Tilting Patents (Class 244/66)
  • Patent number: 10435132
    Abstract: A fixed housing that is configured to be coupled to a balloon envelope and an impeller housing disposed within the fixed housing, wherein the impeller housing and the fixed housing form a seal in a closed position, wherein the impeller housing is moveable into the balloon envelope relative to the fixed housing in an open position, and wherein the impeller housing defines an unobstructed airflow passageway between an internal chamber in a balloon envelope and the atmosphere in the open position.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 8, 2019
    Assignee: Loon LLC
    Inventor: Keegan Gartner
  • Patent number: 10414491
    Abstract: Disclosed herein is a vertical take-off and landing (VTOL) aircraft. The vertical take-off and landing aircraft includes a single wing, a plurality of engines, a first set of propellers on a first side of the single wing, a second set of propellers on a second side of the single wing, a first power transfer unit, a second power transfer unit, landing gears connected to the single wing, and a fuselage with a capacity of 100 passengers connected to the single wing. The plurality of engines includes a first engine mounted to the first side of the single wing and a second engine mounted to the second side of the single wing.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: September 17, 2019
    Inventor: Kazem Milani
  • Patent number: 10301016
    Abstract: This invention discloses an aerial device (AD) for manned or unmanned flight, comprising a fuselage main body coupled with two or more aerodynamic units via bearings. Each aerodynamic unit is independently moveable and controllable, and thus able to create their own unique aerodynamic vectors, all of which are combined in varying manners to control the flight of the AD. Each unit comprises a structural part, a thruster with a propeller, and a servo wing positioned behind the propeller. More aerodynamic units may be combined with the main body in order to create more control. The units may be programmed or controlled manually to offset or otherwise account for varying environmental conditions such as slope, wind, and turbulence. The apparatus may further be coupled with a PID controller with a multidimensional field of input and output parameters.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 28, 2019
    Assignee: Vimana, Inc.
    Inventors: Dmitriy Bondarev, Timofey Rakhin, Evgenii Borisov
  • Patent number: 10252796
    Abstract: An aircraft includes a wing where a first rotor and a second rotor are coupled to the wing at a fixed position relative to the wing. The aircraft also includes a fuselage and a bearing. The bearing mechanically couples the wing and the fuselage and permits the wing and the fuselage to rotate with respect to each other about an axis of rotation. The bearing permits the fuselage to rotate under the influence of gravity to be in a same orientation relative to ground when the wing is in a first orientation relative to the ground as well as a second orientation relative to the ground.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: April 9, 2019
    Assignee: Kitty Hawk Corporation
    Inventor: Todd Reichert
  • Patent number: 10183746
    Abstract: In some embodiments, an aircraft includes a flying frame having an airframe, a distributed propulsion system attached to the airframe, a flight control system operably associated with the distributed propulsion system and a pod assembly selectively attachable to the flying frame. The distributed propulsion system includes a plurality of propulsion assemblies that are independently controlled by the flight control system, thereby enabling the flying frame to have a vertical takeoff and landing mode and a forward flight mode.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Bell Helicopter Textron Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10131426
    Abstract: The invention relates to an aircraft which can both take off and land vertically and can hover and also fly horizontally at a high cruising speed. The aircraft has a support structure, a wing structure, at least three and preferably at least four lifting rotors and at least one thrust drive. The wing structure is designed to generate a lifting force for the aircraft during horizontal motion. To achieve this the wing structure has at least one mainplane provided with a profile that generates dynamic lift. The wing structure is preferably designed as a tandem wing structure. Each of the lifting rotors is fixed to the support structure, has a propeller and is designed to generate a lifting force for the aircraft by means of a rotation of the propeller, said force acting in a vertical direction. The thrust drive is designed to generate a thrust force on the support structure, said force acting in a horizontal direction. The lifting rotors can have a simple construction, i.e.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: November 20, 2018
    Assignee: Airbus Defence and Space GmbH
    Inventors: Michael Judas, Friederike Stratenberg, Jan Van Toor, Werner Scholz, Berthold Karrais, Wolfgang Stangl
  • Patent number: 10106274
