Forming Connector Or Coupler (e.g., Fiber Link, Etc.) Patents (Class 264/1.25)
  • Publication number: 20140147083
    Abstract: Methods for fabricating connectors for multilayered optical waveguides, as well as apparatuses for multilayered optical waveguides that embody ferrules and connectors. The method of fabricating a connector includes the steps of: stacking in a containing unit of a ferrule, a plurality of optical waveguides that are each preliminarily formed in the shape of layers; and injecting resin or adhesive through a space lying between the plurality of optical waveguides and the containing unit of the ferrule, with the plurality of optical waveguides contained in a stacked manner so that resin or adhesive reaches each of the plurality of optical waveguides.
    Type: Application
    Filed: October 10, 2013
    Publication date: May 29, 2014
    Inventors: Shigeru Nakagawa, Hidetoshi Numata
  • Publication number: 20140125917
    Abstract: A method for producing a light guide plate includes forming a light introduction part that introduces light incident through an end face, and forming a light guide plate body that has a thickness less than a maximum thickness of the light introduction part, forming the light guide plate body to be continuously joined to the light introduction part, and forming the light guide plate body so as to cause a light controller to output the incident light to an outside. The light guide plate producing method further includes a conveying step of conveying a resin sheet between a first die and a second die, which are disposed while facing each other, wherein a transfer surface is provided in at least one of surfaces facing each other in the first and second dies.
    Type: Application
    Filed: February 8, 2013
    Publication date: May 8, 2014
    Applicant: OMRON CORPORATION
    Inventors: Isao Makuta, Koichi Takemura, Tomofusa Shibata, Yoshihisa Yamanaka, Norikazu Kitamura, Masayuki Shinohara, Kazuhide Hirota, Yoshikaga Taguchi, Masayuki Kojima, Yukihiro Takahashi
  • Patent number: 8699841
    Abstract: A photosensitive resin composition which includes (A) a cyclic olefin; (B) at least either one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group, having a refractive index different from that of the component (A); and (C) a photoacid generator, is provided.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Tetsuya Mori, Keizo Takahama
  • Publication number: 20140093212
    Abstract: A method of manufacturing fiber optic connectors includes precision molding optical ferrule assemblies around optical fibers for use in the connectors. The optical ferrule assemblies are over-molded in two-parts: a ferrule and a hub. The ferrule is molded around a coated section of fiber and a fiber tip is formed (e.g., using a laser) at a stripped section of the optical fiber at a location axially spaced from the ferrule. The fiber is pulled into the ferrule to align the tip and the hub is formed to complete the ferrule assembly.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 3, 2014
    Inventors: Michael James Ott, Paul A. Suek
  • Publication number: 20140072265
    Abstract: A connection system includes an optical connector assembly; and an optical plug. The connector assembly includes a stack of gel-groove assemblies and a spring assembly mounted within a housing. Each of the gel-groove assemblies includes a first gel block at a first axial end, a second gel block at a second axial end, and a fiber mating region between the first and second gel blocks. The optical plug including sub-modules over-molded over arrays (e.g., ribbons) of the optical fibers. Each sub-module defines notches for receiving latches of the spring assembly when the optical plug is coupled to the first axial end of the optical adapter. Bare optical fibers extend from the plug, pass through the first axial gel block, and enter the fiber mating region when the plug is coupled to the adapter.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 13, 2014
    Inventor: Michael James Ott
  • Publication number: 20140035175
    Abstract: High accuracy positioning relative to an absolute reference position (guide pin holes in ferrules, etc.) is provided for a plurality of cores constituting a polymer waveguide array for connection to ferrules at ends of a plurality of these assemblies to form a single-mode polymer waveguide array assembly. A method for forming a single-mode polymer waveguide array assembly enables a plurality of cores constituting a polymer waveguide array to be positioned with high accuracy. Also provided is a combination of process molds (an initial process mold and intermediate process mold) used in the processes unique to the present methods.
