicated back to personnel on the ground. The real-time aircraft data for one or more relevant parameters can then be analyzed to identify the one or more sources that are causing the abnormal condition.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: August 5, 2014
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Robert O'Dell, Jim Gallagher, Keith Conzachi, Noëlle Britt, William Kerekesh, Robert J. Geary
  • Patent number: 8775013
    Abstract: There is provided a method and system for acoustic signature health monitoring of an unmanned autonomous vehicle (UAV). The method positions an acoustic signature health monitoring system proximate to and off-board a UAV to be monitored for mechanical health of one or more sound producing structures. The method obtains and analyzes with the system a baseline acoustic signature for each of the sound producing structures, and transmits each baseline acoustic signature to a data processing system for processing. The method obtains and analyzes one or more subsequent acoustic signatures for each of the sound producing structures, and transmits the one or more subsequent acoustic signatures to the data processing system. The method compares the processed baseline acoustic signature with the one or more processed subsequent acoustic signatures for the sound producing structures, in order to detect any change in the processed baseline acoustic signature over time.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: July 8, 2014
    Assignee: The Boeing Company
    Inventor: Thomas O. Smailus
  • Patent number: 8761964
    Abstract: In a method for controlling an unmanned aerial vehicle (UAV) in a flight space using a computing device, a 3D sample database is created and store in a storage device of the computing device. The computing device includes a depth-sensing camera that captures a 3D scene image of a scene in front of a user, and senses a depth distance between the user and the depth-sensing camera. A 3D person image of the user is detected from the 3D scene image, and gesture information of the user is obtained by comparing the 3D person image with human gesture data stored in the 3D sample database. The method converts the gesture information of the user into one or more flight control commands, and drives a driver of the UAV to control the UAV to fly in a flight space according to the flight control commands.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Patent number: 8761961
    Abstract: A method for controlling an unmanned aerial vehicle (UAV) using an electronic device obtains movement data of the electronic device detected by an accelerometer of the electronic device, and converts the movement data of the electronic device to control signals. The method further sends the control signals to the UAV, and changes a flight status of the UAV according to the control signals.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: June 24, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Publication number: 20140166817
    Abstract: Disclosed herein are example embodiments for inter-vehicle communication for hazard handling with an unoccupied flying vehicle (UFV). For certain example embodiments, at least one machine may: (i) receive one or more flight attributes from a remote UFV, with the one or more flight attributes indicative of one or more flight characteristics of the remote UFV; or (ii) adjust a flight path of a UFV based at least partially on one or more flight attributes received from a remote UFV. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: Elwha LLC, a limited liability corporation of the State of Delaware
    Inventor: Elwha LLC, a limited liability corporation of the State of Delaware
  • Patent number: 8740134
    Abstract: An unmanned aircraft system includes a manned aircraft and an unmanned aircraft. The manned aircraft includes a manned aircraft main wing, a manned aircraft fuselage, a manned aircraft landing system, and a manned aircraft joining mechanism provided at a bottom portion of the manned aircraft fuselage. The unmanned aircraft includes an unmanned aircraft main wing, an unmanned aircraft fuselage, an unmanned aircraft landing system, and an unmanned aircraft joining mechanism provided at a roof portion of the unmanned aircraft fuselage. The manned aircraft joining mechanism and the unmanned aircraft joining mechanism are detachably joined. The unmanned aircraft system can take off or land in a state that the unmanned aircraft and the manned aircraft are joined.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Satoshi Suzuki
  • Patent number: 8744647
    Abstract: A method and a remote control for controlling and monitoring surrounding areas of an Unmanned Aerial Vehicle (UAV) by an operator with a remote control comprising a flight display are provided. The method and remote control provide an advantageously effect for the purposes of controlling and monitoring the surroundings of a UAV by combining the image captured by a UAV camera with a transparently overlaid positional and navigation map providing a perception enabling the operator to have a complete overall view of the situation, utilizing a common screen section of a flight display and thereby not having to shift eye view. Viewing images and positional and navigation information should not interfere with each other.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 3, 2014
    Assignee: Prox Dynamics AS
    Inventors: Dag Henning Paulsen, Petter Muren
  • Patent number: 8742904
    Abstract: A control device of a machine tool includes a first determination unit determining an amount of rotation, rotational speed, and direction of rotation of a rotary handle based on a pulse signal generated by rotation of the rotary handle at a manual pulse generator, and a second determination unit determining which of position control and rotational speed control is selected by selection of an axis through an axis selector switch, based on a signal generated by an axis selection signal generator at an operation device including the manual pulse generator. When a determination is made that position control is selected, the control device controls the amount and direction of travel of a spindle based on the amount of rotation and direction of rotation of the rotary handle. When a determination is made that rotational speed control is selected, the control device controls the rotational speed and direction of rotation of a table based on the rotational speed and direction of rotation of the rotary handle.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 3, 2014
    Assignee: DMG Mori Seiki Co., Ltd.
