With Optically-stimulated Phosphor Patents (Class 250/484.4)
  • Patent number: 8963097
    Abstract: A method includes obtaining a plurality of the two dimensional arrays of gadolinium oxysulfide. An array has wider width non-silver based spacers (304) that extend between rows or columns of dixels and narrower width non-silver based spacers (306) that extend between the other of the rows or columns of dixels. The method further includes applying a silver coating (312) to at least one of a top or bottom surface of the arrays. The method further includes forming a stack by stacking the silver coated arrays, one on top of another (FIG. 3B), with substantially equal layers of adhesive between adjacent arrays. The method further includes slicing the stack through the wider non-silver based spacers to form two dimensional arrays of scintillator dixels (314) having silver based spacers (312) along at least one direction of the array.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Simha Levene
  • Patent number: 8946654
    Abstract: A method for reading out image information stored in a storage phosphor of a storage medium includes moving a light beam over the storage medium. A luminescence signal is generated by the photostimulation of the storage phosphor. In first time intervals a respective output value is determined from the luminescence signal, and a respective pixel value of an image pixel of a digital image is determined from the output value. The output value is thereby determined by addition of a plurality of measurement values of the luminescence signal which are detected in second time intervals lying within the first time interval. A corresponding apparatus for carrying out the method is described as well.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: February 3, 2015
    Inventor: Michael Thoms
  • Patent number: 8872134
    Abstract: Described is a self-indicating instant radiation dosimeter (1001) for monitoring high energy radiations, such as X-ray. The dosimeter contains a radiation sensitive, color changing, indicating composition (10), e.g., a diacetylene (R—C?C—C?C—R?, where R and R? are substituents groups) or a radiochromic dye, a polymeric binder (20) and optionally a shelf life extender (50) or an activator (40). The radiation sensitive composition (10) changes color instantly when exposed to high energy radiation. The dose is estimated by comparing the color with a color reference chart or more accurately with a spectrophotometer or an optical densitometer. The radiation sensitive composition (10) is protected from low energy radiation such as UV light, by a layer of low energy absorbing materials, such as UV absorbers.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 28, 2014
    Assignee: JP Laboratories, Inc
    Inventor: Gordhabhai N. Patel
  • Patent number: 8872119
    Abstract: A scintillation device includes a free-standing ceramic scintillator body that includes a polycrystalline ceramic scintillating material comprising a rare earth element, wherein the polycrystalline ceramic scintillating material is characterized substantially by a cation-deficient perovskite structure. A method of producing a free-standing ceramic scintillator body includes preparing a precursor solution including a rare earth element precursor, a hafnium precursor and an activator (Ac) precursor, obtaining a precipitate from the solution, and calcining the precipitate to obtain a polycrystalline ceramic scintillating material including a rare earth hafnate doped with the activator and having a cation-deficient perovskite structure.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: October 28, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Anne B. Hardy, Qiwei Chen, Xiaofeng Peng, Nathalie Petigny, Bruno Viana, Andrée Kahn-Harari
  • Patent number: 8866108
    Abstract: A vehicle microtagging system employs vehicle paint to assist in tracking vehicles used in criminal activity. Microscopic microtag particles mixed into vehicle paint contain unique alphanumeric code sequences. These particles are designed to be left behind at a crime scene, later to be recovered by law enforcement. When the microtag particles are recovered from a crime scene, law enforcement uses a simple UV light test and a magnification instrument to identify the unique alphanumeric code sequence within the microtag particles.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 21, 2014
    Inventor: Krowker Direny
  • Patent number: 8853652
    Abstract: Provided herein are exemplary embodiments for phosphor screen including a substrate, a stimulable phosphor layer disposed over the substrate, the stimulable phosphor layer including a stimulable phosphor material, and an adhesive layer disposed by solvent coating over the stimulable phosphor layer, the adhesive layer including solvent-coatable thermally-sensitive elastomers, where the adhesive layer has a dust adhesion of ?1 dust particles/sq.in.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 7, 2014
    Inventors: Seshadri Jagannathan, Charles M. Rankin, Daniel M. Leusch
  • Publication number: 20140284505
    Abstract: A device and a corresponding system for reading X-ray information stored in a storage phosphor plate includes a reading device for irradiating the storage phosphor plate with stimulation light and for detecting emission light stimulated in the storage phosphor plate, and a conveyance device for conveying the storage phosphor plate including at least one roller that can be put into rotation about its rotational axis. In order to guarantee, with a simple structure, the most reliable possible transport of the storage phosphor plate, one or more magnets, more particularly permanent magnets, are arranged in the interior of the cylinder which is formed as a hollow body, more particularly a hollow cylinder.