    Type: Application
    Filed: July 29, 2013
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Hidetoshi Numata, Yoichi Taira
  • Publication number: 20140036256
    Abstract: In an event of fusion-splicing end surfaces 1a, 3a of a pair of optical fibers 1, 3 to each other, a type of each of the optical fibers is distinguished from an image obtained by imaging an end surface of the optical fiber. A brightness pattern of the end surface of the optical fiber, which is obtained by imaging the end surface of the optical fiber from front by each of imaging units 25, 27 arranged opposite to the end surface of the optical fiber, is collated with basic brightness patterns prestored for each type of the optical fibers, a basic brightness pattern that coincides with the brightness pattern is obtained, and the type of the optical fiber is distinguished.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Applicant: FUJIKURA LTD.
    Inventors: Ataru TAKAHASHI, Tomohiro KONUMA, Toshiki KUBO
  • Patent number: 8644660
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon. The optical waveguide unit includes socket portions for locating the electric circuit unit, which are formed on a surface of an undercladding layer and formed of the same material as a core. The socket portions are located at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions which are formed by bending a part of an electric circuit board so as to stand, for fitting into the socket portions. The bent portions are located at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled in a state in which the bent portions fit into the socket portions.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue
  • Publication number: 20140016899
    Abstract: A method of manufacturing an optical cable including plural waveguides each including plural optical channels and each of the waveguides and the optical channels having a first end and a second end. A central portion of each of the waveguides is displaced along a central longitudinal axis of the waveguides which traverses a central bifurcation line of the first and second connectors. A first optical channel connection pattern is formed on the first connector by the first ends of the optical channels of the waveguides connected thereto; and a second optical channel connection pattern formed on the second connector by the second ends of the optical channels of the waveguides connect to the second connector. The first optical channel connection pattern is a different pattern than the second optical channel connection pattern in relation to a connection hole pattern which is the same for both the first and second connectors.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 16, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell A. Budd, Frank R. Libsch
  • Patent number: 8596879
    Abstract: An optical cable including connectors includes a plurality of waveguide layers each including a plurality of optical channels each having a first end and a second end. First and second connectors each include a plurality of electrically conductive pins, and each of the plurality of optical channels of each of the waveguides, at their first and second ends, are connected to a specified pin on each of the first and second connectors, respectively. A first optical channel connection pattern on the first connector, and a second optical channel connection pattern on the second connector. The first optical channel connection pattern on the first connector is a different pattern than the second optical channel connection pattern on the second connector in relation to a connection hole pattern which is the same for both the first and second connectors.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Frank R. Libsch
  • Publication number: 20130315541
    Abstract: The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector includes a connector body and ferrule assembly mounted in the connector body. A spring is positioned within the connector body for biasing the ferrule assembly in a forward direction. The spring has a first spring length when the ferrule assembly is in a forwardmost position. A rear housing of the connector body includes a front extension that fits inside a rear end of the spring, the front extension having a front extension length. The fiber optic connector defines a gap between the front extension and a ferrule hub of the ferrule assembly, the gap having a first dimension measured between the front extension and the ferrule hub when the ferrule assembly is in the forwardmost position, the front extension length being longer than the first dimension.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 28, 2013
    Inventors: Ponharith Nhep, Patrick Nault
  • Publication number: 20130308908
    Abstract: Dense fiber optic connector assemblies and related connectors and cables suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector is provided. The fiber optic connector is configured to be directly optically connected in an optical backplane. The fiber optic connector is comprised of at least one fiber optic connector body, at least one fiber optic ferrule in the at least one fiber optic connector body. The fiber optic ferrule is configured to support a fiber count and to optically align fiber openings with lenses disposed on the fiber optic connector body. The dense fiber optic connectors may be optical backplane fiber optic connectors or blade fiber optic connectors.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: Corning Cable Systems LLC
