Plural Or Composite Luminophor Patents (Class 250/367)
  • Patent number: 10701340
    Abstract: A 3D multi-aperture imaging device that is, on the one hand, able to provide 3D information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The 3 D multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the 3D multi-aperture imaging device, as well as with a second plurality of optical channels for projecting overlapping second partial fields of view of the total field of view on second image sensor areas of the image sensor.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 30, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 10670527
    Abstract: Disclosed herein is an apparatus comprising: a probe carrier comprising: a substrate comprising with holes through a thickness of the substrate and a transparent window across an opening of each of the holes, wherein the transparent window closes the opening, wherein one or more locations on the transparent window are configured to have probes attached thereto, wherein interaction between the probes and an analyte generates a signal; an optical system comprising a plurality of collimators; a sensor configured to detect the signal; wherein the collimators can essentially prevent light from passing if a deviation of a propagation direction of the light from an optical axis of the collimators is greater than a threshold. Because the probe carrier is separate and independent from the microarray, the probe carrier may be assembled with a pre-existing microarray prior to its use, and be detached from the microarray and disposed after its use.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: June 2, 2020
    Assignee: Shenzhen Genorivision Technology Co., Ltd.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10646176
    Abstract: A radiation detector having an energy-integrating detection layer and at least one direct-conversion detection layer is described. In certain embodiments, the direct-conversion layer is impacted first by an incident X-ray beam, such that X-ray photons stopped at the direct-conversion layer are generally lower in energy than those which reach the energy-integrating detection layer. The data acquired using the direct-conversion layers and energy-integrating layers may be combined to provide additional spectral discrimination, such as in material decomposition or contrast-enhancement applications.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 12, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: David Michael Hoffman
  • Patent number: 10641912
    Abstract: A 4H X-ray camera includes a high speed, high atomic number (Z), high spatial resolution sensor for sensing X-rays having energy over 30 keV and high speed readout electronics, and the high speed, high atomic number (Z), high spatial resolution sensor is coupled to the high speed readout electronics.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: May 5, 2020
    Assignee: TRIAD NATIONAL SECURITY, LLC
    Inventor: Zhehui Wang
  • Patent number: 10605928
    Abstract: The dose measurement device includes: a radiation sensor constituted by a light emitting portion that is made of a polycrystalline scintillator and emits light of intensity dependent on an amount of incident radiation and a cover covering the light emitting portion; an optical fiber that is connected to the radiation sensor and transmits the photons emitted by the polycrystalline scintillator; a photoelectric converter for converting the photons transmitted by the optical fiber into electrical signals; a calculation device for measuring each of the electrical signals through the conversion by the photoelectric converter of each photon, calculating a count rate, and specifying a dose rate; and a display device for displaying measurement results calculated by the calculation device.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: March 31, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Yuichiro Ueno, Takahiro Tadokoro, Yasushi Nagumo, Shuichi Hatakeyama, Kouichi Okada
  • Patent number: 10605930
    Abstract: An analyzer device can receives a pulse from a photosensor, obtain an initial calculated area under a curve representing the pulse, and obtain a recalculated area under the curve representing the pulse. In an embodiment, the initial calculated area and the recalculated area can base obtained via initial and subsequent integrations, respectively. The initial and subsequent integrations can be performed for different integration time periods. The subsequent integration may allow for the pulse height resolution to be determined more accurately.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: March 31, 2020
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Michael T. McLaughlin, II
  • Patent number: 10591837
    Abstract: Described herein is a security LEP ink composition comprising an absorber, a resin; and a carrier liquid for printing a security image.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: March 17, 2020
    Assignee: HP Indigo B.V.