    Type: Application
    Filed: August 13, 2012
    Publication date: September 25, 2014
    Applicant: AGFA HEALTHCARE NV
    Inventors: Florian Von Stein, Heinz Backhaus
  • Patent number: 8796643
    Abstract: A radiographic image erasing device includes: a first light source that applies first erase light including a wavelength in the ultraviolet region to a storage phosphor sheet in which a radiographic image has been stored and recorded; a second light source that is placed at a height identical to that of the first light source and applies second erase light including a wavelength of a longer wavelength than that of the first erase light to the storage phosphor sheet to which the first erase light has been applied; drive mechanisms that switch the orientations or positions of the first light source and the second light source; and a controller that controls the drive mechanisms in accordance with a conveyance direction of the storage phosphor sheet such that the first erase light and the second erase light are applied in this order to the storage phosphor sheet.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: August 5, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Takahiko Mizusawa, Hiromi Ishikawa, Kazuoki Komiyama, Tomoki Inoue
  • Patent number: 8735854
    Abstract: A scintillator panel exhibiting enhanced moisture resistance is disclosed, comprising a scintillator sheet provided on a substrate with a scintillator layer, and the whole of the scintillator sheet is covered with a protective layer and a space in which gas is capable of flowing is provided between the protective layer and the scintillator sheet.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 27, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Mika Sakai, Takehiko Shoji, Yasushi Nagata
  • Publication number: 20140124674
    Abstract: A radiological image conversion panel 2 provided with a support 11 and a phosphor 18 which is formed on the support and contains a fluorescent material that emits fluorescence by radiation exposure. The phosphor includes a columnar section 34 formed by a group of columnar crystals which are obtained through columnar growth of crystals of the fluorescent material, and a non-columnar section 36. The columnar section and the non-columnar section are integrally formed to overlap in a crystal growth direction of the columnar crystals, and a porosity at the columnar section side of the non-columnar section is higher than a porosity at the support side of the non-columnar section.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Yasuhisa KANEKO, Haruyasu Nakatsugawa, Keiichirou Sato, Makoto Kitada, Kei Mura
  • Patent number: 8658990
    Abstract: Radiation dosimeters containing thin KCl:Eu2+ storage phosphors for quantifying and/or verifying the dose of radiation applied during radiation therapy. Methods for measuring the amount of radiation applied from a source of radiation and methods for treating a patient having a cancerous tumor are also provided.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 25, 2014
    Assignee: Washington University
    Inventor: Hui Li
  • Patent number: 8658980
    Abstract: A radiation detector is provided that allows correction so as to identify incident gamma-ray positions accurately with no influence of afterglow of fluorescence. The radiation detector includes an intensity-data acquiring section for acquiring intensity data representing intensity of fluorescence outputted from a light detector for every temporally-constant sampling interval, and a correction-value acquiring section section for acquiring a correction value used for correction of variations in intensity data resulting from afterglow of the fluorescence. In addition, the radiation detector includes an integrating section for correcting the intensity data using the correction value. This allows correct calculation of the integrated value m with no influence of the afterglow of fluorescence.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Shimadzu Corporation
    Inventors: Junichi Ohi, Masanobu Sato, Masafumi Furuta
  • Patent number: 8652651
    Abstract: A photoluminescent sheet is disclosed. In one embodiment, the photoluminescent sheet includes i) a phosphor, for absorbing some light, of at least one wavelength, of light emitted from a light source and emitting particular light of a wavelength different from the wavelength of the emitted light, ii) a matrix, for having the phosphor, the remaining of the light emitted from the light source penetrating the matrix and iii) a passivation film, for being laminated to at least one surface of the matrix, whereas a roughness is formed on a surface of the passivation film to reduce a contacting area between the photoluminescent sheet and another sheet. According to one embodiment of the present invention, wet is not generated on a screen even though the photoluminescent sheet is connected to other sheets.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 18, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Choong-Yong Sohn, Young-Wook Ko
  • Patent number: 8648317
    Abstract: Described is a method comprising the following steps: (a) moving a selected optically stimulated luminescence (OSL) sensor of two or OSL sensors mounted on a dosimeter sled to a reading position for an OSL reader; (b) reading the selected OSL sensor at the reading position using the OSL reader to measure a radiation dosage to which a dosimeter in which the dosimeter sled has been mounted has been exposed; and (c) repeating steps (a) and (b) for each of the two or more OSL sensors, wherein each OSL sensor comprises an optically stimulated luminescent material (OSLM) mounted in one or more cylindrical cup-shaped energy compensating filters, and wherein the dosimeter sled is part of a dosimeter.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: February 11, 2014
    Assignee: Landauer, Inc.
