Abstract: A wireless power transfer system for a train that includes one or more locomotive units with an energy storage system and one or more passenger cars units that transmit power to the one or more locomotive units. The wireless power transfer system includes one or more HEP cables through which power is provided from the one or more passenger car units to the one or more locomotive units, one or more wireless power transfer (WPT) transmitters mounted to the rail separate from the train, a WPT receiver on one of the one or more passenger cars configured to receive power from one of the one or more WPT transmitters, and an inverter on the one of the one or more passenger car units connected to the HEP cables. The inverter receives power from the WPT receiver and sends the power to the energy storage system through the HEP cables.
Abstract: A train control system with pulse code-modulated cab signaling, especially for defining traveling speeds, includes a code generator acting upon a signal generator in dependence on a direction of travel. An output signal of the signal generator is supplied to a current track circuit covering a track section. In order to economize on components, the signal generator includes a transmitting device for modulating the input signals of both code generators. The transmitting device is connected to circuit connection adaptation devices on one of two entry ends of the track section through travel direction-specific outputs.
Abstract: A device detects an occupied state or a free state of a track section and has a transmitter for feeding a transmission signal in the form of an alternating voltage into the running rails of the track section and at least one receiver for receiving a reception signal which is brought about by a transmission of the transmission signal via the running rails of the track section. In order to be able to detect faults in the device, in particular cable faults, particularly reliably and at the same time cost-effectively, the device accordingly is configured to determine a phase shift between the transmission signal and the reception signal. A method for operating such a device is further disclosed.
Abstract: A method for detecting railway vacancy is provided. The method includes sensing, at a remote sensing unit positioned proximate to a railway, a presence of a railcar traversing the railway. The method also includes storing, in real-time, at the remote sensing unit, a sensing event indicative of the sensed presence of the railcar traversing the railway and transmitting, asynchronously from the time at which the presence of the railcar was sensed at the remote sensing unit, the stored sensing event to a master accumulation unit.
Type:
Grant
Filed:
May 7, 2008
Date of Patent:
May 28, 2013
Assignee:
General Electric Company
Inventors:
James Kiss, John McElroy, Charles Terra
Abstract: A remote control system for controlling movement of a train comprises one or more sensors positioned relative to a railroad track for detecting the presence of a lead railcar on the track being pushed by a remotely controllable locomotive. The one or more sensors are spaced a distance from a predetermined stop location of a lead railcar and transmit signals when the lead railcar is detected on the track. A programmable controller positioned off-board or wayside receives signals from the one or more sensors and is in radio communication with an onboard operating system of the locomotive. The controller transmits a signal to the locomotive when the lead railcar is detected by a sensor, and in response to the signal the operating system of the locomotive sets a maximum speed setting for the locomotive to travel on the track toward the stop location.
Abstract: Trains and points are patrolled by a telegram containing the block occupancy information as a section that only one train is permitted to occupy, the information for giving lock position instructions to a point, and the point position information. This telegram is updated in order to get the right of block occupancy that is not held by other trains, and to give lock position instruction to the point. The train checks the block which this train is allowed to occupy, confirms that the point in this block has been set to the lock position specified by this train. Reading the aforementioned telegram, the point checks the lock position instruction given to itself and controls its lock position. A signaling system characterized by reduced designing and manufacturing costs is provided.
Type:
Grant
Filed:
February 15, 2006
Date of Patent:
July 13, 2010
Assignee:
Hitachi, Ltd.
Inventors:
Keiichi Katsuta, Yoichi Sugita, Dai Watanabe, Takashi Yamaguchi
Abstract: A method for determining whether a defined section of a transportation track is occupied is described. The method includes inducing an audio frequency (AF) signal at a first position on the transportation track and receiving the AF signal at a second position on the transportation track. The defined section of the transportation track is located between the first position and the second position on the transportation track. The method further includes measuring a strength of the AF signal received as a function of time at the second position, and identifying an inflection point of the recorded AF signal strength. The inflection point indicates at least one of a rail vehicle entering the defined section of the transportation track and the rail vehicle exiting the defined section of the transportation track. The method further includes determining an occupancy of the defined section of the transportation track, based on the inflection point.
