Self-adaptive Control Patents (Class 244/195)
  • Patent number: 10435167
    Abstract: The invention relates to a method for automatically controlling an operating mode of a turboshaft engine of a helicopter, comprising a step (10) of receiving data (27, 28, 29) that are representative of the flight of the helicopter; a step (11) of selecting the turboshaft engine for which a change of mode would be most relevant; a step (12) of determining an operating mode of said turboshaft engine, known as the selected mode, selected from a plurality of predetermined operating modes; and a step (14) of ordering the operating mode of said turboshaft engine into said selected mode. The invention also relates to a corresponding control device.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 8, 2019
    Assignee: SAFRAN HELICOPTER ENGINES
    Inventors: Romain Thiriet, Caroline Seve, Vincent Poumarede
  • Patent number: 10428842
    Abstract: A triplex pneumatic architecture system is disclosed having first, second, and third pneumatic subsystems where triplex redundancy may be accomplished by measuring only one particular node in each system, such as a measured current of the servo valve. Each of the first, second, and third pneumatic subsystems are configured to control a separate redundant pneumatic actuation assembly. Each subsystem may comprise a current sensor to measure a control current from a servo driver to a servo valve that controls the pneumatic actuation assembly to output a measured current value, and a dump valve coupled to a relay. Each processor is configured to generate a termination signal to actuate the first relay to open the first dump valve. The triplex pneumatic architecture system further includes a communication bus to communicatively couple each of the first, second, and third pneumatic subsystems.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: October 1, 2019
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Matthew G. Hutchison, William Bosworth, Andrew Kehlenbeck, Devin Jensen
  • Patent number: 10303184
    Abstract: Autonomous flight is performed in an open loop mode over a first range of altitudes, wherein a plurality altitude-related data from a plurality of altitude-related sensors is ignored while performing the autonomous flight in the open loop mode. The autonomous flight is performed in a closed loop mode over a second range of altitudes, wherein: the plurality of altitude-related data from the plurality of altitude-related sensors is used while performing the autonomous flight in the closed loop mode, and the first range of altitudes is a non-overlapping, lower range of altitudes compared to the second range of altitudes. The altitude-related data may include, among other things, a radar signal or a phase associated with a radar signal.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: May 28, 2019
    Assignee: Kitty Hawk Corporation
    Inventors: Mark Johnson Cutler, Alexander David Selwa
  • Patent number: 10254740
    Abstract: A positioning control system is provided with a state-feedback control system with a state observer as a full-closed control system for driving and controlling a motor so that a load shaft, which is an output shaft of a strain wave gearing, is positioned at a target position on the basis of a load shaft position actually detected. The state observer estimates a motor shaft position and a motor velocity based on a control input for the motor and the load shaft position. The state-feedback control system feeds back the state quantity of the object of control using the load shaft position as well as estimated motor shaft position and estimated motor velocity obtained by the state observer. It is possible to suppress resonant vibration caused by angular transmission error in the strain wave gearing and perform highly accurate positioning.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: April 9, 2019
    Assignees: Harmonic Drive Systems Inc., Nagoya Institute of Technology
    Inventors: Masafumi Yamamoto, Yoshifumi Okitsu, Makoto Iwasaki
  • Patent number: 10137979
    Abstract: A forebody flow control system and more particularly an aircraft or missile flow control system for enhanced maneuverability and stabilization at high angles of attack. The present invention further relates to a method of operating the flow control system. In one embodiment, the present invention includes a missile or aircraft comprising an afterbody and a forebody; at least one deployable flow effector on the missile or aircraft forebody; at least one sensors each having a signal associated therewith, the at least one sensor being used for determining or estimating flow separation or side forces on the missile forebody; and a closed loop control system; wherein the closed loop control system is used for activating and deactivating the at least one deployable flow effector based on at least in part the signal of the at least one sensor.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 27, 2018
    Assignee: Orbital Research Inc.