    Inventors: R. Craig Yoder, Mark S. Akselrod, Yoshikazu Tatsumi, Tse-Min Lo
  • Patent number: 8637830
    Abstract: In a radiation image conversion panel (10), a radiation conversion layer (2) for converting an incident radiation into light is formed on a substrate (1). The radiation conversion layer (2) has a reflective layer (3), on a side opposite from a light exit surface (2a) for emitting the light, for reflecting the light to the exit surface (2a) side, while the reflective layer (3) has a helical structure comprising helically stacked phosphor crystals. Thus constructed radiation image conversion panel (10) can enhance the reflectance without forming a reflective layer made of a thin metal film or the like and exhibit a reflectance higher than that in the case where the reflective layer is formed by spherical crystal particles.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 28, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Masanori Yamashita, Yutaka Kusuyama, Shintaro Toyama, Kazuhiro Shirakawa, Munenori Shikida
  • Patent number: 8633455
    Abstract: Described is an optical system for a dosimeter reader having reduced sensitivity to vibration and motion.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 21, 2014
    Assignee: Landauer, Inc.
    Inventors: R. Craig Yoder, Mark S. Akselrod, Vasiliy V. Fomenko
  • Patent number: 8618512
    Abstract: A storage phosphor screen including a substrate; a phosphor layer disposed over the substrate; and an overcoat layer disposed over the phosphor layer, wherein the overcoat layer comprises at least one organic solvent-soluble polymer and at least one light absorbing colorant, and wherein the light absorbing colorant is dispersed within the organic solvent-soluble polymer. Also disclosed is a method of preparing a storage phosphor screen including providing a substrate; providing a phosphor solution comprising a solvent, at least one stimulable phosphor, and a binder; providing an overcoat solution comprising a solvent, at least one organic solvent-soluble polymer and at least one light absorbing colorant; forming a phosphor layer over a surface of the substrate with the phosphor solution; and forming an overcoat layer over the phosphor layer with the overcoat solution, wherein the light absorbing colorant is dispersed within the overcoat layer.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 31, 2013
    Assignee: Carestream Health, Inc.
    Inventors: Seshadri Jagannathan, Marcus S. Bermel, Daniel M. Leusch
  • Patent number: 8610088
    Abstract: An illumination device includes at least four semiconductor radiation sources (18) for emitting optical radiation in respectively different emission wavelength ranges. At least one color splitter (22.1, 22.2, 22.3), which is reflective for optical radiation of the respective semiconductor radiation source (18), is assigned to each of at least three of the semiconductor radiation sources (18). The semiconductor radiation sources (18) and the color splitters (22.1, 22.2, 22.3) are arranged such that the optical radiation, which is emitted in each case from each of the semiconductor radiation sources (18), is coupled into a common illumination beam path section (24). In each case, one collimating unit (20.1, 20.2, 20.3, 20.4), which collimates the optical radiation emitted by the respective semiconductor radiation source (18), is arranged in the beam path sections from the semiconductor radiation sources (18) to the color splitters (22.1, 22.2, 22.3).
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 17, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Peter Westphal, Daniel Bublitz
  • Patent number: 8592782
    Abstract: Described is a device comprising a dosimeter reader including an RFID tag reader for retrieving and/or updating all or a portion of the data stored in the non-volatile memory of an RFID tag on a dosimeter sled that is part of a radiation dosimeter. Also described is a method retrieving and/or updating the data stored in the non-volatile memory of the RFID tag.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: November 26, 2013
    Assignee: Landauer, Inc.