Abstract: A geographic information system (GIS) displays geographic roadway data, geographic track data and geographic train position data. The GIS includes a GIS database having static roadway and track data. A computer aided dispatching (CAD) system includes a task to determine an occupied track section. A web server includes a first routine determining geographic starting and ending positions of the track section, a second routine displaying geographic information regarding the static roadway and track data, and a third routine determining geographic information regarding the occupied track section from the geographic starting and ending positions of the track section and from the GIS database. A client system communicates with the web server to receive and display the geographic information regarding the static roadway and track data, and to receive and display the geographic information regarding the occupied track section with the geographic information regarding the static roadway and track data.
Abstract: A geographic information system (GIS) displays geographic roadway data, geographic track data and geographic train position data. The GIS includes a GIS database having static roadway and track data. A computer aided dispatching (CAD) system includes a task to determine an occupied track section. A web server includes a first routine determining geographic starting and ending positions of the track section, a second routine displaying geographic information regarding the static roadway and track data, and a third routine determining geographic information regarding the occupied track section from the geographic starting and ending positions of the track section and from the GIS database. A client system communicates with the web server to receive and display the geographic information regarding the static roadway and track data, and to receive and display the geographic information regarding the occupied track section with the geographic information regarding the static roadway and track data.
Abstract: A system for automatic and guided transport of people, the system including: at least one running track having guide members for guiding transport modules; an electric power supply system comprising a sequence of power supply blocks; electric self-propelled transport modules travelling individually along the running track and fitted with a collector for picking up electric power supplied by the power supply blocks; and an electric power supply distributor controlled by a central control unit managing the progress of the transport modules by powering or unpowering various power supply blocks.
Type:
Grant
Filed:
May 6, 2002
Date of Patent:
August 21, 2007
Assignees:
Alstom, Regie Autonome des Transports Parisiens
Inventors:
Jean Ehrsam, Jean-Paul Moskowitz, Anselme Cote
Abstract: In order to propose a method of promptly judging movement of a train between block sections with a minimum number of transponders, an on-ground train control part for controlling operation of a train; an on-ground communication means capable of performing communication of information by coming within a specified range; and a sending-and-receiving part capable of sending the information received by the on-ground communication device to the on-ground train control part and receiving the information sent from the on-ground train control part, are provided, thereby, a position of presence of train is grasped by receiving a speed of the train using the on-ground communication means when the on-train communication means attached to the train comes near.
Type:
Grant
Filed:
December 18, 2003
Date of Patent:
August 29, 2006
Assignee:
Hitachi, Ltd.
Inventors:
Yoichi Sugita, Dai Watanabe, Takatoshi Miyazaki, Kiyoshi Chiba
Abstract: A train control system includes a control module that determines a position of a train using a positioning system and consults a database to determine when the train is approaching a portion of track monitored by a track circuit. When the train is near a track circuit, but while the train is still far enough away from the track circuit such that the train can be stopped before reaching the portion of track monitored by the track circuit, the train transmits an interrogation message to a transceiver associated with the track circuit. When the track circuit receives the interrogation message, a test is initiated. The test results are transmitted back to the train. The train takes corrective action if the track circuit fails to respond or indicates a problem.
Type:
Grant
Filed:
October 10, 2002
Date of Patent:
January 25, 2005
Assignee:
Quantum Engineering, Inc.
Inventors:
Mark Edward Kane, James Francis Shockley, Harrison Thomas Hickenlooper
Abstract: The invention relates to a decision procedure in combinational logic which requires a computing time of n for determining the congestion of a railway track system. The railway track system supports n trains, each with a route length of m itineraries. Prior to setting a requested route segment for a given train, a query is performed to check train positions and whether the given train is allowed to travel on the track sectors to be used for the requested route segment, without causing a possibility that the track system may become congested. The processing steps can be reduced. a) verification of whether a train can reach the next immediate track sector of a route; b) verification for a two-train variation whether a reference position of the first train prevents the second train from traveling on its route; c) new dependencies are created using transitivity and for combinations of two trains, a verification is made whether a cogent sequence exists.