    Inventors: Troy Prince, Frederick J. Lisy, Mehul P. Patel, Jack M. DiCocco, Reed Carver, Robert N. Schmidt
  • Patent number: 10059446
    Abstract: A hand-held radio transmit controller for remotely controlling an aircraft, and a method for controlling a remote control aircraft offering ground vehicle-like control.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: August 28, 2018
    Assignee: Traxxas LP
    Inventors: Wesley Ronald Erhart, Scott Rollin Michael Schmitz, Thomas Michael Kawamura, Richard Douglas Hohnholt, Kent Poteet
  • Patent number: 9878776
    Abstract: A method of controlling an elevator of an aircraft may include identifying a current stabilizer angle of incidence of a stabilizer of the aircraft. The stabilizer may include an elevator pivotably coupled to the stabilizer. The method may further include comparing the current stabilizer angle of incidence with a threshold stabilizer angle of incidence, and selecting an elevator position limit that is more restrictive if the current stabilizer angle of incidence is greater than or equal to the threshold stabilizer angle of incidence. The method may additionally include moving the elevator to a commanded elevator position that is no greater than the elevator position limit.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 30, 2018
    Assignee: The Boeing Company
    Inventor: Vedad Mahmulyin
  • Patent number: 9752879
    Abstract: This disclosure relates to heading misalignment estimation with a portable device and more specifically to estimating misalignment between a portable device having a sensor assembly and a platform transporting the portable device when the platform is undergoing motion having periodic characteristics. In one aspect, a suitable method includes obtaining inertial sensor data for the portable device and determining an effective frequency characteristic of the inertial sensor data representing the motion having periodic characteristics. The inertial sensor data may be processed using the determined frequency characteristic so that a heading misalignment may be estimated between the heading of the portable device and the platform.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: September 5, 2017
    Assignee: InvenSense, Inc.
    Inventors: Amr Al-Hamad, Abdelrahman Ali, Jacques Georgy
  • Patent number: 9728014
    Abstract: A method for detecting and diagnosing sensor faults in an autonomous system that includes sensors and hardware components, according to which sensors are related to hardware components and correlations between data readings are recognized online and correlation between sensors is determined. Predefined suspicious patterns are identified by online and continuously tracking the data readings from each sensor and detecting correlation breaks over time. The readings from sensors that match at least one of the patterns are marked as uncertain. For each online reading of the sensors, whenever sensors that used to be correlated show a different behavior, reporting that the reading indicates a fault. Upon identifying fault detection, diagnosing which of the internal components or sensors caused the fault, based on a function that returns the state of the sensor which is associated with the fault detection.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: August 8, 2017
    Assignee: B. G. NEGEV TECHNOLOGIES AND APPLICATIONS LTD.
    Inventors: Elihau Khalaschi, Meir Kalech, Lior Rokach
  • Patent number: 9683849
    Abstract: Adaptive gyroscope bias compensation allows a vehicle navigation module to estimate position and velocity reliably during temperature changes.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 20, 2017
    Assignee: Trimble Inc.
    Inventors: Xiaorong Zhi, Takayuki Hoshizaki, Peter Van Wyck Loomis, Walter Kenneth Stockwell
  • Patent number: 9481472
    Abstract: Energy protection device for an aircraft. The device (1) comprises units (12, 14, 15) for automatically deactivating an energy protection function, if a return of the aircraft to an operational flight domain is detected after the activation of this protection function, and for automatically managing an autothrust (2), if at least one of the following conditions is satisfied: a relaxing of a control member is detected, and the angle of attack of the aircraft is below a predetermined threshold.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: November 1, 2016
    Assignee: Airbus Operations (SAS)
    Inventors: Marie-Claire Moune, Jean Muller, Christophe Poujol, Julien Fontan
  • Patent number: 9341718
    Abstract: One embodiment is directed towards a method for providing integrity for a hybrid navigation system using a Kalman filter. The method includes determining a main navigation solution for one or more of roll, pitch, platform heading, or true heading for the vehicle using signals from a plurality of GNSS satellites and inertial measurements. Solution separation is used to determine a plurality of sub-solutions for the main navigation solution. The method also includes determining a separation between the main navigation solution and each of the sub-solutions, and a discriminator for each of the separations. The method also includes determining a separation variance between the main navigation solution and each of the sub-solutions, a threshold for detection of a satellite failure based on the separation variances; and a protection limit that bounds error in the main navigation solution based on the threshold.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 17, 2016
    Assignee: Honeywell International Inc.