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8580162
    Abstract: A method of directly molding a fiber optic ferrule on an end of a fiber optic cable is disclosed. The method preferably includes stripping a cable jacket and/or a buffer layer from optical fibers of the fiber optic cable and trimming the optical fibers with a laser thereby creating trimmed ends on the optical fibers. The optical fibers and preferably a pin assembly are held near the end of the fiber optic cable by an optical fiber and pin locator. The optical fiber and pin locator can statically or dynamically hold and position the optical fibers and pin assembly. After the optical fibers and/or the pin assembly are positioned, a fixture is attached to the trimmed ends of the optical fibers and/or the pin assembly thereby preserving their relative position to each other. After the fixture is attached, the optical fiber and pin locator is removed, and the end of the fiber optic cable with the attached fixture is placed into a mold cavity.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 12, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael James Ott, Thomas P. Huegerich
  • Publication number: 20130292859
    Abstract: There is provide an optical fiber end processing method, for processing an end portion of an optical fiber having a core and a clad surrounding the core, comprising: fixing two places of the optical fiber; firstly heating a part at a tip end side of the optical fiber between fixed parts fixed at two places, thereby melting the optical fiber at the heated part at the tip end side; secondly heating a part at a base end side of the optical fiber between the fixed parts away from the heated part at the tip end side in a state that the optical fiber is fixed at two places, thereby forming an expanded core region which is formed by expanding a diameter of the core by diffusing the dopant included in the optical fiber; and removing at least the heated part at the tip end side.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventors: Masao TACHIKURA, Hiroyuki OHKUBO
  • Publication number: 20130287338
    Abstract: The present invention relates generally to optical waveguides for the transmission of electromagnetic energy. The present invention relates more particularly to optical couplers for coupling optical fibers, and methods for making them. One aspect of the present invention is an optical coupler for use with a polarization-maintaining input optical fiber and a polarization-maintaining output optical fiber.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 31, 2013
    Inventors: Imtiaz Majid, Chih-Hao Wang, Kanishka Tankala
  • Patent number: 8571361
    Abstract: A combined optical and electrical flexible wiring includes a first film substrate, a plurality of conductors aligned parallel on a surface of the first film substrate, an optical fiber provided on the surface of the first film substrate and aligned parallel to the plural conductors, a second film substrate with which the plural conductors and the optical fiber are covered in such a manner as to include an exposed portion, a resin mount provided over the exposed portion in such a manner as to cover the plural conductors and the optical fiber, the resin mount being formed with a light inlet or outlet groove including a mirror surface therein, an optical-electrical conversion component formed on a surface of the resin mount, and a wiring pattern formed on the surface of the resin mount.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 29, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hiroki Yasuda, Kouki Hirano, Takami Ushiwata, Masanobu Ito
  • Publication number: 20130278611
    Abstract: This disclosure provides systems, methods, and apparatus for providing illumination. In one aspect, a light guide can be configured to propagate light received from a light source. The light can be propagated by total internal reflection (TIR) within the light guide. The light guide can include an output surface configured to output light and one or more light extraction elements, which are configured to redirect the light propagating in the light guide so that the light exits the light guide through the output surface. The light guide can have tapered side walls that are configured to at least partially collimate the light that is to exit out of the output surface. In some implementations, the light guide can be used to provide illumination for display devices, other electromechanical systems, or for lighting a room or task area.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventor: Robert L. Holman
  • Patent number: 8562225
    Abstract: An optical ferrule that holds an optical fiber, the optical ferrule having an ejector pin mark formed by an ejector pin during molding, the optical ferrule includes a ferrule body, ferrule body having an optical fiber insertion opening to be inserted with the optical fiber, optical fiber hole from which a tip end of the optical fiber is to be exposed, and a lower surface of the ferrule body that is to be a reference plane, lower surface of the ferrule body including a recessed section, ejector pin mark being located on a bottom surface of the recessed section, side surface of the recessed section being formed higher than a molding burr of the ejector pin mark.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 22, 2013
    Assignee: Fujikura Ltd.