    Inventors: Haim Cohen, Yaron Grinwald, Gideon Amir, Reut Avigdor, Julia Kornilov
  • Patent number: 10591614
    Abstract: A large-area directional radiation detection system useful in detecting shielded radiological weapons may include a large number of prism-shaped detectors stacked in a two-dimensional array of particle detectors in which alternate detectors are displaced frontward and rearward in, for example, a checkerboard-type arrangement of detectors. If a source of radiation is in front of the array, the frontward detectors act as collimators for the rearward detectors, thereby producing a narrow detection peak among the rearward detectors. The lateral position of the detection peak indicates the lateral position of the source, and the width of the detection peak indicates the distance of the source from the detector array, thereby providing a three-dimensional determination of the source location.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 17, 2020
    Inventor: David Edward Newman
  • Patent number: 10586624
    Abstract: Disclosed herein are an imaging assembly and a method of controlling the imaging assembly. The assembly includes a housing having a sensor configured to detect radiation impinging on the sensor from a plurality of directions. The assembly may employ one or more shields, including a first internal shield having a first annular body between a first inner surface and a first outer surface. The first internal shield is configured to be placed in the housing such that the first inner surface at least partially surrounds the sensor. When the first internal shield is placed in the housing, the sensor is configured to receive a first central zone radiation through a first field of view, and a first peripheral zone radiation through a first peripheral view. The assembly is configured to provide at least one of a controllable field of view and reduced background contamination in an image domain.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: March 10, 2020
    Assignee: H3D, Inc.
    Inventors: David Price Tefft, William Robert Kaye, Weiyi Wang, Yvan Anders Boucher, Jason Michael Jaworski, Christopher Glenn Wahl
  • Patent number: 10571581
    Abstract: A radiation detector has a photoelectric conversion element array having a light receiving unit and a plurality of bonding pads; a scintillator layer stacked on the photoelectric conversion element array; a resin frame formed on the photoelectric conversion element array so as to pass between the scintillator layer and the bonding pads away from the scintillator layer and the bonding pads and so as to surround the scintillator layer; and a protection film covering the scintillator layer and having an outer edge located on the resin frame; a first distance between an inner edge of the resin frame and an outer edge of the scintillator layer is shorter than a second distance between an outer edge of the resin frame and an outer edge of the photoelectric conversion element array; the outer edge and a groove are processed with a laser beam.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: February 25, 2020
    Assignee: HAMAMASTSU PHOTONICS K.K.
    Inventor: Syouji Kurebayashi
  • Patent number: 10565734
    Abstract: An image capture system includes a plurality of image sensors arranged in a pattern such that gaps exist between adjacent image sensors of the plurality of image sensors. Each of the image sensors may be configured to capture sensor image data. The image capture system may also have a main lens configured to direct incoming light along an optical path, a microlens array positioned within the optical path, and a plurality of tapered fiber optic bundles. Each tapered fiber optic bundle may have a leading end positioned within the optical path, and a trailing end positioned proximate one of the image sensors. The leading end may have a larger cross-sectional area than the trailing end. Sensor data from the image sensors may be combined to generate a single light-field image that is substantially unaffected by the gaps.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: February 18, 2020
    Assignee: GOOGLE LLC
    Inventors: Brendan Bevensee, Tingfang Du, Jon Karafin, Joel Merritt, Duane Petrovich, Gareth Spor
  • Patent number: 10562785
    Abstract: A fluorescent material has a composition represented by (Gd1??????R?Ce?Tb?)3+a(Al1?u?vGauScv)5?bO12, wherein: R is at least one of Y and Lu; a, b, ?, ?, ?, u and v satisfy ranges below: 0?a ?0.1, 0?b?0.1, 0???0.8, 0.0003???0.005, 0.02???0.2, 0.27?u?0.75, and 0?v?0.02; a relative density is 99% or more; and an effective atomic number is 35 or more and 60 or less.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 18, 2020
    Assignee: HITACHI METALS, LTD.
    Inventor: Hideo Nitta
  • Patent number: 10549128
    Abstract: Systems and methods for a graphical user interface for an ablation procedure include a display, a controller in electronic communication with the display, a catheter coupled to the controller, and a graphical user interface generated by the controller and shown on the display. The catheter has a distal tip comprising an ultrasound transducer. The ultrasound transducer is configured to emit an ultrasound beam. The graphical user interface includes a three-dimensional anatomical reference map of a chamber of body tissue to be ablated, where a lesion path is superimposed on the anatomical reference map; a catheter position relative to the chamber; and a window showing data. The data includes at least one of a) a distance between the ultrasound transducer and a surface of the body tissue, b) a dosing plan, c) a tissue thickness, and d) a tissue property.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: February 4, 2020
    Assignee: VytronUS, Inc.