    Inventor: Kevin D. Vanderwerf
  • Patent number: 9284043
    Abstract: A technique is directed to operating a UAV. The technique involves launching (or guiding) the UAV into flight. The technique further involves performing a series of aileron (or other control surface) deflection evaluations while the UAV is in flight. The technique further involves performing a UAV remedial operation in response to the series of aileron deflection evaluations indicating abnormal aileron behavior, e.g., the UAV can send a warning message to a ground control station (GCS), land the UAV at a target location, deploy a chute, and so on. Such operation enables detection of an unexpected change in the UAV's center of gravity, e.g., due to a blocked fuel bladder connection, icing on one side of the UAV, mechanical failure of an aileron, etc.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: March 15, 2016
    Assignee: AAI Corporation
    Inventor: James M. Barbour
  • Patent number: 9273613
    Abstract: A method monitoring a servo-control loop, including: estimating monitoring parameters from operating data of the servo-control loop; obtaining indicators from the monitoring parameters; determining at least one signature from values of at least some of the indicators; and detecting and locating a degradation affecting the servo-control loop as a function of the at least one determined signature.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 1, 2016
    Assignee: SNECMA
    Inventors: Christian Aurousseau, Régis Michel Paul Deldalle, Xavier Flandrois, Jean-Rémi André Masse, Aziz Sif, Benjamin Pierre Lamoureux
  • Patent number: 9233763
    Abstract: In one embodiment, a method for health and trend monitoring for aircraft systems includes receiving, by a processor on the aircraft, a plurality of sensor signals from a respective plurality of sensors onboard the aircraft and determining a reference signal from a subset of the plurality of sensor signals. Next, each of the plurality of sensor signals is individually compared to the reference signal to provide a plurality of difference signals. Each of the plurality of difference signals is compared to a threshold value, and a maintenance message is provided for any respective sensor associated with any of the plurality of difference signals exceeding the threshold value. An aircraft employing the health and trend monitoring system is also disclosed.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: January 12, 2016
    Assignee: Gulfstream Aerospace Corporation
    Inventor: Jeff Chen
  • Patent number: 9117579
    Abstract: A system and methods for redundant current-sum feedback control of an actuator system is presented. An actuator comprises actuation coils configured to actuate the actuator, and an actuation coil current sensor senses a measured total coil current comprising a sum of coil currents of each of the actuation coils. Actuator coil controllers control the actuation coils based on a commanded total coil current and the measured total coil current.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: August 25, 2015
    Assignee: The Boeing Company
    Inventor: Gen Matsui
  • Publication number: 20150060593
    Abstract: The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization, and to a method of operating the flow control system. Various embodiments of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: Troy Prince, Richard Kolacinski, Mehul Patel
  • Patent number: 8954206
    Abstract: The present disclosure relates to an unmanned aerial vehicle (UAV) able to harvest energy from updrafts and a method of enhancing operation of an unmanned aerial vehicle. The unmanned aerial vehicle with a gliding capability comprises a generator arranged to be driven by a rotor, and a battery, wherein the unmanned aerial vehicle can operate in an energy harvesting mode in which the motion of the unmanned aerial vehicle drives the rotor to rotate, the rotor drives the generator, and the generator charges the battery. In the energy harvesting mode regenerative braking of the generator reduces the forward speed of the unmanned aerial vehicle to generate electricity and prevent the unmanned aerial vehicle from flying above a predetermined altitude.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 10, 2015
    Assignee: The Boeing Company
    Inventor: Alfredo Criado
  • Patent number: 8888036
    Abstract: Primary flight controls (10) for main and/or tail rotors (4) of helicopters with electro-mechanical interface between any of fly-by-wire and/or fly-by-light controls and hydraulic servo actuators (8) for control force amplification towards said main and/or tail rotor controls (4). For each of the main and/or tail rotor controls (4) there is provided but one of the hydraulic servo actuators (8), connected by one mechanical linkage (7) to one electro motor (5), said one hydraulic servo actuator (8) being of the type having the one mechanical linkage (7) connected to its input (29) and its output (30) and the one electro motor (5) being of the direct drive type, the position of said electro motor (5) having a reference to said one mechanical linkage (7) and the torque delivered by said electro motor (5) to the hydraulic servo actuator (8) being related to the power consumption of said electro motor (5).