    Inventors: R. Craig Yoder, Yoshikazu Tatsumi, Tse-Min Lo
  • Publication number: 20130293123
    Abstract: This invention is a photon-interactive Gaussian surface lens method means that converts incident photons from a single or a plurality of wide band gap semiconductor class light emitting diode dies, into a secondary emission of photons emanating from a composite photon transparent colloidal stationary suspension of quantum dots, high efficiency phosphors, a combination of quantum dots and high efficiency phosphors and nano-particles of metal, silicon or similar semiconductors from the IIIB and IVB Group of the Periodic Table and any nano-material and/or micro/nano spheres that responds to Rayleigh Scattering and/or Mie Scattering; and a plurality of quantum dots in communication with said nano-particles in said suspension. The patent teaches that utilizing this method means results in improved narrow pass-band of red, green, and blue photon efficiency over phosphor based conversion.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: David Deak, SR., David Deak, JR.
  • Patent number: 8576087
    Abstract: A radiation imaging system includes a radiation imaging cassette and a console device. A communication mode between the cassette and the console device is switchable between a wired mode and a wireless mode. Due to shortage of a battery of the cassette, the communication mode is switched to the wired mode to start charging the battery and send image data from the cassette to the console device through a cable. The console device has first and second judging sections. The first judging section judges whether or not a charge level of the battery exceeds a predetermined threshold value. The second judging section judges whether or not radiography is in progress. If it is judged that the charge level of the battery exceeds the predetermined threshold value and the radiography is not in progress, a window that indicates permission for switching to the wireless mode is displayed on a monitor.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Fujifilm Corporation
    Inventors: Takeshi Kamiya, Yusuke Kitagawa
  • Patent number: 8558207
    Abstract: A photostimulable plate reading device. The device includes: at least one photostimulable plate carrying image data and having two opposite surfaces; an illuminator for homogeneously illuminating a first one of the two opposite surfaces of the at least one photostimulable plate with light emitted in a first wavelength range, the illumination causing the at least one photostimulable plate both to emit light in a second wavelength range by photostimulated luminescence and to scatter light in the first wavelength range; a filter for preventing the light scattered in the first wavelength range from passing and for allowing the light emitted in the second wavelength range to pass, the filter facing a second one of the two opposite surfaces of the at least one photostimulable plate; and a detector composed of a two dimensional array of pixels for detecting the light allowed to pass and for obtaining image data therefrom.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 15, 2013
    Assignee: Carestream Health, Inc.
    Inventors: Amir Berger, Jean Marc Inglese, Sergey Zaslavsky, Moshe Cohen-Erner, Tan Wang
  • Publication number: 20130264484
    Abstract: A scintillating module is provided which includes a first scintillating layer including a plurality of scintillators extending in a first direction; a second scintillating layer including a plurality of scintillators extending in a second direction and stacked in a third direction with respect to the first scintillating layer, wherein the first, second and third directions are orthogonal to each other.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 10, 2013
    Applicant: Electronics and Telecommunications Research Instit ute
    Inventor: Electronics and Telecommunications Research Institute
  • Patent number: 8507878
    Abstract: Scintillation materials of this invention have an alkali halide host material, a (first) scintillation dopant of various types, and a variety of second dopants (co-dopants). In another embodiment, the scintillation materials of this invention have an alkali halide host material, a (first) scintillation dopant of various types, a variety of second dopants (co-dopants), and a variety of third dopants (co-dopants). Co-dopants of this invention are capable of providing a second auxiliary luminescent cation dopant, capable of introducing an anion size and electronegativity mismatch, capable of introducing a mismatch of anion charge, or introducing a mismatch of cation charge in the host material.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 13, 2013
    Inventors: Charles Brecher, Vivek Nagarkar
  • Patent number: 8476605
    Abstract: A scintillator panel which has achieved enhanced sharpness and sensitivity is disclosed, comprising on a first support a phosphor layer comprising phosphor columnar crystals formed by a process of vapor phase deposition and containing a parent component of cesium iodide (CsI) and an activator of thallium (Tl), and the phosphor layer comprising a first layer of a CsI layer which is in the bottom portion of the phosphor layer and does not contain any activator of thallium, and on the first layer, a second layer of a CsI—Tl layer which contains the activator of thallium and exhibits not more than 32% of a coefficient of variation of concentration of thallium in the direction of thickness.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 2, 2013
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Shigetami Kasai, Hiroshi Isa, Makoto Iijima, Yasushi Nagata
  • Publication number: 20130161518
