Abstract: The invention refers to a nuclear fuel, a fuel element, a fuel assembly and a method of manufacturing a nuclear fuel. The nuclear fuel is adapted for use in a water cooled nuclear reactor, including light water reactors LWR, such as Boiling Water Reactors BWR and Pressure Water Reactors PWR. The nuclear fuel comprises an uranium-containing compound consisting of UN. The uranium content of the uranium-containing compound comprises less than 10% by weight of the isotope 235U. The nuclear fuel comprises an additive substantially consisting of at least one element, in elementary form or as a compound, selected from the group consisting of Zr, Mo, Si, Al, Nb and U.
Type:
Application
Filed:
February 22, 2010
Publication date:
August 25, 2011
Applicant:
WESTINGHOUSE ELECTRIC SWEDEN AB
Inventors:
Lars HALLSTADIUS, Edward J. LAHODA, Janne WALLENIUS, Mikael JOLKKONEN, Radu POMIRLEANU, Sumit RAY
Abstract: This invention provides a dripping nozzle device to produce ADU particles with good sphericity, a device for recovering a feedstock liquid to prepare a uniform feedstock liquid, a device for supplying a feedstock liquid to form drops with a uniform volume, a device for solidifying the surfaces of drops so that the drops will not deform easily when they fall onto and hit the surface of an aqueous ammonia solution, a device for circulating an aqueous ammonia solution so that the uranyl nitrate in the drops can be changed to ammonium diuranate completely, to such an extent that uranyl nitrate in the center of each drop is changed to ammonium diuranate, and an apparatus for producing ammonium diuranate particles with good sphericity. The dripping nozzle device is provided with a single vibrator to vibrate nozzles simultaneously. The device for recovering a feedstock liquid recovers the feedstock liquid remaining in the nozzles and mixes it with a fresh feedstock liquid.
Abstract: A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.
Type:
Grant
Filed:
April 24, 2007
Date of Patent:
September 1, 2009
Assignee:
The United States of America as represented by the United States Department of Energy
Inventors:
Anthony K. Burrell, Alfred P. Sattelberger, Charles Yeamans, Thomas Hartmann, G. W. Chinthaka Silva, Gary Cerefice, Kenneth R. Czerwinski
Abstract: Neptunium of minor actinide nuclides separated from spent fuel is added to fuel of reactor cores (inner reactor cores and/or outer reactor cores) of a fast reactor and americium of the separated minor actinide nuclides and rare earth elements are added to either or both of radial and axial blankets of the fast reactor for burning. Thus, the minor actinide nuclides with long half-lives can be burnt with the fast reactor core with the minimized effects of the rare earth elements. For a burner reactor, americium and rare earth elements may be added to shields for burning. Curium may be added together with americium and rare earth elements. Neptunium is added in amount of 2% to 5% by weight based on the weight of the fuel and the rare earth elements are added in an amount of 50% by weight or less based on the weight of the fuel. A Purex process is used to separate neptunium and a Truex process is used to separate americium and curium.
Abstract: The invention discloses a metal-actinide mononitride composition with dimensional stability in extended nuclear reactor operations, with a method of operation at surface temperatures in excess of 1700.degree. C. The preferred embodiment and operating method uses a mononitride of uranium and a metal selected from the group consisting of titanium or yttrium. Parameters for determination of the metal element to stabilize the fuel are disclosed.