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: November 18, 2014
    Assignees: Airbus Helicopters, Airbus Helicopters Deutschland GmbH
    Inventors: Bruno Chaduc, Boris Grohmann, Christophe Tempier
  • Patent number: 8874286
    Abstract: An alternative system for damping the dutch roll mode in an aircraft is provided using roll control surfaces. Classical yaw dampers for the dutch roll mode utilize the yaw control surfaces such as a rudder to dampen the dutch roll mode oscillations. An alternative damper is described that utilizes roll control surfaces such as spoilers or ailerons to dampen the dutch roll mode.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Textron Innovations, Inc.
    Inventors: Steven G. Hagerott, Steven Klausmeyer, Gonzalo E. Mendoza
  • Patent number: 8763950
    Abstract: A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix. The method and apparatus also provide a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. The method and apparatus also provide a sensor management tool for providing input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: July 1, 2014
    Assignee: Texron Innovations Inc.
    Inventors: Shyhpyng Jack Shue, John James Corrigan, Eric Thomas Bird, Tommie Lynn Wood, Alan Carl Ewing
  • Patent number: 8768598
    Abstract: An engine control system having an engine, a digital engine control, and a gain logic disposed within the digital engine control for use with an aircraft. The digital engine control is configured to receive and process inputs from systems within the aircraft. Gain logic uses the inputs to generate command data to regulate the performance of the engine so as to allow rotor speed deviations from a set point.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 1, 2014
    Assignee: Textron Innovations Inc.
    Inventor: James M. McCollough
  • Patent number: 8761966
    Abstract: A six degree-of-freedom trajectory linearization controller (TLC) architecture (30) for a fixed-wing aircraft (46) is set forth. The TLC architecture (30) calculates nominal force and moment commands by dynamic inversion of the nonlinear equations of motion. A linear time-varying (LTV) tracking error regulator provides exponential stability of the tracking error dynamics and robustness to model uncertainty and error. The basic control loop includes a closed-loop, LTV stabilizing controller (12), a pseudo-inverse plant model (14), and a nonlinear plant model(16). Four of the basic control loops (34, 36, 40, 42) are nested to form the TLC architecture (30).
