Boron Containing Or With Boron Compound Patents (Class 252/521.4)
  • Patent number: 9627134
    Abstract: A ceramic dielectric composition contains a base material powder represented by one or more of (Ca1?xSrx)(Zr1?yTiy)O3, Ca(Zr1?yTiy)O3, Sr(Zr1?yTiy)O3, (Ca1?xSrx)ZrO3, and (Ca1?xSrx)TiO3, in which x and y satisfy 0?x?1.0 and 0.2?y?0.9, respectively. The ceramic dielectric composition may have high room-temperature permittivity and excellent ESD protection characteristics and may secure withstand voltage characteristics while implementing relatively high capacitance.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 18, 2017
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Sung Park, Seok Hyun Yoon, Chang Hoon Kim, Doo Young Kim, Soo Kyong Jo
  • Publication number: 20150118467
    Abstract: Methods of forming transition metal dichalcogenide aerogels are provided. Some methods include adding at least one solvent to one or more two-dimensional transition metal dichalcogenide sheets to form a transition metal dichalcogenide solution and freeze drying the transition metal dichalcogenide solution to form frozen transition metal dichalcogenide. The methods also include heating the frozen transition metal dichalcogenide to form a transition metal dichalcogenide aerogel.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Inventor: Arockiadoss THEVASAHAYAM
  • Publication number: 20150069307
    Abstract: Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Applicant: UT-BATTELLE, LLC
    Inventors: Mariappan Parans Paranthaman, Zhonghe Bi, Craig A. Bridges, Gilbert M. Brown
  • Patent number: 8858843
    Abstract: A high-fidelity dopant paste is disclosed. The high-fidelity dopant paste includes a solvent, a set of non-glass matrix particles dispersed into the solvent, and a dopant.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: October 14, 2014
    Assignee: Innovalight, Inc.
    Inventors: Elena Rogojina, Maxim Kelman, Giuseppe Scardera
  • Publication number: 20140302579
    Abstract: The present invention concerns a device comprising (i) a composite material comprising (1) a plurality of conductive or semiconductive nanotubes, and (2) a matrix arranged between these nanotubes and (ii) means allowing said composite material to be subjected to an electric field. The present invention also concerns the uses of said device in particular to defoul or to modify a composite material and to electroporate at least one cell.
    Type: Application
    Filed: October 8, 2012
    Publication date: October 9, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX
    Inventors: Pascal Boulanger, Alexandre Brouzes
  • Publication number: 20140264186
    Abstract: The present invention provides for a natural, non-toxic, environmentally friendly, “green” mineral based composition that produces ions and emits far infrared heat and the composition comprises tourmaline microcrystals and at least one activating element.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Douglas Spatz, Dan DeLaRosa
  • Patent number: 8771560
    Abstract: In a process for manufacturing doped semiconductor single crystal comprises solidifying in a crucible, the amount of dopant is added into the semiconductor melt after the beginning of the crystal growth onto the seed crystal, or after at least partial solidification of the semiconductor single crystal in a conical or tapered portion of the crucible. Dopant may be partially added in advance into the crucible, with the remainder added into the semiconductor melt as described. Type III-V semiconductor single crystals or wafers having a diameter of at least about 100 mm, can be prepared having an electrical conductivity of at least about 250 Siemens/cm, and/or an electric resistivity of at most about 4×10?3 ?cm, and/or a significantly improved ratio of hall mobility to charge carrier concentration.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 8, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ulrich Kretzer, Stefan Eichler, Thomas Bünger
  • Patent number: 8703341
    Abstract: With the object of providing a positive electrode active material for lithium battery that can increase the filling density, can increase the output characteristics, and furthermore, with a small voltage decrease during conservation at high temperature in a charged state, a positive electrode active material for lithium battery is proposed, containing a spinel type (Fd3-m) lithium transition metal oxide represented by general formula Li1+xM2?xO4?? (where M represents a transition metal including Mn, Al and Mg, x represents 0.01 to 0.08 and 0??) and a boron compound, the inter-the atomic distance Li—O of the spinel type lithium transition metal oxide being 1.971 ? to 2.006 ?, and the amount of magnetic substance measured for the positive electrode active material for lithium battery being 600 ppb or less.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 22, 2014