    Inventors: Koji Tsuchimochi, Takashi Noguchi
  • Patent number: 8708285
    Abstract: A micro-unmanned aerial vehicle deployment system is provided for a cruise missile having submunition compartments. The system includes a vehicle launch module releasable from the cruise missile submunition compartment. The vehicle launch system has a control circuit and at least one micro-unmanned aerial vehicle contained therein. Structure is provided in the launch module for deploying the micro-unmanned aerial vehicle. A separable tether can be joined between the cruise missile and the vehicle launch module that separates when subjected to tension after deployment of the vehicle launch module.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: April 29, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Paul J. Carreiro
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8660710
    Abstract: The channel assignment data is generated by assigning a channel of the radio control transmitter for the trainee 1B associated with the same controlled object to a channel of the radio control transmitter for the trainer 1A, and stored in the radio control transmitter for the trainer 1A. The radio control transmitter for the trainer 1A converts the channel of the received trainer signal into the steering signal according to the channel assignment data, and transmits the steering signal.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 25, 2014
    Assignee: Futaba Corporation
    Inventor: Masahiro Tanaka
  • Publication number: 20140008496
    Abstract: Method and system for remote control of a drone helicopter and RC plane using a handheld device is disclosed. Piloting commands and actions are performed using the handheld device, which includes a motion sensor module, with gyro-sensor and g-sensor for controlling roll, yaw and pitch of flying object under relative or absolute coordinate system. The gyro-sensor controls both heading and rotation of flying object in place around its yaw by rotating handheld device around its yaw axis; g-sensor controls pitch and roll by rotating handheld device around its pitch axis and roll axes. Upon determining free falling of flying object, throttle is thereby adjusted so as to land it safely. Flying object further has a camera, and video images are transferred wireless to be displayed on touch screen, and image zoom-in and zoom-out are provided via multi-touch of touch screen. RF and IR capability is included for wireless communication.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Inventors: Zhou Ye, Ying-Ko Lu
  • Patent number: 8602349
    Abstract: An airborne surveillance platform supporting optoelectronic and electronic sensors, including level sensors, is automatically stabilized in a horizontal plane by varying the length of two tethers out of three. Error signals from the level sensors are transmitted over a wireless link to control components on a rotating platform on the host vehicle, which automatically vary the length of tethers. Applications include images of the surrounding terrain generated by a video camera and a thermal imager in military, police and civil emergency operations.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 10, 2013
    Inventor: Dimitri Petrov
  • Publication number: 20130248656
    Abstract: Methods and systems are provided for relocatable repeaters for wireless communication links to locations that may present accessibility problems using, for example, small unmanned aerial systems (sUAS). An sUAS implemented as an easy-to-operate, small vertical take-off and landing (VTOL) aircraft with hovering capability for holding station position may provide an extended range, highly secure, high data rate, repeater system for extending the range of point-to-point wireless communication links (also referred to as “crosslinks”) in which repeater locations are easily relocatable with very fast set-up and relocating times. A repeater system using beam forming and power combining techniques enables a very high gain antenna array with very narrow beam width and superb pointing accuracy. The aircraft includes a control system enabling three-dimensional pointing and sustaining directivity of the beam independently of flight path of the aircraft.