    Abstract: An aircraft is provided and includes a fuselage, first and second wings extending outwardly from opposite sides of the fuselage, proprotors operably disposed on each of the first and second wings to drive vertical take-off and landing aircraft operations and horizontal flight aircraft operations and a refueling system including at least one fuel tank disposed in at least one or more of the fuselage, the first wing or the second wing and a refueling apparatus. The refueling apparatus is coupled to the at least one fuel tank such that fuel is movable with respect to the at least one fuel tank during aircraft ground and aerial operations.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: October 23, 2018
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Mark R. Alber, Charles Gayagoy, Jeffrey Parkhurst, Glenn D. Tiongson
  • Patent number: 9896199
    Abstract: A rotor hub can include a yoke, a mast, and one or more radially oriented actuators. The first radial actuator and the second radial actuator each have a piston configured to impart a translation of the yoke relative to the mast. The radial actuators are configured to attenuate in-plane whirling vibrations. The rotor hub can also have actuators coupled between the mast and the yoke for attenuating flapping and vertical vibrations.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 20, 2018
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Christopher Foskey, Drew Sutton, Frank B. Stamps
  • Patent number: 9708059
    Abstract: Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: July 18, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINSTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: Michael J. Logan, Mark A. Motter, Richard Deloach, Thomas L. Vranas, Joseph M. Prendergast, Brittney N. Lipp
  • Patent number: 9169005
    Abstract: A drive unit (16) for an aircraft running gear (2) having at least a first wheel (4) and a second wheel (6) on a common wheel axis (A) is characterized in that the drive unit (16) is drivingly coupleable to the first and second wheels (4, 6) such that a direction of longitudinal extension (C) of the drive unit (16) is in a plane orthogonal to the common wheel axis (A).
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 27, 2015
    Assignee: L-3 Communications Magnet-Motor GmbH
    Inventors: Johann Oswald, Manfred Heeg
  • Patent number: 9108728
    Abstract: The invention is a modular vehicle having an air vehicle that can be coupled to cargo containers, land vehicles, sea vehicles, medical transport modules, etc. In one embodiment the air vehicle has a plurality of propellers positioned around a main airframe, which can provide vertical thrust and/or horizontal thrust. One or more of the propellers may be configured to tilt forward, backward, and/or side-to-side with respect to the airframe.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: August 18, 2015
    Inventor: Donald Orval Shaw
  • Patent number: 8960591
    Abstract: A convertiplane having a fuselage with a first axis; and two rotors having respective shafts and fitted to a wing having a fixed portion connected to the fuselage, and a movable portion which supports the rotors, is connected to the fixed portion to rotate about a second axis crosswise to the first axis and to the shafts of the rotors, and is formed in one piece defined by two half-wings located on opposite sides of the fixed portion and each supporting a respective rotor, and by an elongated member extending along the whole wing and connecting the two half-wings; the rotors being powered by a motor via a transmission comprising a transmission shaft connecting the shafts of the rotors and coaxial with the second axis.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: February 24, 2015
    Assignee: Alenia Aermacchi S.p.A.
    Inventor: Santino Pancotti
  • Patent number: 8800912
    Abstract: A vertical takeoff and landing aircraft having at least three wings and at least six propulsion units, each of which are located radially from two adjacent propulsion units, by equal or substantially equal angles. The at least six propulsion units together being located symmetrically, or at substantially symmetric positions, about the approximate center of gravity of the aircraft, when viewed from above. A vertical stabilizer may or may not be employed. If no vertical stabilizer is employed, yaw control during horizontal flight may be achieved through differential thrust using the at least six propulsion units. Yaw control during vertical flight may be provided by a plurality of yaw control panels. Absent yaw control panels, yaw control during vertical flight may be provided using differential propulsion unit tilt angles.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: August 12, 2014
    Assignee: Oliver VTOL, LLC
    Inventor: Richard David Oliver
  • Patent number: 8777150
    Abstract: There is described a convertiplane comprising a pair of semi-wings, a first and a second rotor which may rotate about relative first axes and tilt about relative second axes together with first axes with respect to semi-wings between a helicopter mode and an aeroplane mode; first axes are, in use, transversal to a longitudinal direction of convertiplane in helicopter mode, and are, in use, substantially parallel to longitudinal direction in aeroplane mode; first and second rotors may tilt about relative second axes independently of each other.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 15, 2014
    Assignee: Agustawestland S.p.A.