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shinya Kagei, Keisuke Miyanohara, Yoshimi Hata, Yasuhiro Ochi, Kenji Sasaki
  • Patent number: 8641823
    Abstract: Reactor designs for use in ammonothermal growth of group-III nitride crystals. Internal heating is used to enhance and/or engineer fluid motion, gas mixing, and the ability to create solubility gradients within a vessel used for the ammonothermal growth of group-III nitride crystals. Novel baffle designs are used for control and improvement of continuous fluid motion within a vessel used for the ammonothermal growth of group-III nitride crystals.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: February 4, 2014
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20130330599
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5, for example 39-48%; 0-14% Al2O3, for example 2-12%; 2-10% B2O3, for example 4-8%; 0-30% Na2O, for example 0-20%; 0-20% Li2O, for example 12-20%, wherein M is K, Cs or Rb; 0-10% PbO, for example 0-9%; 0-45% Li2O, for example 0-40% or 17-40%; 0-20% BaO, for example 5-20%; 0-10% Bi2O3, for example 1-5% or 2-5%.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 8603367
    Abstract: The invention provides electrode active materials comprising lithium or other alkali metals, manganese, a +3 oxidation state metal ion, and optionally other metals, and a phosphate moiety. Such electrode active materials include those of the formula: AaMnbMIcMIIdMIIIePO4 wherein (a) A is selected from the group consisting of Li, Na, K, and mixtures thereof, and 0<a?1; (b) 0<b?1; (c) MI is a metal ion in the +3 oxidation state, and 0<c<0.5; (d) MII is metal ion, a transition metal ion, a non-transition metal ion or mixtures thereof, and 0?d<1; (e) MIII is a metal ion in the +1 oxidation state and 0<e<0.5; and wherein A, Mn, MI, MII, MIII, PO4, a, b, c, d and e are selected so as to maintain electroneutrality of said compound.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: December 10, 2013
    Assignee: Valence Technology, Inc.
    Inventors: Haitao Huang, Yazid Saidi
  • Patent number: 8507135
    Abstract: Nanocomposites of conductive, nanoparticulate polymer and electronically active material, in particular PEDOT and LiFePO4, were found to be significantly better compared to bare and carbon coated LiFePO4 in carbon black and graphite filled non conducting binder. The conductive polymer containing composite outperformed the other two samples. The performance of PEDOT composite was especially better in the high current regime with capacity retention of 82% after 200 cycles. Further improvement can be obtained if the porosity of the nanocomposites is enhanced. Hence an electrode produced from a composite made of conductive, nanoparticulate polymer, electronically active material, and sacrificial polymer, wherein the sacrificial polymer has been removed leaving pores has improved electrolyte and ion diffusion properties allowing the production of thicker electrodes.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: August 13, 2013
    Assignee: The Swatch Group Research and Development Ltd
    Inventor: Nathalie Brebner-Grupp
  • Patent number: 8450707
    Abstract: A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Jefferson Science Associates, LLC
    Inventors: Paul Daniel Brindza, Bert Clayton Metzger
  • Publication number: 20130130095
    Abstract: A stabilized electrode comprising a metal oxide or lithium-metal-oxide electrode material is formed by contacting a surface of the electrode material, prior to cell assembly, with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt, to etch the surface of the electrode material and introduce stabilizing anions and cations from the salt into said surface. The structure of the bulk of the electrode material remains unchanged during the acid treatment. The stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium, phosphorus, titanium, silicon, zirconium, aluminum, and boron.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventor: UChicago Argonne, LLC
  • Publication number: 20130119319
    Abstract: A ceramic boron-containing dopant paste is disclosed. The ceramic boron-containing dopant paste further comprising a set of solvents, a set of ceramic particles dispersed in the set of solvents, a set of boron compound particles dispersed in the set of solvents, a set of binder molecules dissolved in the set of solvents. Wherein, the ceramic boron-containing dopant paste has a shear thinning power law index n between about 0.01 and about 1.