    Type: Application
    Filed: December 20, 2012
    Publication date: September 26, 2013
    Inventor: Farrokh Mohamadi
  • Patent number: 8521339
    Abstract: A method of remotely controlling an aerial vehicle within an environment, including providing a control station in communication with the aerial vehicle, providing a map of the environment, receiving target world coordinates for the aerial vehicle within the environment, determining a desired velocity vector to direct the aerial vehicle to the target world coordinates at a speed proportional to the distance between the aerial vehicle and the target world coordinates, and directing the aerial vehicle along the desired velocity vector until the aerial vehicle reaches the target world coordinates.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: August 27, 2013
    Assignee: Aeryon Labs Inc.
    Inventors: Ryan Gariepy, Dave Kroetsch, Steffen Lindner, Mike Peasgood
  • Patent number: 8457809
    Abstract: A method for controlling an unmanned aerial vehicle (UAV) using an electronic device determines a designated relay station of the UAV using the electronic device, and creates a new flight path for the UAV according to the designated relay station. The method further directs the UAV to fly to the designated relay station upon the condition that the UAV can arrive at the designated relay station, and directs the UAV to fly to a subsequent relay station along the new flight path upon the condition that the UAV has not arrived at an endpoint of the new flight path.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: June 4, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Publication number: 20130126679
    Abstract: A portable device for presenting situation awareness information is provided. The portable device is operable onboard an aircraft and includes a communications module configured to communicate with a data center to receive situation awareness information that includes at least a real-time position for each of a plurality of additional aircraft, a sensor module configured to determine a real-time position of the portable device, and a display device configured to overlay a moving map display with the situation awareness information and the real-time position of the portable device.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Regina I. Estkowski, Ted Dell Whitley, Richard Baumeister, Graham Spence
  • Patent number: 8437956
    Abstract: Methods of communicating the location of an unmanned aerial system (UAS). Implementations of the method may include receiving position data for a UAS with an air traffic control reporting system (ATC-RS) from a ground control station (GCS) in communication with the UAS, where the ATC-RS and the GCS are coupled together and located on the ground. The method may include transmitting the position data using one or more telecommunication modems included in the ATC-RS to an air traffic control center (ATC) and transmitting the position data using an automatic dependent surveillance broadcast (ADS-B) and traffic information services broadcast (TIS-B) receiver to one or more aircraft.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 7, 2013
    Assignee: Kutta Technologies, Inc.
    Inventors: Douglas V. Limbaugh, David H. Barnhard, Thomas H. Rychener
  • Patent number: 8428781
    Abstract: Disclosed herein are systems and methods for controlling robotic apparatus having several movable elements or segments coupled by joints. At least one of the movable elements can include one or more mobile bases, while the others can form one or more manipulators. One of the movable elements can be treated as an end effector for which a certain motion is desired. The end effector may include a tool, for example, or represent a robotic hand (or a point thereon), or one or more of the one or more mobile bases. In accordance with the systems and methods disclosed herein, movement of the manipulator and the mobile base can be controlled and coordinated to effect a desired motion for the end effector. In many cases, the motion can include simultaneously moving the manipulator and the mobile base.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 23, 2013
    Assignee: Energid Technologies, Inc.
    Inventors: Chu-Yin Chang, James English, Neil Tardella, James Bacon
  • Publication number: 20130068892
    Abstract: A remotely controlled flying apparatus (200) utilized for crop-spraying and crop monitoring purposes is disclosed. The present indention comprises a microcontroller (110) electronically coupled to an inertia measuring means (120). A controller (140) is connected to a computer (130) to allow a user to control movements of the flying apparatus (200). The computer (130) interprets control motions of the controller (140) and translates the motions to control signals. Upon translation, control signals are sent to the microcontroller (110) wirelessly and the control signals are modulated by a pulse modulation generator (150) before they are sent to a plurality of speed controllers (160a-160d) which are coupled to a plurality of motors (170a-! 70d). The controller (140) allows the user to control the motions of the flying apparatus remote! }, by changing respective rotational speeds of the plurality of motors (170a-170d).