    Inventors: Seiji Kato, Tatsuya Ohta
  • Publication number: 20130273240
    Abstract: Embodiments of the present invention generally relate to laser combiners, and more specifically, to all-fiber devices that combine optical laser power from multiple separate sources such as lasers or amplifiers. In one embodiment, a method of manufacturing a combiner device comprises: positioning an plurality of fibers into a bundle of fibers; drawing the bundle of fibers to create a tapered section, the tapered section having a first outer diameter at an input end, a second outer diameter at an output end, and a taper ratio of at least three; wherein at least one of the fibers of the bundle of fibers comprises an optical waveguide configured for propagating an optical mode from the input end to the output end, and wherein a mode field diameter of the optical mode at the input end is substantially the same as the mode field diameter at the output end.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: William R. Holland, Thierry F. Taunay
  • Publication number: 20130271348
    Abstract: A dielectric cone radiator sub-reflector assembly for a reflector antenna with a waveguide supported sub-reflector is provided as a unitary dielectric block with a sub-reflector at a distal end. A waveguide transition portion of the dielectric block is dimensioned for insertion coupling into an end of the waveguide. A dielectric radiator portion is provided between the waveguide transition portion and a sub-reflector support portion. An outer diameter of the dielectric radiator portion is provided with a plurality of radially inward grooves extending radially inward to a diameter less than an inner diameter of the end of the waveguide and a lens bore extends from a proximal end of the dielectric block towards the distal end of the dielectric block at least to the sub-reflector support portion. The unitary dielectric block may be manufactured as a single contiguous monolithic portion of dielectric material via injection molding.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Applicant: Andrew LLC
    Inventors: Junaid ul Islam Syed, Ronald J. Brandau, Alastair D. Wright, Allan Tasker, Brian J. Lawson
  • Publication number: 20130259434
    Abstract: A fiber optic cable assembly includes a fiber optic cable, a tether, and an overmold. The fiber optic cable includes an optical fiber, a strength member, and a jacket, where the jacket includes an interior portion contacting the strength member and an exterior portion adjoining the interior portion. The interior and exterior portions of the jacket both include polyethylene, and the exterior portion further includes an additive that is not in the interior portion. The tether is coupled to the fiber optic cable at an attachment point. The optical fiber or another optical fiber spliced to the optical fiber, diverges from the fiber optic cable via the tether. The overmold encloses the attachment point and is attached directly to a discrete section of the exterior portion of the jacket proximate to the attachment point. The additive facilitates bonding of the overmold to the discrete section.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Inventors: Anne G. Bringuier, Julian L. Greenwood, III, Gregory A. Lochkovic, Alvin J. McDonald, Lars K. Nielsen, Hieu V. Tran
  • Publication number: 20130243367
    Abstract: A fiber optic turf blade contact and movement sensor used to detect, monitor and measure the movement and presence of activity on an athletic field and surface at and near the fiber optic turf blade sensor. This type of sensor contributes to the present efforts to view close calls regarding the athletic related activity, difficult to see athletic related activity, and instant replay of sporting related activities.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Inventor: William Redvers Belisle
  • Publication number: 20130230281
    Abstract: A method of forming a coupler, the method comprising: (a) heating a portion of an optical fiber having multiple cores and an initial diameter; and (b) applying a tensile force across the portion such that the portion stretches, thereby reducing the initial diameter to a reduced diameter sufficient to cause optical signals propagating in one or more of the multiple cores to leave their respective cores and enter other cores of the fiber.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: Tyco Electronics Corporation
    Inventor: Terry Patrick Bowen
  • Publication number: 20130221550
    Abstract: A method for making optical connections with optical waveguides includes mounting the optical waveguides or a device comprising the optical waveguides, on a component carrier. A partial region of the optical waveguides is embedded in a volume of resist material. Positions of the optical waveguides to be connected are detected with reference to a coordinate system using a measuring system. Favorable, three-dimensional geometries are determined for optical waveguide structures for connecting the optical waveguides to each other at predetermined connecting locations and the optical waveguide structure geometries are converted to a machine-readable dataset. The optical waveguide geometries in the volume of the resist material are three-dimensionally structured using a direct-writing lithography device operating on the basis of the machine-readable dataset.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: Karlsruher Institut fuer Technologie
    Inventors: Christian Koos, Wolfgang Freude, Nicole Lindenmann, Juerg Leuthold