    Inventors: Patrick Phillips, Danielo B. Piazza
  • Patent number: 10514470
    Abstract: A radiation detector has a photoelectric conversion element array having a light receiving unit and a plurality of bonding pads; a scintillator layer stacked on the photoelectric conversion element array; a resin frame formed on the photoelectric conversion element array so as to pass between the scintillator layer and the bonding pads away from the scintillator layer and the bonding pads and so as to surround the scintillator layer; and a protection film covering the scintillator layer and having an outer edge located on the resin frame; a first distance between an inner edge of the resin frame and an outer edge of the scintillator layer is shorter than a second distance between an outer edge of the resin frame and an outer edge of the photoelectric conversion element array; the outer edge and a groove are processed with a laser beam.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 24, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Syouji Kurebayashi
  • Patent number: 10459090
    Abstract: An apparatus and method, the apparatus comprising: a plurality of layers of scintillator material configured to generate photons in response to incident radiation; and a plurality of layers of spacer material wherein the scintillator material and spacer material are arranged in alternate layers so that a plurality of interfaces are provided between layers of scintillator material and layers of spacer material; wherein the scintillator material has a different refractive index to the spacer material and the thickness of layers within the plurality of layers is arranged to enable constructive interference of photons emitted by the scintillator material and reflected by the interfaces.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 29, 2019
    Assignee: NOKIA TECHNOLOGIES OY
    Inventors: Zoran Radivojevic, Michael Astley, Piers Andrew
  • Patent number: 10448908
    Abstract: Provided is a radiographic imaging apparatus that is high in sharpness of a picked up image and excellent in DQE by improving the amount of light that enters a photoelectric conversion element, despite a scintillator layer being formed thick. The radiographic imaging apparatus includes: the photoelectric conversion element; and a wavelength converting layer which has a bottom surface located above the photoelectric conversion element and a top surface for receiving an incident radiation ray, and which contains a scintillator layer. The wavelength converting layer has light transmitting properties in at least a region positioned to be above the photoelectric conversion element, and contains the scintillator layer at a density that is lower on the bottom surface side than on the top surface side in the thickness direction of the region.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 22, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yoshito Sasaki, Shoshiro Saruta, Takamasa Ishii
  • Patent number: 10416318
    Abstract: A large-area directional radiation detection system useful in detecting shielded radiological weapons may include a large number of prism-shaped detectors stacked in a two-dimensional array of particle detectors in which alternate detectors are displaced frontward and rearward in, for example, a checkerboard-type arrangement of detectors. If a source of radiation is in front of the array, the frontward detectors act as collimators for the rearward detectors, thereby producing a narrow detection peak among the rearward detectors. The lateral position of the detection peak indicates the lateral position of the source, and the width of the detection peak indicates the distance of the source from the detector array, thereby providing a three-dimensional determination of the source location.
    Type: Grant
    Filed: January 27, 2019
    Date of Patent: September 17, 2019
    Inventor: David Edward Newman
  • Patent number: 10408947
    Abstract: In the present invention, an integrated scintillator and collimator array for a detector utilized in a CT imaging system is provided. The integrated scintillator and collimator assembly is are fabricated from a manufacturing process or technique in which a scintillator array including a number of scintillation pixels is optically measured to determine the precise position of each pixel on the array. A transition material is applied to the array in a 3D printing method using the position data from the optical measurement and in subsequently bonded thereto in a sintering process to form a transition material layer. A collimator material is then 3D printed onto the transition material layer using the optical measurement data to form collimator plates on the array in alignment with the pixels thereby forming a unitary scintillator/collimator assembly for use in a detector for a CT imaging system.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: September 10, 2019
    Assignee: General Electric Company
    Inventors: Jimmie Autrey Beacham, Rui Guo
  • Patent number: 10393888
    Abstract: Provided is a method of manufacturing a laminated scintillator panel having a structure in which a scintillator layer and a non-scintillator layer are repeatedly laminated in a parallel direction perpendicular to incidence of radiation, characterized by including a step of joining the scintillator layer and the non-scintillator layer. The present invention provides a method of manufacturing a lattice-shaped laminated scintillator panel capable of enlarging the area and increasing the thickness with means completely different from a prior art in which a silicon wafer is used.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 27, 2019
    Assignee: Konica Minolta, Inc.