    Abstract: An image storage device includes a substrate including a plurality of voids and a septum disposed between the voids, and cells including a storage phosphor powder within the voids. In an embodiment, a computed radiography apparatus includes an image storage device, a stimulating radiation device to generate stimulating radiation, and a photosensor to detect light. In another embodiment, a method of forming an image storage device includes providing a patterned substrate that includes a plurality of voids and a septum disposed between the voids, adding a storage phosphor powder into the voids of the patterned substrate to form cells, and applying a topcoat layer that is substantially free of the storage phosphor powder.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 27, 2013
    Inventor: John M. Frank
  • Patent number: 8455835
    Abstract: A radiation detection system for detecting the presence and location of a radiation source includes an optical fiber bundle having fibers of different lengths, a radiation sensitive material, a stimulating source and an optical detector. The stimulating source stimulates the radiation sensitive material and the radiation sensitive material releases a light output, while the light output provides a readout signal for each fiber corresponding in intensity to the radiation received from the radiation source. The optical detector receives the readout signal such that the variations in intensity of the readout signals along the length of the bundle determine the presence and general location of the radiation source.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: June 4, 2013
    Inventors: Daniel K. Angell, Thomas K. Hunt
  • Publication number: 20130119278
    Abstract: A radiographic image erasing device includes: a first light source that applies first erase light including a wavelength in the ultraviolet region to a storage phosphor sheet in which a radiographic image has been stored and recorded; a second light source that is placed at a height identical to that of the first light source and applies second erase light including a wavelength of a longer wavelength than that of the first erase light to the storage phosphor sheet to which the first erase light has been applied; drive mechanisms that switch the orientations or positions of the first light source and the second light source; and a controller that controls the drive mechanisms in accordance with a conveyance direction of the storage phosphor sheet such that the first erase light and the second erase light are applied in this order to the storage phosphor sheet.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: FUJIFILM CORPORATION
    Inventor: FUJIFILM CORPORATION
  • Patent number: 8378327
    Abstract: A scanning apparatus that can operate as both a computed and direct style radiography device. In the computed radiography mode, an internal imaging plate is removed or maintained inwardly within the housing assembly to allow a cassette handling mechanism holding a removable imaging plate to pass adjacent the scanning head. In the direct radiography mode, the cassette handling mechanism is retracted and the internal imaging plate is moved outward from the within the housing such that it is located adjacent the reading slot of the scan head assembly. In both modes of operation, the imaging plate being used is maintained adjacent the scan head while the scan head and imaging plate surface are moved relative to each other allowing the scanning and acquisition of the image data stored on the plate.
    Type: Grant
    Filed: November 26, 2011
    Date of Patent: February 19, 2013
    Assignee: iCRco, Inc.
    Inventor: Stephen Neushul
  • Patent number: 8368025
    Abstract: Disclosed are a radiation image conversion panel which has achieved a radiation image with enhanced sharpness and improved moisture resistance and shock resistance, and a production method thereof. The radiation image conversion panel comprises, on a support, a phosphor layer comprising phosphor columnar crystals, each composed mainly of cesium iodide (CsI) and formed by a process of gas phase deposition, wherein a coefficient of variation of crystal diameter of the phosphor columnar crystals is not more than 50% and a coefficient of variation of phosphor filling factor of the phosphor layer is not more than 20%.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 5, 2013
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Shigetami Kasai, Hiroshi Isa, Makoto Iijima, Yasushi Nagata
  • Patent number: 8354645
    Abstract: Provided are a radiation sensor having a first flexible substrate provided with a phosphor layer which converts incident radiation into an electromagnetic wave in a wavelength region that is at least different from that of the radiation; an organic photoelectric conversion layer which includes a charge transport layer and a charge generation layer containing a charge transporting agent and 55% by mass to 75% by mass of a polymer binder, and photoelectrically converts the electromagnetic wave; a second flexible substrate provided with a charge detection layer which includes a storage capacitor and a thin film transistor and is adapted to read electrical charge generated at the organic photoelectric conversion layer; and a polymer subbing layer disposed between the organic photoelectric conversion layer and the charge detection layer, and a radiation image detection apparatus using the radiation sensor.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: January 15, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Shinji Imai
  • Patent number: 8350233
    Abstract: The present invention has the objective to increase the light output yield of a light conversion foil in comparison to the impacting light. There is proposed to realize the following effects in the various layers of a conversion foil, individually or in combination, namely the isolation of the conversion layer (3) from the support (1) by a, preferably microporous and mesoporous, interlayer (2), and the incorporation of scattering centers (4) either into this interlayer, or into the conversion layer, or into both.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: January 8, 2013
    Assignee: Ilford Imaging Switzerland GmbH
    Inventors: Rolando Ferrini, Urs Fuerholz, Olivier Nicolet, Marc Pauchard, Juliette Perrenoud, Libero Zuppiroli
  • Publication number: 20130001437