  • Patent number: 8496386
    Abstract: Ferrules having anti-rotation features along with fiber optic connectors using the same are disclosed. The ferrules have a body with a first diameter and at least one bore extending from a rear end of the ferrule to a front end of the ferrule. The ferrule has at least one anti-rotation feature such as a rib. The ferrule may be part of a ferrule assembly that includes a ferrule holder where the anti-rotation feature improves the bond between the ferrule and the ferrule holder. Methods for making the ferrules and assemblies using the ferrule are also disclosed.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 30, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Sean M. Kerr, Louis E. Parkman, III, Glenn G. Riddell
  • Publication number: 20130188910
    Abstract: Disclosed is an optical conversion element capable of highly efficient optical coupling between a silicon waveguide and a general single-mode optical fiber only by butt-coupling without requiring anti-reflective coating. One embodiment is an optical conversion element that includes a waveguide structure and converts a mode field of guided light and is characterized in that at least a dual core is included, an innermost core of the dual core is a silicon inverse tapered thin wire core, a first outer core is a forward tapered ridge core having a ridge structure formed of an oxide film with only width of the ridge core changing. The first outer core is positioned on a narrow width side of the innermost core.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 25, 2013
    Applicant: NEC Corporation
    Inventors: Masatoshi Tokushima, Shigeru Nakamura
  • Publication number: 20130182456
    Abstract: A LED backlight unit structure, especially a edge type LED backlight unit, which had a substrate and a one or plurality LED light source lay on the substrate, and a light guide plate 101, which directly couple with the one or plurality LED by using the insert molding technology. A light modulation structure thereon the light guide plate, where near the one or plurality LED light source. A LED backlight unit structure, also can apply light tube or reflecting structure on the light guide plate, and that also can combined with the above-mentioned structures.
    Type: Application
    Filed: November 5, 2010
    Publication date: July 18, 2013
    Inventor: Huei-dung Chin
  • Publication number: 20130156372
    Abstract: An optical coupling module includes a substrate, a circuit board defining two through holes, an optical waveguide positioned between the substrate and the circuit board, and an optical assembly. The optical waveguide includes a core and a clad, each core comprises two coupling surfaces corresponding to the two through holes. At least one coupling surfaces is in an arcuate shape. The clad covers the core, except for the two coupling surfaces exposing out of the clad. The optical assembly formed on the circuit board comprises an optical emitting element and an optical receiving element. The optical emitting element and the optical receiving element are positioned above the two through holes, respectively. Light emitted from the optical emitting element enters the optical waveguide via one of the coupling surface, and leaves from another coupling surface to reach the optical receiving element. The coupling surface is capability of focusing light.
    Type: Application
    Filed: April 27, 2012
    Publication date: June 20, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: BING-HENG LEE
  • Publication number: 20130156377
    Abstract: Methods of reducing and/or avoiding fiber ordering during preparations of a multi-fiber, fiber optic cable to provide a connectorized multi-fiber, fiber optic cable system, and related fiber optic cables and assemblies are also disclosed. The embodiments disclosed herein allow for a section of a multi-fiber, fiber optic cable to be prepared to form two or more connectorized fiber optic cables as part of a multi-fiber cable system without requiring specific fiber ordering in the fiber optic connectors. The natural ordering of the optical fibers in the fiber optic cable is fixed in place in at least one section of the fiber optic cable before the optical fibers are cut to form adjacent fiber optic connectors in the cable system. Thus, the fiber ordering between adjacent fiber optic connectors in the cable system will be the same even though the fiber ordering of the optical fibers was random during cable preparations.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: Jeffery A. DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther, James S. Sutherland
  • Publication number: 20130156381
    Abstract: A process for preparing terminated fibers comprising: (a) deposition one or more fibers in a ferrule having a ferrule end face such that a portion of each fiber extends forward beyond the ferrule end face; (b) after step (a), positioning a register surface in a predetermined position relative to the ferrule end face; (c) after step (b), depositing an optically-clear filler between the end face and the register surface and around the portion of each fiber; and (d) once the filler solidifies, releasing the register surface form the filler to define a mating surface on the filler.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: TYCO ELECTRONICS CORPORATION
    Inventor: Michael Aaron Kadar-Kallen
  • Patent number: 8454341