    Inventors: Hiromichi Shindou, Tadashi Arimoto
  • Patent number: 10301542
    Abstract: A scintillator includes a support substrate, an emission layer formed on the substrate, made of ZnO with impurities added to have an electron concentration of 2×1019 cm?3 or more and 2×1020 cm?3 or less, and for generating scintillation light in response to incidence of radiation, a protective layer formed on the emission layer and made of a material having a hand gap wider than that of ZnO, and a metal layer formed on the protective layer. The support substrate is made of a material transmitting the scintillation light generated in the emission layer. Further, the metal layer functions as a reflection layer for reflecting the scintillation light from the emission layer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 28, 2019
    Assignees: NATIONAL UNIVERSITY CORPORATION SHIMANE UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Yasuhisa Fujita, Minoru Kondo
  • Patent number: 10295678
    Abstract: A X-ray detector having enhanced X-ray sensitivity, which enables dual energy imaging having high diagnostic performance. This X-ray detector includes: scintillator elements which are partitioned by light blocking walls and which convert low-energy X-rays to light; and scintillator elements which are partitioned by light blocking walls and which convert high-energy X-rays to light. When seen from the direction of incidence of the X-rays, the positional pattern of the light blocking walls and that of the light blocking walls are configured so as not to be in alignment with each other. Accordingly, the X-rays incident on the X-ray detector are converted to light by at least either one of the scintillator elements and are finally outputted as X-ray detection signals.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 21, 2019
    Assignee: Shimadzu Corporation
    Inventors: Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Kenji Kimura, Akihiro Nishimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba, Toshiyuki Sato
  • Patent number: 10278658
    Abstract: A radiation residue scanning device includes a plurality of CZT detectors, a plurality of data processing units, a plurality of window acquisition circuits, a plurality of counting units, and a processor; the plurality of CZT detectors connected in one-to-one correspondence to the plurality of data processing units; the plurality of data processing units are connected in one-to-one correspondence to the plurality of window acquisition circuits; and the plurality of window acquisition circuits are connected in one-to-one correspondence to the counting units The window acquisition circuit includes a plurality of acquisition modules, and the respective acquisition modules are connected in parallel; the counting unit includes a plurality of counting subunits, the counting subunits are connected in one-to-one correspondence to the acquisition window modules, and the processor is connected to the plurality of counting units.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: May 7, 2019
    Assignee: Beijing Explore Times Technology Co., Ltd.
    Inventor: Gaofeng Li
  • Patent number: 10267926
    Abstract: Provided is a radiation detector 1 which is high in radiation detection sensitivity and is capable of preventing a loss of fluorescence by integrating scintillator crystals C and reflection plates rx and ry without using a permeable material. According to the present invention, the adhesive sheets Sa and Sb are adhered to the ends of scintillator crystals C arranged in a matrix in the height direction. The scintillator crystals C are integrated by the adhesive sheets Sa and Sb. According to the present invention, there is no need to form a scintillator 2 by securing the scintillator crystals C and the reflection plates ry by an adhesive. Therefore, an adhesive before curing does not enter gaps between the scintillator crystal C and the reflection plate ry, and therefore the gap forms an air layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 23, 2019
    Assignee: Shimadzu Corporation
    Inventors: Hiromichi Tonami, Tomoaki Tsuda
  • Patent number: 10261199
    Abstract: A module (1) for a detector (14) of ionizing radiation comprising at least two detection segments (2) for detecting ionizing radiation, attached to a row carrier (3) allowing for the assembly of detectors (14) with an unlimitedly large detection surface for continuous imaging of ionizing radiation. The construction of the module (1), including a means (10) for power supply stabilization for each detection segment (2), an interconnection of electrical conductors (8), formed by printed circuit boards (9, 13) led vertically downwards perpendicular to the detector surface along the row carrier (3), and a parallel connection to the connectors (11) of the read-out electronics, increases the reliability and speed of the operation of the detector (14). Between the individual parts of the module (1) there are formed thermal bridges to stabilize the temperature and to increase the reliability of the detector (14) assemblies from the modules (1).
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: April 16, 2019
    Assignee: ADVACAM S.R.O.