    Inventor: James Wang
  • Patent number: 8708273
    Abstract: A vertical takeoff and landing aircraft having a fuselage with, preferably, three wings and six synchronously tilt-able propulsion units, each one mounted above, below, or on each half of the aforementioned three wings. The propulsion units are oriented vertically for vertical flight and horizontally for forward flight. Each propulsion unit comprises a propeller having a plurality of blades, where the pitch angle associated with the distal end of each blade and the proximal end of each blade are independently adjustable. As such, each of the propellers can be adjusted to exhibit a first blade pitch angle distribution optimized for vertical flight and a second blade pitch angle distribution optimized for forward flight.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 29, 2014
    Assignee: Oliver Vtol, LLC
    Inventor: Richard David Oliver
  • Patent number: 8579226
    Abstract: A power assisted flying device is powered via a vector thrust control apparatus supporting the motor where the vector thrust control apparatus includes a gyratory group that allows the motor to pivot up and down and from side to side. At least two servo motors are attached to the vector thrust control apparatus to move said motor up and down and from side to side. Alternatively, the flying device may incorporate a non-rotating outer ring and a rotating inner ring disposed around a shaft. At least two servo motors are connected to the non-rotating outer ring and the rotating inner ring in relation to the rotational axis. At least two linkage rods connect between the rotating inner ring and the propeller. Tilting of the non-rotating outer ring is transmitted to the propeller to effectuate at least one of cyclic pitch modulation or teetering hub modulation of the propeller.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 12, 2013
    Assignee: Premier Kites, Inc.
    Inventors: Valentine Deale, Peter Loehnert
  • Patent number: 8271149
    Abstract: The difference between a first position of a first pylon of a tiltrotor aircraft and a second position of a second pylon of the aircraft is prevented from becoming too large. An actuator position error for the first pylon is calculated from a difference between the first position and a commanded first position of the first pylon. An actuator position error for the second pylon is calculated from a difference between the second position and a commanded second position of the second pylon. An absolute value of the actuator position error for the first pylon is compared to the preset limit. If the absolute value of the actuator position error for the first pylon is greater than or equal to a preset limit, the actuator position error for the second pylon is calculated from the difference between the first position and the second position.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: September 18, 2012
    Assignee: Bell Helicopter Textron Inc.
    Inventor: Kenneth E. Builta
  • Patent number: 8245966
    Abstract: A propulsion unit for an airship comprises a driveshaft, having a gimbal mount to a mounting frame attachable to a fuselage, the gimbal being mounted in the mounting frame and comprising an inner ring and an outer ring having orthogonal rotational axes, the inner ring including a propeller unit having a conical housing pivotable on trunnions with the gimbal and a propeller affixed to a propeller shaft coaxial with the axis of the conical housing. The outer ring includes a toroidal Orientation of the conical housing and propeller shaft is accomplished by actuators, a first actuator controlling the angle of the outer ring relative to the framework and a second actuator controlling the angle of the conical housing relative to the outer ring.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: August 21, 2012
    Assignee: 21st Century Airship Technologies Inc.
    Inventor: Hokan S. Colting
  • Patent number: 7871035
    Abstract: A propulsion system for an airship or hybrid aircraft includes a propeller and a pivot mechanism connected to the propeller. The pivot mechanism enables the propeller to pivot around a first pivot axis between a maneuver thruster position and an emergency ballonet fill position. Under normal conditions, when the propulsion system is disposed in the maneuver thruster position, the pivot mechanism also enables the propeller to pivot around a second pivot axis to control the attitude and thrust of the vehicle. However, in an emergency descent situation, the propeller may be rotated to the emergency ballonet fill position.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: January 18, 2011
    Assignee: Hamilton Sundstrand Corporation
    Inventor: David V. Arel
  • Publication number: 20090072082
    Abstract: A propulsion system for an airship or hybrid aircraft includes a propeller and a pivot mechanism connected to the propeller. The pivot mechanism enables the propeller to pivot around a first pivot axis between a maneuver thruster position and an emergency ballonet fill position. Under normal conditions, when the propulsion system is disposed in the maneuver thruster position, the pivot mechanism also enables the propeller to pivot around a second pivot axis to control the attitude and thrust of the vehicle. However, in an emergency descent situation, the propeller may be rotated to the emergency ballonet fill position.