    Abstract: A storage phosphor screen including a substrate; a phosphor layer disposed over the substrate; and an overcoat layer disposed over the phosphor layer, wherein the overcoat layer comprises at least one organic solvent-soluble polymer and at least one light absorbing colorant, and wherein the light absorbing colorant is dispersed within the organic solvent-soluble polymer. Also disclosed is a method of preparing a storage phosphor screen including providing a substrate; providing a phosphor solution comprising a solvent, at least one stimulable phosphor, and a binder; providing an overcoat solution comprising a solvent, at least one organic solvent-soluble polymer and at least one light absorbing colorant; forming a phosphor layer over a surface of the substrate with the phosphor solution; and forming an overcoat layer over the phosphor layer with the overcoat solution, wherein the light absorbing colorant is dispersed within the overcoat layer.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventors: Seshadri Jagannathan, Marcus S. Bermel, Daniel M. Leusch
  • Patent number: 8253321
    Abstract: The invention relates to a halide phosphor powder for warm-white light emitting diode, which is a kind of low-color-temperature phosphor powder of halide nitride based on garnet of rare earth oxides, uses cerium as activating agent and is characterized in that chloride (Cl?1) and nitrogen ion (N?3) are added to the composition of the phosphor powder and its stoichiometric relationship of the composition is (?Ln+3)3Al2[(Al(O1-2pClpNp)4]3, wherein ?Ln is ?Ln=Y and/or Gd and/or Tb and/or Lu and/or Dy and/or Pr and/or Ce. In addition, the invention also discloses a use of a warm-white light emitting diode of the said phosphor powder with a weight ratio of 8 to 75%. The light emitting diode has a warm-red color temperature T?3000 K when it has a power of 1 watt.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: August 28, 2012
    Inventors: Soshchin Naum, Wei-Hung Lo, Chi-Ruei Tsai
  • Publication number: 20120211672
    Abstract: Described is an optically stimulated luminescence (OSL) sensor comprising one or more cylindrical cup-shaped filters.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 23, 2012
    Applicant: Landauer, Inc.
    Inventor: R. Craig YODER
  • Publication number: 20120187310
    Abstract: A scanning apparatus that can operate as both a computed and direct style radiography device. In the computed radiography mode, an internal imaging plate is removed or maintained inwardly within the housing assembly to allow a cassette handling mechanism holding a removable imaging plate to pass adjacent the scanning head. In the direct radiography mode, the cassette handling mechanism is retracted and the internal imaging plate is moved outward from the within the housing such that it is located adjacent the reading slot of the scan head assembly. In both modes of operation, the imaging plate being used is maintained adjacent the scan head while the scan head and imaging plate surface are moved relative to each other allowing the scanning and acquisition of the image data stored on the plate.
    Type: Application
    Filed: November 26, 2011
    Publication date: July 26, 2012
    Inventor: Stephen Neushul
  • Publication number: 20120132830
    Abstract: The present disclosure provides an optical detector for detecting radiation. The optical detector includes an optical light guide that incorporates a sensing region. The sensing region includes a sensing material that emits luminescence light when the sensing material is exposed to suitable ionizing radiation and accrues trapped charge which is released and produces optically stimulated luminescence (OSL) when the sensing material is optically stimulated. The optical detector also includes a light source for optically stimulating the sensing material and a light detector for detecting the OSL. The optical light guide is arranged to guide light through the sensing region and between the sensing region and the luminescence light detector.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicants: Commonwealth of Australia (As represented by the Defence Science & Technology Organisation), Adelaide Research & Innovation Pty Ltd
    Inventors: Tanya Mary Monro, Heike Ebendorff-Heidepriem, Christopher Andris Gregory Kalnins, Ricardo Nazar, Timothy Priest, Nigel Antony Spooner
  • Patent number: 8124945
    Abstract: A scintillator plate which is excellent in sharpness and luminance is disclosed, comprising sequentially on a substrate a reflection layer and a scintillator layer containing cesium iodide and an activator and having a thickness of L, wherein the following requirement (1) is met: 2?B/A??Requirement (1) wherein A is an average activator concentration of the scintillator layer and B is an activator concentration in a region of the scintillator layer from the reflection layer side to the position of L/5.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: February 28, 2012
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Mika Sakai, Takehiko Shoji
  • Patent number: 8097865
    Abstract: An illumination device includes at least four semiconductor radiation sources (18) for emitting optical radiation in respectively different emission wavelength ranges. At least one color splitter (22.1, 22.2, 22.3), which is reflective for optical radiation of the respective semiconductor radiation source (18), is assigned to each of at least three of the semiconductor radiation sources (18). The semiconductor radiation sources (18) and the color splitters (22.1, 22.2, 22.3) are arranged such that the optical radiation, which is emitted in each case from each of the semiconductor radiation sources (18), is coupled into a common illumination beam path section (24). In each case, one collimating unit (20.1, 20.2, 20.3, 20.4), which collimates the optical radiation emitted by the respective semiconductor radiation source (18), is arranged in the beam path sections from the semiconductor radiation sources (18) to the color splitters (22.1, 22.2, 22.3).