    Inventors: Jan Jakúbek, Martin Jakúbek, Pavel Soukup
  • Patent number: 10261201
    Abstract: A method for determining depth-of-interaction correction in a PET system. The method includes modifying crystal and readout configuration to improve depth-dependent arrival profile of scintillation photons, creating a photon dispersion model within a scintillator crystal, measuring photon arrival profile of individual gamma ray event, deriving an estimated depth-of-interaction, and deriving a gamma ray event time based on a time stamp corrected with the estimated depth-of-interaction. The method further includes modeling dispersion at different depths of interaction within the scintillator crystal, providing a reflector layer to delay back-reflected photons, providing two respective readouts for the same gamma ray event from two respective pixels optically coupled by a backside reflector or modified crystal configuration, calculating a time difference of the photon arrival at the two pixels, and estimating the depth-of-interaction by applying a statistical weighting.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: April 16, 2019
    Assignee: General Electric Company
    Inventors: Geng Fu, Floribertus P M Heukensfeldt Jansen, Jianjun Guo, Sergei Ivanovich Dolinsky
  • Patent number: 10254421
    Abstract: A detector array for a radiation system includes a radiation detection sub-assembly, a routing sub-assembly, and an electronics sub-assembly. The routing sub-assembly is disposed between the radiation detection sub-assembly and the electronics sub-assembly and includes one or more layers of shielding material. For example, the routing sub-assembly may include a printed circuit board having embedded therein a shielding material configured to shield the electronics sub-assembly from at least some radiation. In some embodiments, the shielding material defines at least one opening through which a conductive element(s) passes to deliver signals between the radiation detection sub-assembly and the electronics sub-assembly.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 9, 2019
    Assignee: Analogic Corporation
    Inventors: Randy Luhta, Lane Marsden, Ruvin Deych, Jeffrey Greenwald, Martin Choquette, Christopher Tibbetts
  • Patent number: 10208587
    Abstract: A detector assembly includes scintillators configured to generate a light signal in response to an impinging backscatter signal, where the scintillators are arranged in a first pattern, a plurality of first detectors, where each first detector is coupled to a scintillator and configured to receive a first portion of a light signal from that scintillator, and where the first detectors are arranged in a second pattern aligned with the first pattern, a plurality of second detectors, where each second detector is disposed adjacent a scintillator and configured to receive a second portion of the light signal from that scintillator, and where the plurality of second detectors is arranged in a third pattern, and a scintillator collimator including a plurality of openings and configured to selectively receive the backscatter signal, where the detector assembly is configured to provide depth resolution, azimuthal resolution, a defect type, a defect size, or combinations thereof.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: February 19, 2019
    Assignee: General Electric Company
    Inventors: Ansas Matthias Kasten, John Scott Price, Juan Pablo Cilia, Chengbao Wang, William Robert Ross, Brian David Yanoff, Stanislav Ivanovich Soloviev, Sudeep Mandal
  • Patent number: 10191161
    Abstract: A handheld device for the location and identification of a radiation source, including: a radiation transparent housing; a radiation locator device disposed within the radiation transparent housing operable for determining the location of the radiation source, wherein the radiation locator device includes a plurality of gamma detection crystals arranged in a geometric pattern and separated by a gamma shielding material, a plurality of detectors coupled to the plurality of gamma detection crystals, and a processor module coupled to the plurality of detectors; one or more of a neutron detection crystal and a gamma spectroscopy crystal disposed within the radiation transparent housing adjacent to the radiation locator device; and one or more detectors coupled to the one or more of the neutron detection crystal and the gamma spectroscopy crystal and the processor module; wherein the one or more of the neutron detection crystal and the gamma spectroscopy crystal, the one or more detectors, and the processor module
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 29, 2019
    Assignees: Consolidated Nuclear Security, LLC, Jozef Stefan Institute, AlSense d.o.o
    Inventors: Matjaz Vencelj, Toni Petrovic, Andrej Kosicek, Ashley C. Stowe, Jonathan S. Morrell
  • Patent number: 10185040
    Abstract: A detector apparatus includes a scattered radiation grid; a scintillator unit for converting X-rays into a light quantity; an evaluation unit for converting the light quantity into electric signals; and a module-receiving appliance. The scintillator unit and the scattered radiation grid are mechanically connected to the module-receiving appliance via a first connection and the evaluation unit is mechanically connected to the module-receiving appliance via a second connection, independent of the first connection. The evaluation unit, the scintillator unit and the scattered radiation grid are aligned with respect to one another such that light quantity, when emitted from sub-regions of the scintillator unit, is registered by sub-regions of the evaluation unit.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: January 22, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Wirth
  • Patent number: 10126255