    Type: Application
    Filed: May 3, 2012
    Publication date: May 16, 2013
    Applicant: INNOVALIGHT INC
    Inventors: MAXIM KELMAN, Elena V. Rogojina, Gonghou Wang
  • Patent number: 8394299
    Abstract: Provided is a transition metal precursor comprising a composite transition metal compound represented by Formula I, as a transition metal precursor used in the preparation of a lithium-transition metal composite oxide: M(OH1?x)2??(1) wherein M is two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and transition metals of period 2 in the Periodic Table of the Elements; and 0<x<0.5.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 12, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Ho Suk Shin, Sung Kyun Chang, Hong-Kyu Park, Seung Tae Hong, Sinyoung Park, Youngsun Choi
  • Patent number: 8222457
    Abstract: A coordination compound of an element of the boron group, the production of the compound and methods of using the compound as an additive, stabilizer, catalyst, co-catalyst, activator for catalyst systems, conductivity improver, and electrolyte.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 17, 2012
    Assignee: Chemetall GmbH
    Inventors: Wolfram Lerner, Jens Röder, Hannes Vitze, Matthias Wagner, Ulrich Wietelmann
  • Publication number: 20120172231
    Abstract: A composite superconductor and methods of providing same include a superconductor powder dispersed within a conductive polymer matrix.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Inventors: Carlton Anthony Taft, Gerson Silva Paiva, Nelson Cesar Chaves Pinto Furtado
  • Patent number: 8211278
    Abstract: Compositions for making wettable cathodes to be used in aluminum electrolysis cells are disclosed. The compositions generally include titanium diboride (TiB2) and metal additives. The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity. The electrodes may be durable and used in aluminum electrolysis cells.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Alcoa Inc.
    Inventors: Douglas A. Weirauch, Jr., Lance M. Sworts, Brian J. Tielsch, Robert A. DiMilia
  • Publication number: 20120134914
    Abstract: Disclosed is a cathode active material and a method to produce the same at low cost. The cathode powder comprises modified LiCoO2, and possibly a second phase which is LiM?O2 where M? is Mn, Ni, Co with a stoichiometric ratio Ni:Mn?1. The modified LiCoO2 is Ni and Mn bearing and has regions of low and high manganese content, where regions with high manganese content are located in islands on the surface. The cathode material has high cycling stability, a very high rate performance and good high temperature storage properties.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 31, 2012
    Inventors: Jens Martin Paulsen, Hyunjoo JE, Maxime Blangero
  • Patent number: 8142749
    Abstract: Additions of substitutional transition metal elements are made to improve the densifiability of titanium diboride while eliminating or minimizing the presence of deleterious grain boundary phases in the resultant bulk titanium diboride articles.
    Type: Grant
    Filed: October 4, 2009
    Date of Patent: March 27, 2012
    Assignee: Kennametal Inc.
    Inventors: Sean E. Landwehr, Russell L. Yeckley
  • Patent number: 7988880
    Abstract: In order to provide a novel spinel type lithium transition metal oxide (LMO) having excellent power performance characteristics, in which preferably both the power performance characteristics and the cycle performance at high temperature life characteristics may be balanced, a novel spinel type lithium transition metal oxide with excellent power performance characteristics is proposed by defining the inter-atomic distance Li—O to be 1.978 ? to 2.006 ? as measured by the Rietveld method using the fundamental method in a lithium transition metal oxide represented by the general formula Li1+xM2?xO4 (where M is a transition metal consisting of three elements Mn, Al and Mg and x is 0.01 to 0.08).
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naoki Kumada, Shinya Kagei, Yoshimi Hata, Kenji Sasaki, Yasuhiro Ochi, Keisuke Miyanohara
  • Publication number: 20110169396
    Abstract: A semiconductor ceramic including a microstructure including 5 to 40% by volume of a particulate conducting phase, and 60 to 95% by volume of a particulate insulating phase, a size of the particles of the conducting phase being between 5 nm and 11 ?m, 65 to 80% of the particles of the conducting phase having an average diameter smaller than 1 ?m, and 20 to 35% of the conducting particles having an average diameter between 1 and 11 ?m, and a distance between two adjacent particles of the conducting phase being between 30 Angström and 5 ?m.