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 17, 2012
    Assignee: Carl Zeiss MicroImaging GmbH
    Inventors: Peter Westphal, Daniel Bublitz
  • Patent number: 8092713
    Abstract: The invention concerns a method for marking a material characterized in that it consists in incorporating into the material: either a phosphor capable of producing, following excitation, two light emissions whereof the respective wavelengths and the emission decay times are different, or several phosphors capable of producing, following excitation, a light emission whereof the wavelength and the emission decay time are different from the wavelength and emission decay time of the other or other phosphors. The material can in particular be of the paper, board, paint, textile, ink, glass or macromolecular material type.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: January 10, 2012
    Assignee: Rhodia Chimie
    Inventors: Thierry Le-Mercier, Claude Ceintrey
  • Publication number: 20120001078
    Abstract: A scintillator array and method for making the same are provided. The array comprises a bi-layer reflector further comprising a conformal smoothing layer and a mirror layer. The bi-layer reflector does not comprise an intervening reducing agent or adhesion layer and/or comprises aluminum. Further, the mirror layer may be deposited via gas phase metallization, allowing application to tightly confined spaces. A detector array comprising the scintillator array is also provided.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kevin Paul McEvoy, James Wilson Rose, Andrea Jeanne Howard, Michael James Palleschi, Jonathan David Short
  • Patent number: 8063387
    Abstract: Disclosed is a radiation image conversion panel containing a support having thereon a phosphor layer containing an alkali metal halide phosphor which is deposited on the support by a gas phase accumulation method, wherein the alkali metal halide phosphor includes a columnar crystal and an existing ratio of an activation agent of the columnar crystal on a surface of the columnar crystal to an inner portion of the columnar crystal is from 0.7 to 20.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 22, 2011
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Keiko Maeda, Tetsuo Shima
  • Patent number: 8013314
    Abstract: The present invention relates to curable silicone compositions which include a fluorescent agent for detection purposes and which have a cure system which enables the silicone compositions to possess improved depth of cure. The silicone compositions are photocurable, and may also be moisture or heat curable.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: September 6, 2011
    Assignee: Henkel Corporation
    Inventors: Michael P. Levandoski, Hsien-Kun Chu, Richard Corrao
  • Patent number: 7982170
    Abstract: A microscope system comprises a microscope including a motorized stage on which is mounted a container containing a specimen and which can adjust the position of the container, a scanner scanning laser light radiated onto the specimen, an objective lens focusing the scanned laser light, an image-acquisition unit acquiring a specimen image by detecting fluorescence produced in the specimen, and a dark box containing these components; a storage unit storing the mounting position of the container on the motorized stage; an image-acquisition-position setting unit setting acquisition positions of partial images of the inside of the container, on the basis of the stored mounting position of the container; a control section controlling the microscope so as to acquire the partial images for each container on the basis of the set acquisition positions; and a map-image generating section arranging the partial images to generate a map image.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: July 19, 2011
    Assignee: Olympus Corporation
    Inventors: Toshiyuki Hattori, Yusuke Yamashita, Yasunari Matsukawa, Masaharu Tomioka
  • Patent number: 7964855
    Abstract: A scintillator panel exhibiting enhanced emission luminance is disclosed, comprising a phosphor layer containing a phosphor capable of emitting light upon exposure to radiation, a substrate supporting the phosphor layer and a protective film covering the phosphor layer and the substrate, wherein the phosphor layer comprises two or more layers, and satisfying the following expression 1: 1.0?B/A?1000 ??Expression 1: wherein B is an average activator concentration (mol %) of an uppermost phosphor layer, based on a phosphor and A is an average activator concentration (mol %) of the other phosphor layers, based on a phosphor.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: June 21, 2011
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Naoyuki Sawamoto, Takehiko Shoji, Masashi Kondo
  • Patent number: 7952080