    Type: Application
    Filed: April 11, 2007
    Publication date: March 19, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventor: David V. Arel
  • Patent number: 7143973
    Abstract: The present invention provides a tilt rotor aircraft having a centrally mounted tiltable engine and rotor assembly. A turbine or other type of engine (or engines) is pivotally mounted on a central frame above and between the pilot and co-pilot, who occupy separate and identical control cockpit pods on either side of the engine. Placing the engine between the pilot and copilot maintains the CG within a narrow band in both horizontal and vertical flight modes, simplifying control and handling. Counter-rotating propellers may be driven by the engine(s) to eliminate torque effects. By mounting the engine and rotor package between and above the pilot and copilot, the rotor can be made to clear the ground, allowing the aircraft to land like an ordinary fixed-wing aircraft without damaging the propellers. Thus, the craft can be launched and landed in VTOL, HTOL, or STOL configurations, depending upon conditions and available landing and takeoff sites.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 5, 2006
    Inventor: Kenneth Sye Ballew
  • Patent number: 7059562
    Abstract: A disclosed vertical lift flying craft includes a lift unit that, during operation, develops a force including an upward component. A payload unit suspends from the lift unit. The payload unit suspends from the lift unit in such a way as to impart lateral stability while remaining capable of horizontal flight, without incurring the adverse effects of a downward pitching moment. In addition to a lift unit and a payload unit, the vertical lift flying craft includes a pair of bearings and a suspension structure, which cooperate to suspend the payload unit from the lift unit. Other systems and methods are also disclosed.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 13, 2006
    Inventor: G. Douglas Baldwin
  • Patent number: 6969028
    Abstract: A scarf nozzle for a jet engine supported within a nacelle. The scarf nozzle is at an aft end of the nacelle. The scarf nozzle includes a first trailing edge portion and a second trailing edge portion. The second trailing edge portion is disposed aft of the first trailing edge portion. The scarf nozzle is configured to allow the nacelle to be integrated closer to a wing without adversely affecting the pressure gradient between the nacelle and the wing. The scarf nozzle allows a portion of an exhaust plume exiting the aft end of the nacelle to interact more favorably with an airflow along one or more surfaces adjacent the nacelle, thus delaying the onset of adverse pressure gradients and the formation of shock waves between the nacelle and the adjacent surfaces and between the adjacent surfaces and the exhaust plume.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: November 29, 2005
    Assignee: The Boeing Company
    Inventor: Roy Dun
  • Patent number: 6915983
    Abstract: A pivoting power transmission unit is provided for driving a tiltable rotor of a convertible aircraft. The casing of the pivoting transmission unit comprises a lower casing, by which the casing is able to pivot on a support by two bearings each having a stationary part integral with the support and a swivelling part. The lower casing is assembled to an upper casing in which a drive shaft connected in rotation to gears housed in the casing is mounted so as to rotate about an axis of rotation perpendicular to the pivot axis of the casing. The upper casing is supported by an arrangement configured to transfer to the support via said bearings load/thrust forces experienced by the drive shaft during use.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: July 12, 2005
    Assignee: Eurocopter
    Inventors: Lionel Thomassey, Thierry Sandrart
  • Patent number: 6883750
    Abstract: A powerplant system for a vehicle such as a hybrid UAV includes a miniature gas turbine engine and a gearbox assembly. The engine is mounted to the gearbox assembly through a support structure which provides for pivotal movement of the engine relative thereto. The input gear is engaged with two gears such that the pivoted engine arrangement permits the input gear to float until gear loads between the input gear and the first and second gear are balanced. Regardless of the gear teeth errors or gearbox shaft misalignments the input gear will float and split the torque between the two gears.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 26, 2005
    Assignee: Sikorsky Aircraft Corporation
    Inventor: Yuriy Gmirya
  • Patent number: 6783096
    Abstract: A disclosed vertical lift flying craft includes a lift unit that, during operation, develops a force including an upward component. A payload unit suspends from the lift unit. The payload unit suspends from the lift unit in such a way as to impart lateral stability while remaining capable of horizontal flight, without incurring the adverse effects of a downward pitching moment. In addition to a lift unit and a payload unit, the vertical lift flying craft includes a pair of bearings and a suspension structure, which cooperate to suspend the payload unit from the lift unit. Other systems and methods are also disclosed.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 31, 2004
    Inventor: G. Douglas Baldwin
  • Patent number: 6708920
    Abstract: Disclosed is an air vehicle (Z) comprising a vehicle body (1); hollow fan ducts (3A-3D) supported to and elongating through the vehicle body at least at its foreside and rear-side locations, respectively. Each fan duct communicates with air at top and bottom of the vehicle body and has a fan (9A-9D) at a top opening (6). The air vehicle further comprises rotary engines (11) each installed inside of each fan duct to rotate the fan. In a preferred embodiment, a cylinder (13) of the rotary engine is mounted to a supporting housing (25) of the fan duct via elastic means (29) which may be fitted to a boss structure (26) of the supporting housing. Each fan duct is tiltable to any directions. Preferably, the fan ducts comprise a pair of front fan ducts (3A, 3B) and another pair of rear fan ducts (3C, 3D) supported to the rear-side of the vehicle body, and the rotary engines in diagonally located fan ducts (3A and 3D; 3B and 3C) are driven to rotate in the same direction.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: March 23, 2004
    Assignee: New Scientific R&D Institute Inc.