    Abstract: A mold for molding an optical fiber connector having a number of lens portions with a flat surface or a curved surface, is provided. The mold includes an upper molding portion, a lower molding portion, a first insert, a number of second inserts and a fixing portion. The first insert includes a number of curved molding portions and a flat molding portion. The upper molding portion, the lower molding portion, the first insert and the fixing portion cooperatively define a molding space. A distal end of each second insert is inserted into the molding space. The first insert is moveable relative to the second insert such that the curved molding portions or the flat molding portion is selectively exposed in the molding space and is opposite to the distal ends of the second inserts.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: June 4, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kun-Chan Wu
  • Patent number: 8431052
    Abstract: A manufacturing apparatus for an optical waveguide structure including a clad structure having grooves in a curved surface thereof and a clad film attached to the curved surface includes a clad film shape retaining portion that has a curved surface along which the clad film is held. a position checking portion that checks the position of the clad film on the clad film shape retaining portion, and a first position adjusting portion that adjusts the position of the clad film shape retaining portion so that the clad film on the clad film shape retaining portion is disposed at a reference position while checking the position of the clad film with the position checking portion.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 30, 2013
    Assignee: Fujitsu Limited
    Inventor: Kazuyuki Ikura
  • Patent number: 8428407
    Abstract: A fiber optic jumper cable having a central axis includes a bend-resistant multimode optical fiber generally arranged along the central axis. A tensile-strength layer surrounds the bend-resistant optical fiber. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 1.6 mm?DO?4 mm.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: April 23, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: James A. Register, III
  • Patent number: 8425126
    Abstract: A multi-core optical fiber which has a plurality of core portions arranged separately from one another in a cross-section perpendicular to a longitudinal direction, and a cladding portion located around the core portions, the multi-core optical fiber comprises a cylindrical portion of which diameter is even, and a reverse-tapered portion gradually expanding toward at least one edge in the longitudinal direction, wherein a gap between each adjacent ones of the core portions in the reverse-tapered portion is greater than that in the cylindrical portion.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 23, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Katsunori Imamura
  • Publication number: 20130094804
    Abstract: An apparatus, comprising an optical switch having Nin optical input ports and Nout optical output ports. The optical switch includes an input array of 1×Nout optical switches, an output array of Nin×1 optical switches and a plurality of optical crossconnect zones located in-between the input array and the output array. Nin and Nout are integers greater than 1, and, each of Nin*Nout output waveguide arms of the 1×Nout optical switches are optically coupled to a corresponding one of Nin*Nout input waveguide arms of the Nin×1 optical switches comprising an optical switch.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: Alcatel-Lucent, USA Inc.
    Inventors: Long Chen, Christopher R. Doerr
  • Patent number: 8406591
    Abstract: A low cost, high performance, low profile flexible reinforcement member that can be used for both optical and copper communications cable. The reinforcement members made according to the preferred process are more rigid than known reinforcement members, but are less rigid than glass pultruded rods. Communications cables utilizing these members are lightweight and exhibit an improved combination of strength and flexibility compared to traditional communications cables. Further, these communication cables may then be installed into underground ducts using more economical and faster installation techniques.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 26, 2013
    Assignee: Neptco JV, LLC
    Inventors: Thomas P. Hager, Richard N. Lehman, James R. Priest
  • Patent number: 8398899
    Abstract: A method for manufacturing an optical waveguide includes: step A of forming a first resin layer 23 by allowing a first liquid-state resin to flow to be extended in a manner so as to bury and enclose cores 22; step B of forming a second resin layer 25 by allowing a second liquid-state resin having a viscosity higher than that of the first liquid-state resin to flow to be extended on the first resin layer 23, after or while the first resin layer 23 is heated; and step C of forming an over-cladding layer 26 by curing the first resin layer 23 and the second resin layer 25.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 19, 2013
    Assignee: Nitto Denko Corporation
    Inventor: Ryusuke Naitou
  • Publication number: 20130044979