    Abstract: An image capturing system includes a cassette having a radiation detector, an image memory, and a cassette controller, an image capturing apparatus, a display device, and a host computer. The cassette controller comprises a capacity value transmitter for transmitting a capacity value of the radiation image information to the host computer before transmission process, and an image transmitter for transmitting the radiation image information. The host computer comprises an indicator controller for controlling the display device to display an indicator representing the capacity value received from the cassette as the upper limit, and a bar controller for controlling the display device to display a bar moving toward the indicator and having a length corresponding to the received capacity value of the radiation image information while the radiation image information is being received.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 31, 2011
    Assignee: Fujifilm Corporation
    Inventors: Takeshi Kuwabara, Eiichi Kito, Tsuyoshi Tanabe, Takuya Yoshimi, Kazuharu Ueta, Makoto Iriuchijima, Yasunori Ohta
  • Patent number: 7928396
    Abstract: A method for obtaining a scintillation body comprising the steps of readying a matrix of binding material within which is present a plurality of scintillation crystals, obtaining a plurality of channels within the matrix and around the crystals and inserting metallic material having a high atomic number and high density between mutually adjacent scintillation crystals without separating the scintillation crystals from the matrix of binding material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: April 19, 2011
    Assignee: Consiglio Nazionale delle Ricerche (CNR)
    Inventors: Alessandro Soluri, Roberto Massari, Carlo Trotta, Francesco Scopinaro
  • Patent number: 7923697
    Abstract: An image sensor includes a scintillator comprising a substrate covered with a layer of luminescent material, the layer of luminescent material comprising a first side in contact with the substrate and a second side, the surface of which has asperities, separated by interstices, a detection radiation emerging from the second side of the layer of luminescent material when the luminescent material is illuminated by a probe radiation through the substrate, characterized in that the second side of the layer of luminescent material is covered with a film of a coating material partially absorbing the detection radiation, and moulding itself to the asperities of the surface of the second side of the layer of luminescent material.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 12, 2011
    Assignee: Thales
    Inventors: Daniel Gally, Luc Berthier
  • Patent number: 7906768
    Abstract: Methods and apparatus relating to the imaging of biological samples are provided. More particularly, they relate to the detection of light emanating from fluorescent species present in a sample in order to study the structure and dynamics of such a sample. Such a method of analysis comprises irradiating the sample with a pulse of excitation energy causing fluorescent species in the sample to fluoresce; detecting light emanating from the sample during a predetermined period of time after the pulse; generating and storing data recording at least the wavelength of the detected light against time; and analysing the data with reference to the respective lifetimes of the fluorescent species to detect the presence of the respective emissions from three or more different fluorescent species which emit light simultaneously during at least part of said predetermined period, which are indistinguishable from each other on the basis of their wavelength or lifetime alone.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 15, 2011
    Assignee: PerkinElmer Singapore Pte Ltd.
    Inventors: Patrick Courtney, Paul Orange, Janet Park, Claire Hooper
  • Patent number: RE42281
    Abstract: A scintillator panel 1 uses a glass substrate 5, having heat resistance, as a base member for forming a scintillator 10. Glass substrate 5 also functions as a radiation entry window. Also, a dielectric multilayer film mirror 6 is disposed as a light-reflecting film between the scintillator 10 and the glass substrate 5. Furthermore, a light-absorbing film 7 is disposed on the radiation entry surface of glass substrate 5 and this absorbs the light that has been emitted from scintillator 10 and has passed through the dielectric multilayer film mirror 6 and the glass substrate 5. Light components that are reflected by the radiation entry surface, etc., and return to the dielectric multilayer film mirror 7 and the scintillator 10 therefore do not occur and the optical output of the scintillator panel 1 is not subject to degrading effects.
    Type: Grant
    Filed: September 11, 2001
    Date of Patent: April 12, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Takuya Homme