    Type: Application
    Filed: August 7, 2009
    Publication date: July 14, 2011
    Inventor: Béatrice Drazenovic
  • Publication number: 20110127314
    Abstract: A bonding material including a meltable joining material and a plurality of heterostructures distributed throughout the meltable joining material, the heterostructures comprising at least a first material and a second material capable of conducting a self-sustaining exothermic reaction upon initiation by an external energy to generate heat sufficient to melt the meltable joining material.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Alexander Heinrich, Thorsten Scharf, Edmund Riedl, Steffan Jordan
  • Patent number: 7947214
    Abstract: This process is a fused glass powder process for making ceramic billets for semiconductor dopants. The powder process uses a unique combination of steps for packing, compacting and heat treating the powders. The resulting billets may be tailored in composition to provide a variety of densities, rigidities and B2O3 evolution rates. Further, the resulting wafers have a large diameter to meet the needs of semiconductor production.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: May 24, 2011
    Inventor: Jame E. Rapp
  • Patent number: 7927518
    Abstract: The invention relates to a metal boride precursor mixture comprising a metal oxide and a boric oxide combined in such a manner so as to produce intimately linked clusters wherein the boric oxide is found within the metal oxide. Furthermore, the invention discloses a carbon composite material made with the metal boride precursor mixture and a carbonaceous component. Finally, the invention also teaches the process for preparing the metal boride precursor mixture comprising steps of providing a metal oxide and a boron oxide, mechanically mixing the metal oxide and the boron oxide at a temperature that liquefies the boron oxide and may impregnate the metal oxide to produce an intimately linked cluster of metal oxide and boric oxide.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: April 19, 2011
    Assignee: Alcan International Limited
    Inventors: Martin Dionne, Jean-Paul Robert Huni
  • Publication number: 20110082045
    Abstract: In some implementations of the invention, existing extremely low resistance materials (“ELR materials”) may be modified and/or new ELR materials may be created by enhancing (in the case of existing ELR materials) and/or creating (in the case of new ELR materials) an aperture within the ELR material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in an ELR state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the ELR material begins to transition into a non-ELR state.
    Type: Application
    Filed: October 2, 2010
    Publication date: April 7, 2011
    Inventor: Douglas J. GILBERT
  • Patent number: 7919014
    Abstract: The present invention relates to the production of electrochemical capacitors with a DEL. The proposed electrodes with DEL are based on non-metal conducting materials, including porous carbon materials, and are capable of providing for high specific energy, capacity and power parameters of electrochemical capacitors. P-type conductivity and high concentration of holes in electrode materials may be provided by thermal, ionic or electrochemical doping by acceptor impurities; irradiating by high-energy fast particles or quantums; or chemical, electrochemical and/or thermal treatment. The present invention allows for an increase in specific energy, capacity and power parameters, as well as a reduction in the cost of various electrochemical capacitors with DEL. The proposed electrodes with DEL can be used as positive and/or negative electrodes of symmetric and asymmetric electrochemical capacitors with aqueous and non-aqueous electrolytes.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 5, 2011
    Assignee: Universal Supercapacitors LLC
    Inventors: Samvel Avakovich Kazaryan, Gamir Galievich Kharisov, Sergey Nikolaevich Razumov, Sergey Vitalievich Litvinenko, Vyacheslav I. Shumovsky
  • Patent number: 7763189
    Abstract: This invention provides a dielectric composition comprising a dielectric which is fireable in air at a temperature in the range of about 450° C. to about 550° C. and a conductive oxide selected from the group consisting of antimony-doped tin oxide, tin-doped indium oxide, a transition metal oxide which has mixed valence states or will form mixed valence states after firing in a nitrogen atmosphere at a temperature in the range of about 450° C. to about 550° C. and normally conducting precious metal oxides such as ruthenium dioxide, wherein the amount of conductive oxide present is from about 0.25 wt % to about 25 wt % of the total weight of dielectric and conductive oxide. This dielectric composition has reduced electrical resistance and is useful in electron field emission devices to eliminate charging of the dielectric in the vicinity of the electron emitter and the effect of static charge induced field emission.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: July 27, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Joseph Bouchard, Lap-Tak Andrew Cheng, David Herbert Roadh, Kenneth Warren Hang
  • Publication number: 20100163091
    Abstract: A composite material of complex alloy is provided and it is the Ceramic-Metal Composite based on a thermoelectric material filled with ceramic material. The composite material is represented by the following general formula (I). A1?xBx ??(I) In the general formula (I), 0.05?X?0.2; A represents a Half-Heusler thermoelectric material and its proportional composition is represented with the following formula (II). (Tia1Zrb1Hfc1)1?y?zNiy Snz ??(II) In the general formula (II), 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 0.25?y?0.35, and 0.25?z?0.35; B represents at least one element selected from a group of C, O, and N.