    Type: Application
    Filed: June 3, 2011
    Publication date: March 21, 2013
    Inventors: Hazry Bin Desa, Muhamad Firdaus Bin Muhamad Dali, Mohd Zahiruddin Bin Dzulkifli, Zul Azfar Bin Ahmam
  • Patent number: 8380425
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 19, 2013
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8379087
    Abstract: Vehicle attitude is estimated relative to a ground surface over which the vehicle is traveling. An actual image of the ground surface over which the vehicle is traveling is compared with stored or predicted model images of the ground surface. The model images have corresponding known vehicle attitudes associated therewith. For one of the model images that most closely matches the actual image, the known vehicle attitude associated therewith is an estimate of an actual vehicle attitude relative to the ground surface over which the vehicle is traveling.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: February 19, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Richard Rikoski
  • Patent number: 8380368
    Abstract: A radio controlled (RC) aircraft includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC aircraft. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC aircraft. A plurality of control devices control the motion of the RC aircraft based on the control data. In an embodiment, a remote control device commands the RC helicopter to substantially a hovering state when no force is applied to each of a plurality of spring-loaded interface devices.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 19, 2013
    Inventors: Katherine C. Stuckman, Michael D. Reynolds
  • Patent number: 8366055
    Abstract: Micro/nano mono-wing aircraft with the wing configured as a winged seed (Samara) is uniquely suited for autonomous or remotely controlled operation in confined environments for surrounding images acquisition. The aircraft is capable of effective autorotation and steady hovering. The wing is flexibly connected to a fuselage via a servo-mechanism which is controlled to change the wing's orientation to control the flight trajectory and characteristics. A propeller on the fuselage rotates about the axis oriented to oppose a torque created about the longitudinal axis of the fuselage and is controlled to contribute in the aircraft maneuvers. A controller, either ON-board or OFF-board, creates input command signals to control the operation of the aircraft based on a linear control model identified as a result of extensive experimentations with a number of models.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: February 5, 2013
    Assignee: University of Maryland
    Inventors: Evan R. Ulrich, Darryll J. Pines, Joseph Park, Steven Gerardi
  • Patent number: 8296036
    Abstract: An electric power management system of a vehicle may interconnect a power plant, a propeller drive unit, and a battery via a bus. A controller may direct the operation of the power plant and the propeller drive unit. In a slow control mode, the propeller drive unit may react slowly to small throttle change requests. In the slow control mode, the propeller drive unit may draw power completely or substantially from the power plant. Upon a throttle request to rapidly change propeller drive unit speed more than a threshold amount, the controller may direct that the propeller drive unit quickly obtain the requested speed by drawing power required from the battery in excess of that being generated from the power plant. Subsequently, the controller may direct that the power plant increase power generation to maintain the propeller drive unit at the new speed, and recharge or float the battery.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 23, 2012
    Assignee: AeroVironment, Inc.
    Inventors: Thaddeus Benjamin Matuszeski, Rolland Mitchell Koch, Scott Garret Berman, Mujahid Abdulrahim
  • Patent number: 8265800
    Abstract: According to one embodiment of the disclosure, an unmanned vehicle message conversion system generally includes a message interpreter that is coupled between a first unmanned vehicle control interface and a second unmanned vehicle control interface. The second unmanned vehicle control interface is configured to transmit and receive messages with a messaging protocol that is different than the first unmanned vehicle control interface. The message interpreter is operable to receive a first message from the unmanned vehicle control system, convert the first message to a second message having the second protocol, and transmit the second message to the unmanned vehicle.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 11, 2012
    Assignee: Raytheon Company
    Inventors: Timothy D. Smith, Christopher J. Hecht, Jorgen D. Pedersen, Timothy J. Davison
  • Patent number: 8235327
    Abstract: Adjustable servomechanism assemblies and associated systems and methods are disclosed herein. An unmanned aircraft system in accordance with one embodiment of the disclosure includes a movable mechanism and a servomechanism assembly operably coupled to the movable mechanism. The system also includes an interface assembly operably coupled to an output shaft of the servo and the movable mechanism. The interface assembly includes an adapter portion carried by the output shaft and an output arm releasably engaged with the adapter portion. The adapter portion includes a first aperture having a non-round surface mated with a non-round surface of the output shaft, and a generally smooth, non-splined, engagement surface. The output arm includes a second aperture sized to receive at least a portion of the outer surface of the adapter portion. The second aperture includes generally smooth inner surface in contact with and rotatable through 360 degrees relative to the engagement surface of the adapter portion.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: August 7, 2012
    Assignee: Insitu, Inc.