    Inventor: Koki Fukuyama
  • Patent number: 6695264
    Abstract: The present invention is a power lever tactile cueing system for providing tactile alerts to pilots as operational limits of an aircraft are approached. The cueing system generates a tactile cue comprising a variable dive rate and a variable friction force on a power lever of an aircraft. The cueing system provides spring-like tactile cues when power commands reach a predetermined operating limit, without the use of mechanical springs. The cueing system trims down the power lever position and provides the additional friction force based upon aircraft and engine state. The cueing system remains activated until the aircraft is again operated within its operational limits. The pilot may override the cueing system in certain situations.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: February 24, 2004
    Assignee: Bell Helicopter Textron, Inc.
    Inventors: Joseph M. Schaeffer, David W. King, Anil Mehra
  • Patent number: 6457672
    Abstract: The propulsion nacelles of a tilt-rotor type aircraft are adjustably positioned on the aircraft wings under control of a programmed actuator in response to error signals produced by change in angle of attack between the aircraft fuselage and the air stream to minimize drag imposed on the aircraft by the air stream during flight.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: October 1, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Tsze C. Tai
  • Patent number: 6340133
    Abstract: The present invention relates to a system for the transformation of a traditional self-sustained horizontal take-off and landing aircraft into hybrid, integrated, self-sustained vertical take-off and landing and horizontal flight comprising, besides the propulsion system already provided in the aircraft, a hydraulic propulsion system, activating at least a blade rotor (1), to be used during the vertical take-off and landing and transition phases, said hydraulic system being powered by the engines of the aircraft, and at least an auxiliary engine (2), provided in a rear position and/or under the aircraft, said at least an auxiliary engine being progressively tiltable and swingable between two limit positions, respectively vertical position and horizontal position, said standard propulsion means of the aircraft being deactivated during the vertical take-off and landing and the transition and activated during the self-sustained horizontal flight, and said at least an auxiliary engine and said at least one auxili
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: January 22, 2002
    Inventor: Franco Capanna
  • Patent number: 6286783
    Abstract: An aircraft has a fuselage designed essentially as an aerostatic lift body. Combined lift and propulsion devices are articulated on the fuselage, are provided with propellers and form propulsion units and which in each case can tilt between a lift position, in which the respective propeller rotation plane is essentially horizontal and a propulsion position, in which the respective propeller rotation plane is essentially vertical. Additionally the propeller rotation plane has all-round inclination relative to the output shaft of the associated drive device.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: September 11, 2001
    Inventor: Hermann Kuenkler
  • Patent number: 6260793
    Abstract: To provide aerodynamic continuity between the front part, pivoting with the rotor, and the stationary rear part of a pod housing an engine for driving the rotor, a curved cowl curved about the pivot axis extends the rear edge of the bottom cowling of the front part to join this rear edge to the front edge of a bottom cowling of the stationary rear part, in helicopter mode, and a flap swivel-mounted on the top cowling of the front part joins this latter to the top cowling of the stationary rear part, onto which this flap is folded, in helicopter mode.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: July 17, 2001
    Assignee: Eurocopter
    Inventors: Frédéric Balayn, Eric Magre
  • Patent number: 6227481
    Abstract: An improved tilting rotor aircraft, a control system for an elongated shaft, and a method of controlling an elongated shaft are provided. Sensors are utilized to detect an amount of twist on a flexible and elongated shaft. A controller receives the signal and generates a command signal. A plurality of actuators receive the command signals and compensate for the twist in the flexible and elongated shaft.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: May 8, 2001
    Assignee: Bell Helicopter Textron, Inc.