    Abstract: An optical cable including connectors includes a plurality of waveguide layers each including a plurality of optical channels each having a first end and a second end. First and second connectors each include a plurality of electrically conductive pins, and each of the plurality of optical channels of each of the waveguides, at their first and second ends, are connected to a specified pin on each of the first and second connectors, respectively. A first optical channel connection pattern on the first connector, and a second optical channel connection pattern on the second connector. The first optical channel connection pattern on the first connector is a different pattern than the second optical channel connection pattern on the second connector in relation to a connection hole pattern which is the same for both the first and second connectors.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell A. Budd, Frank R. Libsch
  • Publication number: 20120328244
    Abstract: An optical connecting member realizes an optical connecting between a multi-core fiber and a plurality of single-core fibers by a waveguide part which connects a first end face and a second end face. With the optical connecting member, a connected end which is connected to the first end face is a straight-line portion that is orthogonal to the first end face in each of the plurality of waveguide parts. In addition, a diverged end which is diverged to the second end face is a straight-line portion that is orthogonal to the second end face. Consequently, light that has passed through the waveguide parts is emitted from the first end face and the second end face substantially perpendicularly to the faces, thereby enabling optical connecting loss to be favorably inhibited.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 27, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Dai Sasaki, Tomomi Sano, Akira Inoue
  • Publication number: 20120301090
    Abstract: Molded fiber optic cable furcation assemblies, and related fiber optic components, assemblies, and methods are disclosed. In one embodiment, an end portion of a fiber optic cable with a portion of a cable jacket removed to expose optical fibers and/or a cable strength member(s) therein and thereafter placing the cable into a mold for creating a molded furcation plug about the end portion of the fiber optic cable. The furcation plug may be overmolded about the end portion of the fiber optic cable. The molded furcation plug can be used to pull a fiber optic cable without damaging the optical fiber(s) disposed within the fiber optic cable. The molded furcation plug is advantageous since it manufactured with fewer parts, without epoxy, and/or without a labor intensive process that may be difficult to automate.
    Type: Application
    Filed: June 16, 2011
    Publication date: November 29, 2012
    Inventors: Timothy S. Cline, Terry L. Cooke, Tory A. Klavuhn, Mario L. Tooley
  • Publication number: 20120263418
    Abstract: An optical fiber includes an interlocking microstructure formed on an outer periphery of the fiber that configures the fiber to be interlocked with another optical fiber including a complementary interlocking microstructure coating.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Richard Kallay, Scott G. Fleischman
  • Patent number: 8273271
    Abstract: A method for making an optical fiber connector includes a mold. The mold includes a first mold portion having inserts each for molding a blind hole preform, and a second mold portion having a flat molding surface for forming a flat optical surface, and a number of curved molding surfaces for forming lens caps. A non-contact detection instrument is provided to project a light beam to the bottom of the blind hole preforms with the light beam passing through the flat optical surface. Then a coarseness factor image is obtained and analyzed to determine whether a coarseness factor of the bottom of the corresponding blind hole preform is acceptable and the corresponding insert is modified if it is not acceptable. Finally, the curved molding surfaces are aligned with the inserts to form the lens caps on the flat optical surface.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 25, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chia-Ling Hsu
  • Patent number: 8257991
    Abstract: A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 4, 2012
    Assignee: Intelligent Fiber Optic Systems, Inc.
    Inventors: Yong-Lae Park, Behzad Moslehi, Richard James Black, Mark R. Cutkosky, Kelvin K. Chau
  • Publication number: 20120213475
    Abstract: A method of forming a fiber optic device includes securing one or more optical fibers to a support. The support is coupled to a base that includes one or more optoelectronic devices. After one or more of the fibers are secured to the support, and the support is secured to the base, one or more of the fibers are cleaved. This method, and fiber optic devices made using this method are more easily aligned and may be produced at lower costs than existing manufacturing processes.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 23, 2012
    Inventors: Raman K. Selli, Brian M. Cole, Donald G. Doss
  • Publication number: 20120205825
    Abstract: Provided is a cost-effective manufacturing method for an optical connector, which enables an optical waveguide to be fixed to a ferrule easily in a short period of time. A manufacturing method for an optical connector includes: fitting an end portion of a transparent optical waveguide into an optical waveguide fitting groove of an optical connection ferrule made of a resin; and fusing and fixing the end portion of the transparent optical waveguide to the optical connection ferrule by applying a laser beam having a predetermined wavelength downward from above the optical waveguide fitting groove toward the transparent optical waveguide, so that the laser beam reaches a bottom surface of the optical waveguide fitting groove.