    Type: Application
    Filed: July 8, 2009
    Publication date: July 1, 2010
    Applicant: Industrial Technology Research Institute
    Inventors: Yion-Ni Liu, Chi-Cheng Hsu, Ping-Jen Lee
  • Patent number: 7740773
    Abstract: The present invention provides a conductive composition and a conductive paste from which a conductive film having a high conductivity and a low thermal expansion coefficient can be formed. The thermal expansion coefficient of an island fixing type conductive layer 10 is compatible with that of a substrate 12. A cracking of the island fixing type conductive layer 10 or a crack in the substrate 12 due to a difference between these thermal expansion coefficients is suitably inhibited. The thermal expansion coefficient of the island fixing type conductive layer 10 is adjusted by ZWP contained in the range from 10 to 55 (wt %) as a low-expansion filler. Thus, compared with the case where other low-expansion filler is added, the conductivity degradation is inhibited. Accordingly, the island fixing type conductive layer 10 having a high conductivity and a high bonding strength is obtained.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: June 22, 2010
    Assignees: Noritake Co., Limited, Noritake Itron Corporation
    Inventors: Motoki Iijima, Tatsuro Nishimura, Masayuki Nakanishi
  • Patent number: 7648653
    Abstract: A conductive polyoxymethylene composition comprising a first polyoxymethylene component, a conductive filler, at least one boron oxyacid or salt thereof, and at least one first polyamide oligomer is disclosed. The first polyoxymethylene component comprises a copolymer of oxymethylene, a homopolymer of oxymethylene, and mixtures thereof, and is present in an amount of from about 50 to about 99.5 weight percent based on the total weight of the composition. The conductive filler is present in an amount of from about 0.1 to about 40 percent by weight based on the total weight of the composition. The boron oxyacid or salt thereof and the first polyamide oligomer stabilize the composition such that articles formed therefrom exhibit reduced or eliminated deterioration. Further, when exposed to higher temperature, pressure, and high-fuel content environments, the articles maintain the desired physical properties.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: January 19, 2010
    Assignee: BASF SE
    Inventors: David C. Krueger, Majiid Khalatbri, Wolfgang Heim, Theodore Zavadil
  • Publication number: 20090297912
    Abstract: Provided is a metal phosphate showing high proton conductivity, which is useful for a fuel cell having higher output and produced at lower cost. The proton-conductive metal phosphate is a compound containing M, P and O, wherein M represents at least one selected from the group consisting of group 4A and group 4B elements in the long form of the periodic table, a part of M is substituted with a dopant element J J represents at least one selected from the group consisting of group 3A, group 3B, group 5A and group 5B elements in the long form of the periodic table and at least contains an element selected from B, Al, Ga, Sc, Yb, Y, La, Ce, Sb, Bi, V, Ta and Nb.
    Type: Application
    Filed: July 26, 2007
    Publication date: December 3, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takashi Hibino, Toshihiko Tanaka, Takeshi Hattori
  • Patent number: 7615491
    Abstract: Methods and compositions for electrolessly depositing Co, Ni, or alloys thereof onto a substrate in manufacture of microelectronic devices. Grain refiners, levelers, oxygen scavengers, and stabilizers for electroless Co and Ni deposition solutions.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: November 10, 2009
    Assignee: Enthone Inc.
    Inventors: Qingyun Chen, Charles Valverde, Vincent Paneccasio, Nicolai Petrov, Daniel Stritch, Christian Witt, Richard Hurtubise
  • Publication number: 20090220858
    Abstract: Described is a composite lithium compound having a mixed crystalline structure. Such compound was formed by heating a lithium compound and a metal compound together. The resulting mixed metal crystal exhibits superior electrical property and is a better cathode material for lithium secondary batteries.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Applicant: BYD COMPANY LIMITED
    Inventors: Tangli Cheng, Long He, Zhanfeng Jiang, Ye Tian, Junfeng Liu
  • Publication number: 20090184281
    Abstract: Nanotechnology methods for creating stoichiometric and non-stoichiometric substances with unusual combination of properties by lattice level composition engineering are described.