    Abstract: A detection pixel includes a material that is chosen so that its (averaged) atomic number density leads to the Compton process being the dominant scattering mechanism in response to incident photons, leading to production of Compton electrons with sufficient number and kinetic energy to produce an electric or magnetic response in the material. The incident photon and Compton electrons each have a characteristic travel distance in the material, and the detection pixel has at least one dimension that is selected according to a range defined by these characteristic travel distances. The detection pixels may be arranged in an array for imaging.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 13, 2018
    Assignee: Elwha LLC
    Inventors: Rachel Cannara, Fred Sharifi, Alex Smolyanitsky
  • Patent number: 10107920
    Abstract: A sensor board for a detector module is disclosed. It includes, in a stack construction, at least one reader unit and a sensor layer arranged spaced from the reader unit in the direction of the stack. A gap formed by the spacing between the sensor layer and the reader unit is filled with a cured filling material such that at least one edge region of the sensor layer is free of the filling material. Furthermore, a method is disclosed for manufacturing a corresponding sensor board, and a detector module is disclosed for an X-ray detector having a number of sensor boards which are arranged to be mutually adjacent on a module carrier.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 23, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ludwig Danzer, Harald Geyer, Miguel Labayen De Inza, Jan Wrege
  • Patent number: 10088581
    Abstract: A method for determining parameters of reaction of a gamma quantum within a scintillation detector of a PET scanner, wherein the signal measured by the scintillator is transformed in at least one photomultiplier into an electric measured signal.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: October 2, 2018
    Assignee: UNIWERSYTET JAGIELLONSKI
    Inventor: Pawel Moskal
  • Patent number: 10061035
    Abstract: A radiation detector has a photoelectric conversion element array having a light receiving unit and a plurality of bonding pads; a scintillator layer stacked on the photoelectric conversion element array; a resin frame formed on the photoelectric conversion element array so as to pass between the scintillator layer and the bonding pads away from the scintillator layer and the bonding pads and so as to surround the scintillator layer; and a protection film covering the scintillator layer and having an outer edge located on the resin frame; a first distance between an inner edge of the resin frame and an outer edge of the scintillator layer is shorter than a second distance between an outer edge of the resin frame and an outer edge of the photoelectric conversion element array; the outer edge and a groove are processed with a laser beam.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: August 28, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Syouji Kurebayashi
  • Patent number: 10036790
    Abstract: APD-based PET modules are provided for use in combined PET/MR imaging. Each module includes a number of independent, optically isolated detectors. Each detector includes an array of scintillator (e.g. LSO) crystals read out by an array of APDs. The modules are positioned in the tunnel of a MR scanner. Simultaneous, artifact-free images can be acquired with the APD-based PET and MR system resulting in a high-resolution and cost-effective integrated PET/MR system.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 31, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Matthias J. Schmand, Ronald Grazioso, Ronald Nutt, Robert E. Nutt, Nan Zhang, James L. Corbeil, Ralf Ladebeck, Marcus Vester, Günter Schnur, Wolfgang Renz, Hubertus Fischer, Bernd J. Pichler
  • Patent number: 10024983
    Abstract: Exemplary embodiments of several new metal-loaded plastic scintillators are reported herein, comprising sterically and electronically isolated organotin additive complexes. Distance-dependent quenching relationships have been used as design criteria for the selection and synthesis of these organometallic additives, resulting in increased light yields and improved gamma-ray energy resolution values relative to previously reported PS/PVT examples. Fast scintillation decay properties have also been characterized in the prepared scintillators, rivaling the kinetics of stilbene-doped bibenzyl and BC-422Q-1% while providing higher light yields than these reference materials.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: July 17, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Patrick L. Feng, Joseph Gabriel Cordaro, Wondwosen Mengesha, Nicolas Richard Myllenbeck
  • Patent number: 10024985
    Abstract: The invention is a gamma ray detector that locates a source, both horizontally and vertically. The detector comprises a tubular shield surrounded by scintillator panels. Gammas incident from one side can fully strike the scintillator facing the source, but are blocked from reaching the scintillators on the opposite side of the shield. The scintillator counting rates thus indicate the lateral direction of the source. By iteratively rotating toward the highest-counting scintillator, the detector converges to the source. An additional, central detector can be mounted within the tubular shield. When analyzed with the outer scintillators, the central detector determines the overall angular separation between the source and the detector axis, thereby locating the source in two dimensions automatically. The invention enables rapid detection and precise localization of clandestine nuclear and radiological weapons, despite shielding and clutter obfuscation, while quickly passing clean loads.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 17, 2018
    Inventor: David Edward Newman
  • Patent number: 10024808
    Abstract: There is described a method and apparatus for collecting Tomographic inspection data of objects using Compton scatter radiation. The apparatus is of size and weight for portable use within industrial facilities and may be used for assessing integrity of infrastructures in terms of material density, missing materials, thickness of materials, and identification of foreign materials.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: July 17, 2018
    Assignee: INVERSA SYSTEMS LTD.