    Inventors: Carlos Alexander Fenny, Kenneth Eugene Builta
  • Patent number: 6161800
    Abstract: A tiltrotor aircraft includes a spanwise-flow redirector having a pair of flow-redirection panels respectively mounted on the aircraft's mid-fuselage area for rotation about a panel pivot axis between a stowed position and a deployed position. In the stowed position, each panel is substantially flush with an adjacent surface of the mid-fuselage area. In the deployed position, each panel is raised into the path of one of the inbound spanwise flows generated by the aircraft's rotors during hover operation, whereupon each panel redirects the respective one of the inbound spanwise flows either forward or aft of the other inbound spanwise flow. In this manner, the deployed panels prevent stagnation of the inbound spanwise flow atop the mid-fuselage area while further serving to minimize re-ingestion of merged spanwise flow into the rotors, resulting in decreased airframe download forces, increased rotor thrust, and reduced noise levels during hover operation.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: December 19, 2000
    Assignee: The Boeing Company
    Inventors: John Liu, Michael A. McVeigh, Robert J. Mayer
  • Patent number: 5868351
    Abstract: Rotor blade stowing system for stowing rotor blades that conserves storage space without adding significant weight or cost to the aircraft. The system includes a rotary actuator disposed on a blade grip member. A rotor blade is pivotally connected to the blade grip member. The rotary actuator is operably coupled to a blade pivoting cam and a locking cam. The system includes a cam follower linkage which has a first end which includes a blade pivoting cam follower and a locking cam follower and a second end. The blade pivoting cam follower follows the blade pivoting cam. The locking cam follower follows the locking cam. The second end of the cam follower linkage is coupled to the blade grip member. The system includes a shaft rotatably coupled to the blade grip member, a locking linkage bell crank operably coupled to the shaft, a delay cam coupled to the blade grip member, and a locking linkage idler operably coupled to the locking linkage bell crank.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: February 9, 1999
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Frank B. Stamps, Joe J. Zierer, Cecil E. Covington, Charles L. Baskin, Glenn Shimek
  • Patent number: 5839691
    Abstract: A vertical takeoff and landing aircraft has a fuselage with a wing located above the fuselage at the rearward end and with a horizontal stabilizer located at the forward end. The propellers are mounted on booms separate from the wings and located just behind the center of gravity of the aircraft. The propellers are pivotable between horizontal and vertical axes and brakes are provided to allow locking of propeller position. When the brakes are released, the propellers automatically pivot between vertical and horizontal orientations and vice-versa based upon control of the aircraft by the pilot.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: November 24, 1998
    Inventor: Jean Soulez Lariviere
  • Patent number: 5823468
    Abstract: A hybrid aircraft is taught having VTOL, R-VTOL and S-STOL capabilities. The aircraft has a lifting body hull and four wing sections arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers to the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system.
    Type: Grant
    Filed: October 24, 1995
    Date of Patent: October 20, 1998
    Inventor: Hans-Jurgen Bothe
  • Patent number: 5758844
    Abstract: The vehicle includes a fuselage; a plurality of lifting surfaces attached to the fuselage having control devices attached thereto; and, an articulated propulsion system attached to the fuselage. The propulsion system includes a duct assembly pivotally connected to the fuselage. The duct assembly includes a duct and a propeller assembly mounted within the duct. A motor assembly is connected to the propeller assembly. The duct assembly may be positioned in a substantially vertical position to provide sufficient direct vertical thrust for vertical take-off and landing and may be directed in other positions to provide a varying spectrum of take-off and landing configurations, as well as a substantially horizontal position for high speed horizontal flight. Use of the control surface in the ducted propulsion assembly provides VTOL capability in a very small environment. The environment is not required to be prepared in any special manner.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: June 2, 1998
    Assignee: Boeing North American, Inc.