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 24, 2014
    Assignee: Ohio University
    Inventors: Jianchao Zhu, Tony M. Adami
  • Patent number: 8761964
    Abstract: In a method for controlling an unmanned aerial vehicle (UAV) in a flight space using a computing device, a 3D sample database is created and store in a storage device of the computing device. The computing device includes a depth-sensing camera that captures a 3D scene image of a scene in front of a user, and senses a depth distance between the user and the depth-sensing camera. A 3D person image of the user is detected from the 3D scene image, and gesture information of the user is obtained by comparing the 3D person image with human gesture data stored in the 3D sample database. The method converts the gesture information of the user into one or more flight control commands, and drives a driver of the UAV to control the UAV to fly in a flight space according to the flight control commands.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Patent number: 8695921
    Abstract: A method of aiding the piloting of an airplane ensures the availability of an automatic pilot and a thrust regulation system on board the airplane. To this end, the method includes determining first information by measuring the actual airspeed of the airplane, and this first information is used to control the automatic pilot and the thrust regulation system in a primary mode during normal operations of the airplane. When the first information is lost by becoming unavailable or unreliable, the automatic pilot and the thrust regulation system are each controlled in a secondary mode by control parameters determined using additional flight data independent from the actual airspeed of the airplane and the first information. Consequently, an alternative or redundant control is supplied for ensuring the continued operation of an automatic pilot without necessary intervention from crew members on board the airplane.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Thierry Bourret, Pascale Louise, Jean Muller, Xavier Dal Santo
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8662439
    Abstract: A control system having a first loop configured to provide a longitudinal blowback value of a rotor blade during flight and a second loop associated with the first loop, the second loop being configured to provide a design maximum total flapping value and a lateral flapping value. A method includes calculating a flight control limit from the design maximum total flapping value and the lateral flapping value. An upper longitudinal cyclic control limit is calculated by adding the flight control limit to the longitudinal blowback value. A lower longitudinal cyclic control limit is calculated by subtracting the flight control limit from the longitudinal blowback value.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 4, 2014
    Assignee: Textron Innovations Inc.
    Inventors: Robert L. Fortenbaugh, Jose Manuel Rodriguez, Ronald Lorenz Kisor, Robert Blyth
  • Patent number: 8651424
    Abstract: A driving controller of remote control equipment includes a yaw axis angular velocity detecting unit for outputting a yaw axis angular velocity as a yaw axis angular velocity signal; a main rotor RPM detecting unit for outputting a main rotor RPM as a main rotor RPM signal; and a phase control unit for detecting a phase deviation in a roll axis and a pitch axis based on the yaw axis angular velocity signal and the main rotor RPM signal, and generating a roll and a pitch control signal by correcting a roll and a pitch operation signal by the phase deviation. The driving controller further includes an actuator control unit for generating a roll and a pitch actuator driving signal respectively based on the roll and the pitch control signal, and outputting the generated roll and pitch actuator driving signals to a roll and a pitch control actuator, respectively.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: February 18, 2014
    Assignee: Futaba Corporation
    Inventor: Michio Yamamoto
  • Patent number: 8649919
    Abstract: A method for attenuating effects of turbulence on an aircraft, and a device to implement the method, the method including: using at least one signal on a wind profile signal, along an excitation direction, representing, at a given moment in an aircraft referential, a component along the excitation direction of the wind speed at a front of the aircraft according to a distance along a longitudinal direction of the aircraft; carrying out a frequency determination, in which the wind profile signal is processed to determine a frequential content; and selecting a control strategy to be adopted according to the previously determined frequential content, the strategy enabling at least one applicable control law to be identified.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 11, 2014
    Assignee: Airbus Operations S.A.S.
    Inventors: Guillermo Jenaro Rabadan, Stephane Puig
  • Patent number: 8620492
    Abstract: An alternative system for damping the dutch roll mode in an aircraft is provided using roll control surfaces. Classical yaw dampers for the dutch roll mode utilize the yaw control surfaces such as a rudder to dampen the dutch roll mode oscillations. An alternative damper is described that utilizes roll control surfaces such as spoilers or ailerons to dampen the dutch roll mode.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 31, 2013
    Assignee: Textron Innovations Inc.
    Inventors: Steven G. Hagerott, Steven Klausmeyer, Gonzalo E. Mendoza
  • Patent number: 8600583
    Abstract: A flight control system for an aircraft, controlling a plurality of actuators adapted to actuate control surfaces of the aircraft, including: at least one communications bus; at least one computer situated in the avionics bay of the aircraft, and adapted to calculate flight commands and to transmit them over the bus in the form of command messages; and at least a first remote terminal connected to the bus, adapted to control a control surface actuator, and to acquire the state of the actuator from information provided by at least a first sensor, the first terminal receiving command messages from the computer and transmitting electrical orders to the actuator as a function of the command messages received in this way, and also transmitting messages to the computer, at its request, relating to the state of the actuator as a function of the information provided by the first sensor.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: December 3, 2013
    Assignee: Airbus Operations S.A.S.