Abstract: A solid state crossing controller for a railroad crossing signal system with two independent outputs for controlling illumination of lamps in the signal system share a common neutral or return wire, with sensing of a common neutral or return line shared by the two independent outputs to determine any loss of the neutral line. When a failure has been detected in the neutral line, the controller modifies the voltages for the lamps in the signaling system for better illumination of the lamps during the failure condition, such as to the highest voltage available from a battery in the system. Upon detection of the failure in the neutral line, the controller may provide a call or message that there is a failure in the system that is in need of repair. If the failure in the neutral line is intermittent, the controller will resume normal operation after that train, has cleared the crossing. However, a call or message that a failure has occurred in the neutral line is provided.
Type:
Application
Filed:
April 10, 2003
Publication date:
October 14, 2004
Inventors:
Thomas Knowles, Rakesh Malhotra, Hung Pham, John Sharkey
Abstract: A train control system and method uses signal information from a next block to change a restrictive signal in a block currently occupied by the train to a less restrictive signal if it can be ascertained that the condition causing the more restrictive signal has changed. This may be accomplished by receiving signal information from the next block while still in the current block and, if the signal information from the next block is no more restrictive than the signal information in the current block, and the signal in the current block is of a type that can safely be modified, allowing the train to operate as if the signal information for the current block were less restrictive than the actual, previously received signal information for the current block.
Type:
Application
Filed:
March 21, 2003
Publication date:
September 23, 2004
Inventors:
Mark Edward Kane, James Francis Shockley, Harrison Thomas Hickenlooper
Abstract: A system and method for detecting the presence or absence of cars, locomotives, or obstructions which may occupy a particular section of track of a model railroad. Digital Command Control signals are used to provide the excitation voltage needed to perform a measurement of the capacitance of an unoccupied section of track. Deviations from this unoccupied capacitance are then measured to indicate occupancy.
Abstract: A communication based vehicle positioning reference system that includes a vehicle path. The vehicle path is divided into regions, wherein the regions contain a portion of the vehicle path. Each portion of the vehicle path contained within a respective region is defined by one or more segments. A position of a vehicle on the vehicle path is identified by a local coordinate system Sxyz, where S is a vehicle identifier, x is a specific region, y is a specific segment contained within the region and z is the position of the vehicle within the specific segment. The vehicle path can be represented on a map. Each of the segments can be identified by a character string that includes the indicia relating to the region the segment is located and a segment name. A plurality of computers can be provided which include only a portion of the map. Also, disclosed is a method for identifying the position of a vehicle along a vehicle path.
Abstract: A railroad track segment simulator for assessing track signal susceptibility to electric power line interference including a circuit including a series dc resistor, a series inductor, and an inductive network representing characteristic impedance of an electrical R-L transmission line, resistor, inductor, and network being serially connected as a series circuit, a first ballast resistance connected between one end of series circuit and a ground potential, and a second ballast resistance connected between another end of series circuit and a ground potential. The impedance of the segment is expressed as: ##EQU1## where: f=frequency (hz),r.sub.o =effective radius of rail at power line ac frequencies=0.09 m for 132 lb/yd rail,R.sub.dc =dc resistance per kft of track,j=imaginary number,Ln=impedance per track segment.A plurality of segments can be serially connected to simulate any length of line.
Abstract: An improved control system is described for controlling the passage of a vehicle between certain control points, the control is achieved by passing electronic tokens, which permit movement of the vehicle past a control point, between a signal box and the vehicle via a first data communications channel which is security interlocked by solid state interlocking in the data channel. A communications processor is included in the interlocking and forms part of the vital safety system of the interlocking. The improvement comprises the provision of a second data communications channel between the signal box and train, this second channel interfacing with the solid state interlocking. At the signal box a keyboard may be provided for feeding data to the interlocking and the second communications channel may communicate with the vital part of the solid state interlocking via a similar route to the keyboard.