    Inventor: Darold B. Cummings
  • Patent number: 5709357
    Abstract: The invention relates to a tiltrotor helicopter comprising a fuselage (1), a wing arrangement (2) and at least one power plant (5), and including two contrarotating, cyclically controllable rotors (7, 8) which are spaced from one another in the longitudinal direction of the fuselage and arranged substantially on a longitudinal axis of the fuselage (1) as well as being respectively tiltable out of a first tilted position for helicopter flight into a second tilted position for airplane flight, the first rotor (7) being arranged at the front end of the fuselage (1) and substantially above the same and the second rotor (8) being arranged at the rear end of the fuselage (1) and substantially beneath the same, and the first rotor (7) being tiltable about a tilting axis (17) extending substantially perpendicularly to the longitudinal axis of the fuselage (1) out of the first tilted position downwardly and in front of the fuselage (1) into the second tilting position and the second rotor (8) being tiltable about a ti
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: January 20, 1998
    Inventor: Kaspar Freiherr von Wilmowsky
  • Patent number: 5622133
    Abstract: The transport facility with dynamic air cushion, which has a hull, a wing with flaps, and a tail empennage. A power system turns propellers connected with a transmission. The propellers are installed in front of the wing. Pneumatic cylinders are located at the ends of the wings parallel to the fore-and-aft axis of the transport facility. The engine is installed inside the hull and the propellers, used for a power-augmented ram technique, are driven by the transmission system connected to the engine. Turning pylons connected to the propeller bosses change the propellers rotation plane within the angle (.alpha.=0.degree.-80.degree.). The pylons are installed on the hull. The tail empennage consists of two fins and a stabilizer installed on the fins. A retractable elastic pneumatic ski is installed at the lower bow surface of the hull. The lower surface of the ski, in a release position, is located below the lower surface of the side pneumatic cylinders.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: April 22, 1997
    Assignee: Seagull Decor Co., Ltd.
    Inventors: Dmitry N. Sinitsyn, Vladislav G. Alyamovsky, Anatoly A. Antonov, Genrich L. Radovitsky, Vladimir V. Tomilin, Leonid O. Litinsky, Vladimir V. Shmelev
  • Patent number: 5597137
    Abstract: A vertical take-off and landing aircraft has an upwardly-open U-shaped channel extending from a front edge to a rear edge of each of two fixed wings and a thrust providing device, such as a propeller, mounted for tilting at the rear end of the channel. The thrust providing device has an inlet at which low pressure is produced by drawing in air along a path and the thrust providing device is tilted to vary the angle of the air drawing-in path relative to the wing and effect vertical take-off and landing by variably enhancing the lift of the wing.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: January 28, 1997
    Inventor: Willard Skoglun
  • Patent number: 5405105
    Abstract: A tilt wing VTOL aircraft has a fuselage with sides and an upper surface, an upper wing having a leading edge, a trailing edge, a chord, a lower surface and an upper surface. The wing is pivotally mounted on the fuselage for rotation from a cruise flight position in which the upper surface of the wing is flush with the upper surface of the fuselage to a hover position in which the wing is perpendicular to the upper surface of the fuselage. Aircraft engines are mounted on the wing. The aircraft has a pair of flaps at the trailing edge of the wing, each located between the fuselage and an engine and each spaced the same distance from the fuselage and each of the engines. The flaps are mounted for selective movement from colinearity with the chord of the wing to a first angle of about +30.degree. with the chord and about 30.degree. with the upper surface of the wing and to a second angle of about -30.degree. with the chord and about 30.degree. with the lower surface of the wing.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: April 11, 1995
    Assignee: Hudson Valley V/STOL Aircraft, Inc.
    Inventor: Robert W. Kress
  • Patent number: 5381985
    Abstract: A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight.
    Type: Grant
    Filed: April 23, 1992
    Date of Patent: January 17, 1995
    Assignee: McDonnell Douglas Helicopter Co.
    Inventors: James K. Wechsler, John W. Rutherford
  • Patent number: 5295641
    Abstract: System for reducing vibrations in the cabin of an aircraft driven by two or more propellers each having n blades (n being an integer equal or larger than 2) of which the relative phase angle can be adjusted, said system comprising synchrophase means for adjusting said relative phase angle such that a predetermined relative phase angle is maintained. The system furthermore comprises means supplying information about the vibration level at one or more positions within the cabin or thereto related information and for generating a thereto corresponding level signal, and a control unit which in response to said level signal supplies an error signal to the synchrophase means causing the synchrophase means to adjust the blades of the various propellers such that a new relative phase angle is maintained which differs m.(2.pi./n) radians (m being an integer) from the previous relative phase angle.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: March 22, 1994
    Assignee: Fokker Aircraft B.V.