    Inventors: Marc Fervel, Jean-Jacques Aubert, Antoine Maussion
  • Patent number: 8523102
    Abstract: A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix and a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. A sensor management tool is provided for input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 3, 2013
    Assignee: Textron Innovations Inc.
    Inventors: Shyhpyng Jack Shue, John James Corrigan, Eric Thomas Bird, Tommie Lynn Wood, Alan Carl Ewing
  • Patent number: 8496199
    Abstract: A control system having a first loop configured to provide a longitudinal blowback value of a rotor blade during flight and a second loop associated with the first loop, the second loop being configured to provide a design maximum total flapping value and a lateral flapping value. A method includes calculating a flight control limit from the design maximum total flapping value and the lateral flapping value. An upper longitudinal cyclic control limit is calculated by adding the flight control limit to the longitudinal blowback value. A lower longitudinal cyclic control limit is calculated by subtracting the flight control limit from the longitudinal blowback value.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 30, 2013
    Assignee: Textron Innovations Inc.
    Inventors: Robert L. Fortenbaugh, Jose Manuel Rodriguez, Ronald Lorenz Kisor, Robert Blyth
  • Patent number: 8380425
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 19, 2013
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Craig S. Askew
  • Publication number: 20130026298
    Abstract: An actuation system including a plurality of actuators; a plurality of position sensors coupled to the actuators, the plurality of position sensors providing rate feedback signals proportional to an actuator rate; a plurality of force sensors coupled to the actuators, the plurality of force sensors providing delta pressure signals; and a feedback control loop configured to receive the rate feedback signals and delta pressure signals and compute a difference in actual actuator rates and sum the difference with a computed difference in actuator forces to generate actuator positioning commands that equalize the actuator forces on a control surface.
    Type: Application
    Filed: August 20, 2012
    Publication date: January 31, 2013
    Applicant: The Boeing Company
    Inventor: Douglas B. Kirkland
  • Patent number: 8359130
    Abstract: Disclosed are a method and device for attenuating vertical turbulence encountered by an aircraft during flight. Incorporated into the method and device is a wind determination device, which is used to determine a vertical wind component existing outside the aircraft. A severity level determination unit is used to determine a severity level of the vertical wind component determined by the wind determination device. A control unit calculates at least one control order based on the vertical wind component determined by the wind determination device. In addition, the control unit determines the actual existence of activation conditions determined according to the severity level determined by the severity level determination unit. Upon verifying the activation conditions, the control unit transmits the control order to at least one actuator of the at least one controllable movable member.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: January 22, 2013
    Assignee: Airbus Operations SAS
    Inventors: Alexandre Colomer, Xavier Dal Santo
  • Publication number: 20120325977
    Abstract: A method for reducing yawing motions of an aircraft in-flight, wherein a spoiler adjustment drive of a spoiler and a regulating flap adjustment drive of a regulating flap of the same respective airfoil are adjusted in a time segment in such a way that the motion of the spoiler being adjusted and the motion of the regulating flap of the same airfoil deflect in mutually opposite directions in the time segment. The spoiler and the regulating flap are adjusted on the airfoil, on which the adjusted deflections counteract the respectively occurring yawing motion. Also provided are a computer program product for carrying out this method and an aircraft with a directional stabilization device for carrying out this method.
    Type: Application
    Filed: May 4, 2012
    Publication date: December 27, 2012
    Applicant: AIRBUS OPERATIONS GMBH
    Inventor: Hans-Gerd Giesseler
  • Publication number: 20120298806
    Abstract: Stable flight can be achieved without the need for a complicated throttle operation by a pilot even when part or all of control surfaces malfunction. A computation means (15) calculates a thrust control signal for controlling engine thrust and a deflection angle control signal for controlling control surfaces based on state information regarding an airframe and an operation command signal from an operation end. An engine driving means (17) drives an engine based on the thrust control signal. A control surface moving means (16) moves the control surfaces based on the deflection angle control signal.