    Inventors: Paul Arsenault, Shawn Durette, Marc Cabot
  • Patent number: 10007005
    Abstract: A method of manufacturing a radiation detector according to an embodiment includes: forming a plurality of scintillator array columns, each of the scintillator array columns being formed by preparing a scintillator member that a thickness being smaller than a length and a width, the scintillator member having a first face, a second face, a third face, and a fourth face, and being cut from the third face along the second direction to form at least a groove that penetrates from the first face to the second face but does not reach the fourth face to have an uncut portion near the fourth face; stacking the scintillator array columns in the first direction with a space between each of adjacent two scintillator array columns, and filling a spacer material into the space; inserting a reflector into each space and each groove; and cutting the uncut portion.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: June 26, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuharu Hosono, Kazunori Miyazaki, Go Kawata, Mitsuyoshi Kobayashi, Rei Hasegawa
  • Patent number: 9954017
    Abstract: A radiation image-pickup device includes: a plurality of pixels configured to generate signal charge based on radiation; a first substrate including a transistor configured to read out the signal charge; a second substrate disposed to face the first substrate; a conversion layer provided between the first substrate and the second substrate, the conversion layer being provided for each of the pixels, and being configured to convert the radiation to other wavelength or an electric signal; a partition provided between the first substrate and the second substrate, to partition the conversion layer for each of the pixels; and a radiation shielding layer provided to face the partition.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 24, 2018
    Assignee: SONY CORPORATION
    Inventor: Takashi Fujimura
  • Patent number: 9953463
    Abstract: A method and a system for preparing a radiation image of a target are provided. The radiation imaging method includes the steps of collecting radiation emission data from a target, classifying the data into at least one energy range, separating the data in each energy range into N independent radiation distributions, processing the data in each of the N independent radiation distributions to estimate its true distribution; and reconstructing a radiation distribution image of the target using the processed data. The system includes at least one radiation detector module and at least one computerized component configured to perform the steps of the method.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: April 24, 2018
    Assignee: NUCARE MEDICAL SYSTEMS, INC.
    Inventor: Jinhun Joung
  • Patent number: 9897704
    Abstract: The invention relates to a scintillator for detecting neutrons and/or gamma photons, characterized in that it comprises a structure consisting of two undoped plastic materials for detecting neutrons and which contain different fluorescent complexes, a first plastic material containing at least one fluorescent complex able to produce a fluorescence light having a first relaxation time and the second plastic material containing at least one fluorescent complex able to produce a fluorescence light having a second relaxation time higher than the first relaxation time.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: February 20, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Vladimir Kondrasovs, Romain Coulon, Stéphane Normand, Karim Boudergui
  • Patent number: 9899113
    Abstract: A method for producing a scintillator dual array comprising the steps of bonding first and second scintillator bar arrays having different sensitivity distributions of X-ray energy detection and pluralities of parallel grooves with equal gaps, via an intermediate resin layer, such that both scintillator bars are aligned in a lamination direction, cutting the integrally bonded bar array in a direction crossing the scintillator bars, and coating one cut surface of each bonded bar array piece with a resin.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 20, 2018
    Assignee: HITACHI METALS, LTD.
    Inventors: Hideo Nitta, Akira Shigekawa, Satoshi Shiota, Hiroyuki Nagatomo
  • Patent number: 9893226
    Abstract: Systems and methods for the conversion of energy of high-energy photons into electricity which utilize a series of materials with differing atomic charges to take advantage of the emission of a large multiplicity of electrons by a single high-energy photon via a cascade of Auger electron emissions. In one embodiment, a high-energy photon converter preferably includes a linearly layered nanometric-scaled wafer made up of layers of a first material sandwiched between layers of a second material having an atomic charge number differing from the atomic charge number of the first material. In other embodiments, the nanometric-scaled layers are configured in a tubular or shell-like configuration and/or include layers of a third insulator material.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: February 13, 2018
    Assignee: TAE TECHNOLOGIES, INC.