    Inventor: Dick Kaptein
  • Patent number: 5141176
    Abstract: A tilt wing VTOL aircraft has an upper wing with a leading edge, a trailing edge, an inboard area adjacent the fuselage, spaced opposite end tip areas and an upper surface. The wing is pivotally mounted on the fuselage for rotation from a cruise position in which the upper surface of the wing is flush with the upper surface of the fuselage to a hover position in which the wing is perpendicular to the upper surface of the fuselage. The wing has a forward portion in the leading edge of the inboard area affixed to the fuselage and cut out of the wing and an aft portion in the trailing edge of the inboard area affixed to the fuselage and cut out of the wing.
    Type: Grant
    Filed: June 12, 1991
    Date of Patent: August 25, 1992
    Assignee: Grumman Aerospace Corporation
    Inventors: Robert W. Kress, David F. Gebhard
  • Patent number: 5054716
    Abstract: A drive system for a tiltrotor aircraft that provides for the operation of both proprotors by either engine or by both engines. The drive system provides an interconnecting drive shaft that extends between and connects the engines in such a manner that power is transferred from one engine to the opposite proprotor in the case of an engine failure. Also, the arrangement provides for the operation of a redundant essential systems for the aircraft should an electrical or hydraulic system fail to operate properly.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: October 8, 1991
    Assignee: Bell Helicopter Textron Inc.
    Inventor: Harold K. Wilson
  • Patent number: 4979698
    Abstract: A rotor system for a rotor convertible fixed winged aircraft comprising a rotatable rotor shaft mounted on one of the wings of the aircraft, the shaft tiltable between a substantially vertical position and a substantially horizontal position, a rotor mounted to the shaft and including at least one blade, the blade having an adjustable blade angle relative to the shaft, apparatus for tilting the shaft between the vertical and horizontal positions, controls responsive to the tilting of the shaft for automatically adjusting the blade angle of a blade to an autogyro blade angle when the shaft is in the vertical position and to a substantially feathered blade angle when the shaft is in the horizontal position.
    Type: Grant
    Filed: July 11, 1989
    Date of Patent: December 25, 1990
    Inventor: Paul Lederman
  • Patent number: 4856732
    Abstract: An airborne craft with at least four propellers arranged in a front propeller pair and a rear propeller pair having substantial vertical or forwardly inclined axes has hydraulic motors which drive the propellers. A pumping device supplies two pairs of separated flows to the motors. One pair of the flows has fixed delivery and equal flow quantities per revolution of the pump while the other pair has variable flow-rates but the flow quantities of both flows of the variable flow pair are also equal relatively to each other. One of the flow pairs drives the front propellers at equal speeds and the other pair of flows drives the rear propellers with equal speeds. But the variability of the rates of flow of one of the pairs of flows is utilized to let one of the pairs run with a different rotary velocity of the propellers than the other pair.
    Type: Grant
    Filed: May 1, 1987
    Date of Patent: August 15, 1989
    Inventor: Karl Eickmann
  • Patent number: 4546938
    Abstract: A power unit for a hang-glider (1) or the like comprises a combustion motor (2) connected to one end of a drive shaft (9) and a propeller (10) connected to the other end of the drive shaft. To enable the power unit to be used both with pulling or traction-force propellers and pushing propellers (10) there is provided between the drive shaft (9) and the shaft (22) of the propeller (10) a flexible coupling (14) which enables the angle between the drive shaft and the propeller shaft to be adjusted at least in a vertical direction.
    Type: Grant
    Filed: September 22, 1982
    Date of Patent: October 15, 1985
    Inventor: Jerzy W. Kolecki
  • Patent number: 4537372
    Abstract: A fuselage is provided including front and rear ends, opposite side and top and bottom portions. A pair of laterally spaced front-to-rear extending elongated support structures are supported from opposite sides of the fuselage with the front and rear ends of the support structures extending forward and rearward of the fuselage. A pair of front and rear tubular wings are oscillatably supported between the front and rear ends of the support structures for angular displacement about axes extending between corresponding ends of the support structures and disposed generally along diametric planes of the tubular wings. The tubular wings include inlet and discharge ends and control structure is connected between the tubular wings and the support structures operative to simultaneously and equally angularly adjust the tubular wings relative to the support structures between upright positions with the inlet ends opening upwardly and horizontal positions with the inlet ends opening forwardly.
    Type: Grant
    Filed: May 6, 1983
    Date of Patent: August 27, 1985
    Inventor: Lorant Forizs