    Type: Application
    Filed: October 31, 2003
    Publication date: July 23, 2009
    Inventors: Tapesh Yadav, John Alexander
  • Patent number: 7541313
    Abstract: A alloy (Mg—X) of metal (X) and Mg in a liquid phase is made to react with B in a solid phase at a low temperature to manufacture a superconductor, which contains a large amount of MgB2 potential for MRI, linear motorcar, superconducting cavity, electric power transmission cable, high-magnetic field magnet for medical units, electric power storage (SMES), and the like and is formed in the shape of bulk, wire, and foil, by heat treatment performed at a low temperature for a short time and at low cost.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: June 2, 2009
    Assignee: National Institute for Materials Science
    Inventors: Akihiro Kikuchi, Kiyoshi Inoue, Yasuo Iijima, Yuji Yoshida
  • Publication number: 20090115314
    Abstract: Boron nitride nanotube paste compositions, electron emission sources including the same, electron emission devices including the same and backlight units and electron emission display devices including the same are provided. A boron nitride nanotube paste composition includes about 100 parts by weight boron nitride nanotubes, from about 500 to about 2000 parts by weight glass frit, from about 1000 to about 2000 parts by weight filler, from about 2000 to about 4000 parts by weight organic solvent, and from about 4000 to about 6000 parts by weight polymer binder. Electron emission devices including the boron nitride nanotube electron emission sources have longer lifespan and improved uniformity among pixels.
    Type: Application
    Filed: August 18, 2008
    Publication date: May 7, 2009
    Inventors: Young-Chul Choi, Jong-Hwan Park, Kwang-Seok Jeong, Beom-Kwon Kim
  • Publication number: 20090098350
    Abstract: A conductive composition consisting essentially of (a) 50-95 wt % finely divided particles of an electrically-conductive material dispersed in (b) a liquid vehicle, for use in the manufacture of an electrically-conductive pattern on a substrate for the use of reducing cross-sectional area and width while retaining conductivity and resistivity.
    Type: Application
    Filed: November 24, 2008
    Publication date: April 16, 2009
    Inventor: SARAH JANE MEARS
  • Publication number: 20090081549
    Abstract: A composition for use in an electrochemical redox reaction is described. The composition may comprise a material represented by a general formula MyXO4 or AxMyXO4, where each of A (where present), M, and X independently represents at least one element, O represents oxygen, and each of x (where present) and y represent a number, and an oxide of at least one of various elements, wherein the material and the oxide are cocrystailine, and/or wherein a volume of a crystalline structural unit of the composition may be different than a volume of a crystalline structural unit of the material alone. An electrode comprising such a composition is also described, as is an electrochemical cell comprising such an electrode. A process of preparing a composition for use in an electrochemical redox reaction is also described.
    Type: Application
    Filed: November 5, 2008
    Publication date: March 26, 2009
    Inventors: Ben-Jie Liaw, Wen-Ren Liu, Sheng-Shih Chang
  • Patent number: 7504349
    Abstract: Thick film conductive copper pastes that are lead-free and cadmium-free. The inventive copper pastes possess desirable characteristics, including good solderability, good wire bondability, a low firing temperature, and a wide temperature processing window, and provide excellent adhesion to a variety of substrates, including alumina and glass coated stainless steel substrates, as well as low resistivity, and a microstructure after firing that is dense and substantially free of pores.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: March 17, 2009
    Assignee: Ferro Corporation
    Inventors: Orville W. Brown, Srinivasan Sridharan
  • Publication number: 20080286898
    Abstract: A material composition having a core-shell microstructure suitable for manufacturing a varistor having outstanding electrical properties, the core-shell microstructure of the material composition at least comprising a cored-structure made of a conductive or semi-conductive material and a shelled-structure made from a glass material to wrap the cored-structure, and electrical properties of the varistors during low temperature of sintering process can be decided and designated by precisely controlling the size of the grain of the cored-structure and the thickness and insulation resistance of the insulating layer of the shelled-structure of material composition.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Applicant: BEE FUND BIOTECHNOLOGY INC.
    Inventors: Ching-Hohn Lien, Cheng-Tsung Kuo, Jun Nan Lin, Jie-An Zhu, Li-Yun Zhang, Wei-Cheng Lien
  • Publication number: 20080224104
    Abstract: The invention relates to a method for the preparation of stable suspensions of metal oxide nanoparticles, in which uncharged metal oxide nanoparticles are first treated with a non-ionic surfactant in a polar organic solvent under certain conditions, and the suspension obtained is then treated with a charging solution. The suspensions of the invention can be used for preparation of high quality metal oxide films by electrophoresis deposition (EPD).