    Inventors: Michl W. Binderbauer, Toshiki Tajima
  • Patent number: 9869775
    Abstract: A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: January 16, 2018
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Wenjian Zhang, Shuqing Zhao, Xiang Zou, Yongqiang Wang
  • Patent number: 9864073
    Abstract: A scintillator crystal array includes crystals and a clear film adhesive (CFA) layer. The crystals are configured to receive rays emitted by an object to be imaged and to emit light photons responsive to the rays. The crystals include a first crystal and a second crystal that are spaced apart from one another by a gap. The CFA layer is disposed in the gap between the first and second crystals. The CFA layer is configured to at least partially optically couple the first and second crystals.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventor: Chang Lyong Kim
  • Patent number: 9844354
    Abstract: An apparatus and a method for detecting clinically-relevant features of the gastrointestinal (GI) tract of a subject are disclosed. The apparatus includes a capsule to be swallowed by a subject and passing through the GI tract of the subject, a capsule housing, a radiation source emitting radiation, a rotatable collimator configured to rotate with respect to the housing and to collimate the radiation emitted by the radiation source, and a radiation detector configured to detect particles, such as photons, gamma radiation, beta radiation and electrons photons generated responsive to the emitted radiation. The apparatus also includes a control unit configured to analyze data regarding the photons. Movement of the capsule in the GI tract can be detected from a comparison between at least two images acquired with the apparatus. The radiation source, radiation detector and control unit may advantageously be integrated inside a single housing.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 19, 2017
    Assignee: CHECK-CAP LTD.
    Inventors: Yoav Kimchy, Yitzak Klein, Gideon Baum, Rafi Sommer
  • Patent number: 9823383
    Abstract: The present specification describes a scanning/inspection system configured as a dual-view system using dual-energy sensitive stacked detectors that are partially populated with multi-energy discriminating detectors for overall enhanced energy resolution and therefore improved discrimination of materials through better estimation of material physical properties such as density and effective atomic number.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 21, 2017
    Assignee: Rapiscan Systems, Inc.
    Inventor: Gerard Andrew Hanley
  • Patent number: 9823366
    Abstract: Among other things, one or more systems and/or techniques for calibrating a direct conversion detector array are provided. An electrical charge is generated on an interface of a photoconductor (e.g., amorphous selenium) of the detector array when there is a change in voltage that is applied to the photoconductor. Such a change in voltage may occur because the voltage that is supplied to the photoconductor by a power supply is changed. The changed voltage causes an electrical charge to be produced, or causes a change in the net charge density at an interface of the photoconductor, that is substantially similar to the electrical charge that may be produced when radiation impinges the detector array. In this way, calibrations of the detector array (e.g., the generation of a uniformity map, defect table, etc.) may be performed without the emission of radiation and onsite or outside of a factory setting.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: November 21, 2017
    Assignee: ANALOGIC CANADA CORP
    Inventors: Marc Hansroul, Philippe Gauthier, Luc Laperriere
  • Patent number: 9804276
    Abstract: The disclosure relates to a scintillation pixel array, a radiation sensing apparatus, a scintillation apparatus, and methods of making a scintillation pixel array wherein scintillation pixels have beveled surfaces and a reflective material around the beveled surfaces. The embodiments described herein can reduce the amount of cross-talk between adjacent scintillation pixels.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: October 31, 2017
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Peter R. Menge
  • Patent number: 9804274
    Abstract: A hybrid TOF-PET/CT tomograph comprising a detection chamber, gamma radiation detectors, X-ray detectors and a movable X-ray source, wherein the gamma radiation detectors (150, 250, 350, 450, 550) and the X-ray detectors (170, 270, 370, 470, 570) surround the detection chamber (102, 202, 302, 402, 502) around the whole perimeter of the detection chamber (102, 202, 302, 402, 502), and wherein the gamma radiation detectors (150, 250, 350, 450, 550) are located closer to the longitudinal axis (115, 215, 315, 415, 515) of the detection chamber (102, 202, 302, 402, 502) than the X-ray detectors (170, 270, 370, 470, 570), and wherein the gamma radiation detectors (150, 250, 350, 450, 550) comprise polymer strips (151, 251, 351, 451, 551) made of a scintillation material having a density lower than the density of the X-ray radiation detectors (171, 271, 371, 471, 571).
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: October 31, 2017
    Assignee: UNIWERSYTET JAGIELLONSKI
    Inventor: Pawel Moskal