    Type: Application
    Filed: January 9, 2012
    Publication date: August 16, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Akiko Nagafuji, Naoyuki Matsuo, Mayu Shimoda
  • Patent number: 8231281
    Abstract: A repeatable optical waveguide interconnection may include first and second optical waveguides having respective first and second end faces. Each of the first and second optical waveguides may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction different than the core index of refraction. The interconnection may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face, and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction profile matching an index of refraction of the core and the cladding.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: July 31, 2012
    Assignee: Harris Corporation
    Inventors: Lawrence Wayne Shacklette, Michael Raymond Weatherspoon
  • Patent number: 8218917
    Abstract: An integrally molding die for manufacturing a package includes a supporting portion for supporting at least one end including an incident/exit port of a light signal in a light transmission path, and a lead frame for mounting an optical element. The integrally molding die includes a recess for forming the supporting portion, a first projection, which comes into contact with an optical element mounting surface of the lead frame, and a second projection, which comes into contact with a back surface of the optical element mounting surface.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 10, 2012
    Assignee: OMRON Corporation
    Inventors: Akihiko Sano, Hiroto Nozawa, Naru Yasuda, Hayami Hosokawa
  • Publication number: 20120170111
    Abstract: One aspect provides an optical device. The optical device includes a first and a second array of optical couplers, a plurality of waveguides and a plurality of pump couplers located over a surface of a substrate. The optical couplers of the first array are able to end-couple in a one-to-one manner to the optical cores of a first multi-core fiber having an end facing and adjacent to the first array and the surface. The optical couplers of the second array are able to end-couple in a one-to-one manner to optical cores having ends facing and adjacent to the second array. The plurality of optical waveguides connects in a one-to-one manner the optical couplers of the first array to the optical couplers of the second array. Each optical waveguide has a pump coupler connected thereto between the ends of the waveguide.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 5, 2012
    Inventors: Christopher Doerr, Peter Winzer
  • Publication number: 20120163756
    Abstract: An optical fiber connector includes an insulating housing, an optical fiber and a transparent hetero substrate. The optical fiber is exposed outside the insulating housing with one end portion molded in the insulating housing. The transparent hetero substrate is molded inside the insulating housing. The transparent hetero substrate is substantially perpendicular to the end portion of the optical fiber and spaced from an end edge of the end portion of the optical fiber. A middle of the transparent hetero substrate is substantially in alignment with the end portion of the optical fiber. The method of manufacturing the above-mentioned optical fiber connector is described hereinafter. Firstly, set an end portion of the optical fiber and a transparent hetero substrate in a mold. Secondly, inject molten materials into the mold. Thirdly, separate the mold and then take out the optical fiber connector from the mold when the mold is cooled.
    Type: Application
    Filed: December 24, 2010
    Publication date: June 28, 2012
    Inventors: Yuan-Lin Lee, Chia-Jung Chang, Wei Shen, Yung-Han Yang
  • Publication number: 20120141071
    Abstract: In accordance with the invention, the end faces of polymer optical waveguides are coated with a film that is harder than the waveguides themselves, but still sufficiently compliant to fill in scratches, gouges and other non-planarities in the end faces of the waveguides. Even further, using a single continuous sheet of the film to protect the end faces of a plurality of polymer waveguides in a connector also helps make the effective mating surfaces of all of the waveguides coplanar (i.e., longitudinally coextensive). Furthermore, if the film becomes scratched, it can be stripped off and replaced without the need to replace the waveguides or the entire connector.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: Tyco Electronics Corporation
    Inventors: Jeroen Antonius Maria Duis, Jan Willem Rietveld, Terry Patrick Bowen