    Inventor: Clifford Jackson
  • Patent number: 8224505
    Abstract: A method and device are provided for determining a target altitude for an emergency descent of an aircraft that is to be reached by the end of the emergency descent. The method includes determining an initial target altitude representative of the initial position of the aircraft and then repeatedly determining a current target altitude along a reference horizontal distance. The current target altitude is compared to the initial target altitude and is used to update the emergency descent if the current target altitude is lower than the initial target altitude. Each target altitude is selected as the larger of a predetermined threshold altitude and a security altitude that ensures any obstructions along a remaining horizontal distance are avoided.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 17, 2012
    Assignee: Airbus Operations (SAS)
    Inventors: Paule Botargues, Erwin Grandperret, Lucas Burel
  • Patent number: 8224501
    Abstract: A method for controlling an unmanned platform from a manned station is provided. The method includes transmitting a master arm control message from the manned station to the unmanned platform via a first control path, transmitting a first critical control message from the manned station to the unmanned platform via a second control path that is independent of the first control path, and transmitting a second critical control message from the manned station to the unmanned platform via a third control path that is different than the first control path and the second control path.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 17, 2012
    Assignee: General Electric Company
    Inventors: Stefano Angelo Mario Lassini, Eric Daniel Buehler
  • Publication number: 20120175468
    Abstract: A system for delivering cooling water to building roofs by means of drone aircraft is disclosed. Control systems for navigation and precisely targeting a water spray are disclosed.
    Type: Application
    Filed: February 11, 2011
    Publication date: July 12, 2012
    Inventor: Eric Zerof
  • Patent number: 8214088
    Abstract: The device (10) for piloting a drone (8) comprises a housing having a tilt detector (12) for detecting tilts of the housing, and a touchpad (16) displaying a plurality of touch zones (30, 32, 34, 36, 38, 40, 42). A self-contained stabilizer system to stabilizes the drone in hovering flight in the absence of any user commands. The device comprises a controller controlled by a touch zone (30) forming an activation/deactivation button to cause the drone piloting mode to switch in alternation between an activation mode in which the self-contained stabilizer system of the drone is activated, in which mode said piloting commands transmitted to the drone result from transforming signals delivered by the touch zones and a deactivation mode in which the self-contained stabilizer system of the drone is deactivated, in which mode the piloting commands transmitted to the drone result from transforming signals emitted by the tilt detector of the housing.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Parrot
    Inventor: Martin Lefebure
  • Patent number: 8210467
    Abstract: Methods and apparatus to provide an aerial vehicle having an eyewall sensor to enable the aerial vehicle to stay within the eye of a hurricane and transmit weather information to a remote location. In one embodiment, the aerial vehicle is an unmanned aerial vehicle (UAV) launched into the eye of the hurricane.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: July 3, 2012
    Assignee: Raytheon Company
    Inventors: Wesley H. Hubbell, Victor G. Nastasi
  • Patent number: 8200421
    Abstract: An altitude profile representative of the terrain overflown by an aircraft is established. Thereafter, an altitude limit curve which comprises an intersection with the altitude profile upon the engagement of a terrain avoidance maneuver is determined. As soon as there is no longer any intersection of the limit curve with the altitude profile, the terrain avoidance maneuver is interrupted.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: June 12, 2012
    Assignee: Airbus Operations SAS
    Inventors: Paule Botargues, Nicolas Caule, Christelle Ledauphin, Jerome Bailly, Isabelle Lacaze, Sylvain Thezelais, Jerome Goyet
  • Patent number: 8200376
    Abstract: A system and method for monitoring vehicle performance including multi-level caching. The system includes a vehicle portion with sensors, a vehicle caching data server, and a wireless transceiver and a monitoring station portion with monitoring workstations, a monitoring caching data server, and a wireless transceiver. The monitoring caching data server receives and aggregates requests for vehicle performance data from the monitoring workstations based on request priority and available bandwidth. The vehicle caching data server stores vehicle performance data from the sensors and selectively transmits a subset of the vehicle performance data to the monitoring caching data server in response to aggregate requests.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 12, 2012
    Assignee: Symvionics, Inc.