    Type: Application
    Filed: August 3, 2006
    Publication date: September 18, 2008
    Inventors: Arie Zaban, Larissa Grinis, Asher Ofir
  • Publication number: 20080185560
    Abstract: Alloyed nanophenes comprising carbon, boron, and a Group V element other than nitrogen are provided. The alloyed nanophenes are useful, for example, as miniature electronic components, such as wires, coils, schottky barriers, diodes, inductors, memory elements, and other circuit devices and elements.
    Type: Application
    Filed: December 13, 2006
    Publication date: August 7, 2008
    Applicant: E. I. DUPONT DE NEMOURS AND COMPANY
    Inventor: DAVID HERBERT ROACH
  • Publication number: 20080156643
    Abstract: The invention relates to a metal boride precursor mixture comprising a metal oxide and a boric oxide combined in such a manner so as to produce intimately linked clusters wherein the boric oxide is found within the metal oxide. Furthermore, the invention discloses a carbon composite material made with the metal boride precursor mixture and a carbonaceous component. Finally, the invention also teaches the process for preparing the metal boride precursor mixture comprising steps of providing a metal oxide and a boron oxide, mechanically mixing the metal oxide and the boron oxide at a temperature that liquefies the boron oxide and may impregnate the metal oxide to produce an intimately linked cluster of metal oxide and boric oxide.
    Type: Application
    Filed: November 1, 2007
    Publication date: July 3, 2008
    Inventors: Martin Dionne, Jean-Paul Huni
  • Publication number: 20080121847
    Abstract: A conductive polyoxymethylene composition comprising a first polyoxymethylene component, a conductive filler, at least one boron oxyacid or salt thereof, and at least one first polyamide oligomer is disclosed. The first polyoxymethylene component comprises a copolymer of oxymethylene, a homopolymer of oxymethylene, and mixtures thereof, and is present in an amount of from about 50 to about 99.5 weight percent based on the total weight of the composition. The conductive filler is present in an amount of from about 0.1 to about 40 percent by weight based on the total weight of the composition. The boron oxyacid or salt thereof and the first polyamide oligomer stabilize the composition such that articles formed therefrom exhibit reduced or eliminated deterioration. Further, when exposed to higher temperature, pressure, and high-fuel content environments, the articles maintain the desired physical properties.
    Type: Application
    Filed: January 12, 2006
    Publication date: May 29, 2008
    Applicant: BASF Aktiengesellschft
    Inventors: David Carl Krueger, Majiid Khalatbari, Wolfgang Heim, Theodore Zavadil
  • Patent number: 7326370
    Abstract: This invention is directed to black conductive compositions, black electrodes made from such compositions and methods of forming such electrodes.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: February 5, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Michael F. Barker, Keiichiro Hayakawa, Hisashi Matsuno, Hiroaki Noda
  • Patent number: 7192540
    Abstract: There is provided a low dielectric constant material, which is excellent in thermal resistance, has low dielectric constant, and is applicable to a semiconductor device or electric appliances, an insulation film between semiconductor layers using the same, and the semiconductor device. The material is the low dielectric constant material having thermal resistance, which contains borazine skeletal molecules shown by the following formula (1) and the like in an inorganic or organic material molecule.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: March 20, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Sei Tsunoda, Hideharu Nobutoki, Noboru Mikami
  • Patent number: 7189342
    Abstract: This invention relates to novel chemical compositions and manufacturing methods for producing electro-conductive, metal-ceramic materials having improved structural stability to operate at high temperatures in oxidizing atmospheres.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: March 13, 2007
    Assignee: Harmonics, Inc.
    Inventor: Lucian G. Ferguson
  • Patent number: 7022175
    Abstract: An initial solids mixture for a later organic coating, such as pigmented coatings, films, priming coats, etc., e.g., for a coil coating method in which an initial solids mixture is applied to a substrate, e.g., broad strip, and this is thereby pre-coated, wherein the initial solids mixture includes, as additive particles, boron carbide and/or silicon carbide and/or compounds of transition elements or lanthanides, the electrical conductivity of which is selected to be in the metallic range (?>102 1/?cm and ?<107 1/?cm), during the later coating, the additive particles have a continuous physical connection in at least one spatial direction.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: April 4, 2006
    Assignee: DaimlerChrysler AG
    Inventor: Anita Marten