    Type: Application
    Filed: February 25, 2011
    Publication date: November 29, 2012
    Inventor: Koichi Yamasaki
  • Patent number: 8321074
    Abstract: Present novel and non-trivial system, device, and method for generating altitude data and/or height data are disclosed. A processor receives navigation data from an external source such as a global positioning system (“GPS”); receives navigation data from multiple internal sources; receives object data representative of terrain or surface feature elevation; determines an instant measurement of aircraft altitude as a function of these inputs; and generates aircraft altitude data responsive to such determination. In an additional embodiment, the processor receives reference point data representative of the elevation of the stationary reference point (e.g., a landing threshold point); determines an instant measurement of aircraft height as a function of this input and the instant measurement of aircraft altitude; and generates aircraft height data responsive to such determination.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 27, 2012
    Inventors: Douglas A. Bell, James H. Doty
  • Patent number: 8235328
    Abstract: Embodiments of the invention relate to a flight control system for controlling an aircraft during flight. The flight control system may include a primary controller configured to receive an input from a pilot and to output a primary control signal and a primary transmission path connected to the primary controller and configured to relay the primary control signal. The flight control system may also include a backup controller configured to receive the input from the pilot and to output a backup control signal and a backup transmission path connected to the backup controller and configured to relay the backup control signal. Additionally, the flight control system may include an actuator having a remote electronics unit configured to receive the primary control signal and the backup control signal and to determine if the primary control signal is available and valid.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: August 7, 2012
    Assignee: Gulfstream Aerospace Corporation
    Inventor: Jukka Matti Hirvonen
  • Patent number: 8234068
    Abstract: A present novel and non-trivial system, module, and method for constructing a flight path used by an avionics system are disclosed. A processor receives flight plan data and object data associated with terrain and obstacles. Free cells are extracted above the objects using a recursive space decomposition technique, and a reference path is formed through traversable free space determined from the availability of free cells. In an additional embodiment, threat data associated with hostile military weaponry and significant meteorological conditions could affect the availability of free cells. A genetic algorithm applying genetic operators which include mutators is employed with aircraft kinematic constraints to refine the reference path used to form a population of best path candidates. When a best path is reached after cycling through a re-generation process of path candidates, flight path data representative of the best path is generated and provided to at least one avionics system.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: July 31, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Shih-Yih Young, Kristen M. Jerome
  • Patent number: 8200379
    Abstract: This invention relates to an intelligence system on board an aircraft that detects an emergency, assesses the situation, and then acts on the situation in a pre-determined manner.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 12, 2012
    Inventors: Dario P. Manfredi, Robert La France
  • Patent number: 8191832
    Abstract: A method and device of dynamically reducing the buffeting of an airplane. The method is carried out by detecting a risk of buffeting of the airplane in flight by a monitor. At least one control surface is turned by an actuator arranged at a trailing edge of each wing of the airplane. The control surface is turned, at a predetermined respective rate of turn, into a predetermined respective position to modify lift profile of the wing along a wingspan length to reduce lift in at least one buffeting-generating region of each wing.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 5, 2012
    Assignee: Airbus Operations SAS
    Inventors: Mathieu Berthereau, Michel Mazet
  • Patent number: 8165795
    Abstract: The invention concerns a method for improving determination of inertial navigation parameters (1) of a carrier (1) moving along modelizable kinematic movement components, the method including the following steps: (a) selecting, taking into account a kinematic model (13) of the carrier (1), at least one movement component whereby integration (11) of the inertial measurements (20) is assumed to give a predetermined value, (b) integrating (11) the inertial measurements (20) in accordance with the selected component(s), (c) determining (14) based on the component(s) a variation between the integration (11) obtained at step (b) and the predetermined value of step (a), (d) estimating on the basis of the variation(s) thus obtained a global inertial error resulting from internal errors associated with said modelizable components, and values to be updated of variable parameters of the kinematic model (13), (e) correcting said inertial navigation based on the thus determined global inertial error.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 24, 2012