    Inventors: Patrick Mattingly, James Bretz, Michael Burt
  • Patent number: 8200375
    Abstract: A radio controlled (RC) aircraft includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC aircraft. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC aircraft. A plurality of control devices control the motion of the RC aircraft based on the control data. In an embodiment, a remote control device commands the RC helicopter to substantially a hovering state when no force is applied to each of a plurality of spring-loaded interface devices.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: June 12, 2012
    Inventors: Katherine C. Stuckman, Michael D. Reynolds
  • Patent number: 8115149
    Abstract: A Hybrid Projectile is provided for delivering an explosive payload to a target wherein the Hybrid Projectile may be steered in flight using relatively inexpensive means. The Hybrid Projectile is exteriorly configured in the same physical exterior configuration of conventional ammunition of various standard types so it can be launched in conventional manner from the same weapon systems. However, internal features allow the Hybrid Projectile to be transformed in flight from a command signal to deploy wings and fins, and in some projectiles to telescope open to deploy such wings and fins. An inexpensive televisual means is activated in the fore region of the round which through RF uplink command can be used to select a path, while motors on the wings can then be used to more precisely glide the projectile to a target, or otherwise to abort the target run.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leon R. Manole, Ernest L. Logsdon, Jr., Mohan J. Palathingal, Anthony J. Sebasto
  • Patent number: 8106748
    Abstract: A remote-controlled motion apparatus is controlled by a remote control apparatus. The remote control apparatus transmits a target motion signal by radio. The remote-controlled motion apparatus includes a communication module, an acceleration sensing module, a processing module and a driving module. The communication module receives the target motion signal from the remote control apparatus. The acceleration sensing module senses an acceleration of the remote-controlled motion apparatus to output an acceleration sensing signal. The processing module is coupled with the acceleration sensing module and the communication module, and processes the acceleration sensing signal and the target motion signal to output a driving control signal. The driving module is coupled with the processing module to receive the driving control signal, and adjusts the driving of the remote-controlled motion apparatus according to the driving control signal.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: January 31, 2012
    Inventor: Yu-Tuan Lee
  • Publication number: 20120016534
    Abstract: A method for controlling an unmanned aerial vehicle (UAV) using an electronic device obtains movement data of the electronic device detected by an accelerometer of the electronic device, and converts the movement data of the electronic device to control signals. The method further sends the control signals to the UAV, and changes a flight status of the UAV according to the control signals.
    Type: Application
    Filed: October 20, 2010
    Publication date: January 19, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: HOU-HSIEN LEE, CHANG-JUNG LEE, CHIH-PING LO
  • Patent number: 8089033
    Abstract: A method and apparatus for attacking a plurality of dispersed targets are herein presented. In particular, the method and apparatus herein presented allow the user to upload target data onto a pod mounted on a host aircraft. Upon reaching the pre loaded target location, the pod releases a plurality of individually targeted Micro Air Vehicles (MAVs), thereby allowing the user to attack a plurality of dispersed targets from a single aircraft standing off at a significant distance from the target area.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 3, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul A. Zank, Paul D. Zemany
  • Publication number: 20110210883
    Abstract: A surveillance system includes a multi-propeller aircraft having a main propeller and a plurality of wing unit propellers; a housing that houses the main propeller and the wing unit propellers; an ultra-wideband (UWB) radar imaging system; a control system for controlling flight of the multi-propeller aircraft from a remote location; and a telemetry system for providing information from the ultra-wideband (UWB) radar imaging system to the remote location. A method includes: remotely controlling flight of the aircraft using a main propeller and a plurality of wing unit propellers with airflow from the main propeller to the wing unit propellers for lift and propulsion; operating an ultra-wideband (UWB) radar imaging system from the aircraft; and transmitting information from the UWB radar imaging system to a display at a location remote from the aircraft.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 1, 2011
    Inventor: Farrokh Mohamadi