    Assignee: Sagem Defense Securite
    Inventor: Frédéric Debailleul
  • Patent number: 8155819
    Abstract: The effects of IMU gyro and accelerometer bias errors are significantly reduced in accordance with the present teachings by a system or method for commanding an IMU or vehicle through a series of preprogrammed maneuvers. The maneuvers can be designed to minimize the effects of other gyro errors including scale factor errors, nonlinearities, cross coupling/misalignment, and scale factor asymmetries. A sample maneuver is provided which demonstrates performance based on a sequence of roll and yaw maneuvers resulting in zero build up of error at the end of a maneuver cycle period as a result of these errors. Modification of the system involves the addition of control logic to determine the maneuver period, maneuver rate, and vehicle orientation. No additional hardware beyond possible fuel required to perform the maneuver is required.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 10, 2012
    Assignee: Raytheon Company
    Inventor: Michael A. Barker
  • Patent number: 8121747
    Abstract: Embodiments of a process and a program product are provided suitable for implantation by a flight management system (FMS), which is deployed onboard an aircraft and including a display device and a user interface. The FMS operable in a plurality of non-precision approach modes. In one embodiment, the process includes the steps of: (i) receiving data via the user interface designating an approach in a flight plan; (ii) enabling the pilot to utilize the user interface to select a non-precision approach mode from the plurality of non-precision approach modes if the designated approach is a non-precision approach; and (iii) placing the FMS in the selected non-precision approach mode during the designated approach.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: February 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Dennis David Loots, Erwan Paricaud, Yannick Thebault
  • Patent number: 8095300
    Abstract: A method and device for generating a speed profile for an aircraft rolling on the ground. The device (1) comprises means (8) for automatically determining a speed profile which is suited to successive elements of a ground rolling trajectory and which complies with maximum speeds and particular constraints.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 10, 2012
    Assignee: Airbus Operations SAS
    Inventors: Fabrice Villaume, Pierre Scacchi
  • Patent number: 8083178
    Abstract: In conformance with the invention, based on the incident conditions and velocity, the steering of the ailerons is weakly negative (b0) or corresponds either to the maximum sharpness of the aircraft (b1), or the optimal lift of the latter (b2).
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: December 27, 2011
    Assignee: Airbus Operations SAS
    Inventors: Franck Delaplace, Sophie Lambeaux, Frédéric Sauvinet
  • Patent number: 8052094
    Abstract: A hybrid helicopter includes an airframe provided with a fuselage and a lift-producing surface together with stabilizer surfaces and a drive system including: a mechanical interconnection system between a rotor of radius (R) with collective pitch and cyclic pitch control of the blades of the rotor and at least one propeller with collective pitch control of the blades of the propeller; and at least one turbine engine driving the mechanical interconnection system. The hybrid helicopter includes first members for controlling the angle at which the at least one pitch control surface is set as a function of the bending moment exerted on the rotor mast relative to the pitch axis of the hybrid helicopter, and second members for controlling the cyclic pitch of the blades of the rotor in order to control the longitudinal trim of the hybrid helicopter as a function of flight conditions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: November 8, 2011
    Assignee: Eurocopter
    Inventor: Philippe Roesch
  • Patent number: 7984878
    Abstract: Embodiments of the invention relate to a flight control system for controlling an aircraft during flight. The flight control system may include a primary controller configured to receive an input from a pilot and to output a primary control signal and a primary transmission path connected to the primary controller and configured to relay the primary control signal. The flight control system may also include a backup controller configured to receive the input from the pilot and to output a backup control signal and a backup transmission path connected to the backup controller and configured to relay the backup control signal. Additionally, the flight control system may include an actuator having a remote electronics unit configured to receive the primary control signal and the backup control signal and to determine if the primary control signal is available and valid.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: July 26, 2011
    Assignee: Gulfstream Aerospace Corporation
    Inventor: Jukka Matti Hirvonen