Using Laser Sintering Of Particulate Material To Build Three-dimensional Product (e.g., Sls, Selective Laser Sintering, Etc.) Patents (Class 264/497)
  • Patent number: 10315357
    Abstract: A method of producing a monolithic body from a porous matrix includes using low temperature solidification in an additive manufacturing process.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: June 11, 2019
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventor: Richard E. Riman
  • Patent number: 10300530
    Abstract: This disclosure provides systems and tooling for cooling components during additive manufacturing. A build plate supports layers of powdered materials as they are positioned and selectively fused to create the component. The build plate defines a build surface and the build surface retracts in a working direction opposite a build direction for the component. At least one vertical cooling structure is provided perpendicular to the build plate and protruding from the build plate as the build surface retracts. The vertical cooling structure cools at least a portion of the component through unfused powdered materials between the vertical cooling structure and the component.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: May 28, 2019
    Assignee: General Electric Company
    Inventors: Kassy Moy Hart, Sandip Dutta, Srikanth Chandrudu Kottilingam, David Edward Schick
  • Patent number: 10279578
    Abstract: Techniques of additive deposition for producing articles of manufacture are disclosed herein. In one embodiment, an article of manufacture can include a substrate having a surface and composed of a metal or metal alloy and multiple layers of composite materials deposited on the surface of the substrate. The composite materials is composed of the metal or metal alloy and a ceramic material. The individual composite materials at each of the multiple layers has a composition with a corresponding ratio between the metal or metal alloy material and the ceramic material. The ratios between the metal or metal alloy material and the ceramic material change along at least one dimension of the article of manufacture.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 7, 2019
    Assignee: Washington State University
    Inventors: Amit Bandyopadhyay, Susmita Bose, Thomas Gualtieri, Yanning Zhang
  • Patent number: 10265941
    Abstract: An apparatus and a method using the apparatus provides heated air in an additive manufacturing process for building a three-dimensional part. The method comprises providing a stream of flowable part material at an initial build level, the initial build level being positioned in and defining a horizontal plane wherein the stream of flowable material is being initially disposed on previously deposited part material. Heated air is provided at a selected temperature corresponding to the temperature of the stream of flowable part material such that the stream of flowable part material deposits on previously deposited part material in an adhering fashion thereby forming the three-dimensional part wherein the heated air is provided in the horizontal plane of the initial build level.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: April 23, 2019
    Assignee: Stratasys, Inc.
    Inventors: Peter D. Schuller, Jordan Paul Nadeau, Joel Ordell Ostby, Shawn Michael Koop
  • Patent number: 10254754
    Abstract: Method, and corresponding system, for producing an alert during manufacture of a part formed by a plurality of layers. The method includes determining the sensor data values at the working tool positions of each of the plurality of layers based on a correlation of the values of the sensor data relative to time and the working tool positions of each of the plurality of layers relative to time. During the manufacturing process, the sensor data values at the working tool positions of at least one of the plurality of layers are compared to reference data values at the working tool positions for the at least one layer to determine a comparison measure for the at least one layer. An alert is transmitted if the determined comparison measure of a layer is not within a defined range. A defined action is applied to the manufacturing process based on the transmitted alert.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Adam McCann, Jacob Berlier, Li Zhang, Brandon Good
  • Patent number: 10239263
    Abstract: A powder sintering lamination molding method which can improve the quality of the molded product without extending the time required for the lamination molding. A powder sintering lamination molding method, including the steps of, irradiating an irradiation region of the sliced layer of a molded product surrounded by an outline profile with a laser to selectively sinter the material powder of the material powder layer within the irradiation region; wherein a cooling period is provided after the laser is irradiated along the first line and before the laser is irradiated along the second line.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: March 26, 2019
    Assignee: Sodick Co., Ltd.
    Inventors: Ichiro Araie, Seishi Kobayashi, Yoshitaka Kato, Yasuyuki Miyashita
  • Patent number: 10232602
    Abstract: Method for fabricating a three-dimensional object by successive consolidation, layer by layer, of selected regions of a layer of powder, consolidated regions corresponding to successive sections of the three-dimensional object, comprising in order: a—deposit layer of powder onto a support; b—fuse the layer of powder by a first laser energy source so as to obtain a fused layer corresponding to the section of the object and exhibiting a first state of its mechanical properties, c—heat at least a part of the fused layer by a second electron beam energy source to a temperature which follows a controlled variation over time so as to modify the first state of the fused layer and to obtain a consolidated layer with improved mechanical properties, d—repeat the preceding steps until several superposed consolidated layers are formed with improved properties forming the object.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 19, 2019
    Assignees: Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A.
    Inventors: Christophe Bessac, Stephanie Verleene, Frederic Pialot, Gilles Walrand
  • Patent number: 10137633
    Abstract: A method for controlling the exposure of a selective laser sintering or laser melting apparatus. The method includes providing a selective laser sintering apparatus or laser melting apparatus that uses successive solidification of layers of a powder-type construction material that can be solidified using radiation.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: November 27, 2018
    Assignee: CL SCHUTZRECHTSVERWALTUNGS GMBH
    Inventors: Frank Herzog, Florian Bechmann, Markus Lippert, Johanna Windfelder
  • Patent number: 10124540
    Abstract: The present invention is a three-dimensional modeled object including: a shaping material which is layered on a fabrication table; a modeled article which is formed inside the shaping material; and a support which is formed inside the shaping material and is formed with a predetermined gap with respect to the modeled article.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: November 13, 2018
    Assignee: CMET INC.
    Inventors: Yoshikazu Ooba, Koukichi Suzuki, Yuuya Daicho
  • Patent number: 10124409
    Abstract: A three-dimensional shaping method in which the powder supplying blade 2 is able to travel without any problems, in which a control system stores in advance a fine sintered region 11 so that any one of a cross-sectional area or a mean diameter in the horizontal direction, a shaping width and an undercut angle at the end is equal to or less than a predetermined extent, or the control system makes a determination in a sintering step, for said each element, so in the case of the raised sintered portions 12 forming on the upper side of the sintered region 11, a rotating cutting tool 3 cuts the raised sintered portions 12 entirely or partially, thereby achieving the object.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 13, 2018
    Assignee: Matsuura Machinery Corporation
    Inventors: Kousuke Ishimoto, Makoto Ichimura, Kouichi Amaya
  • Patent number: 10112342
    Abstract: A method for determining a bed temperature setpoint for use with a powder in a selective laser sintering machine is disclosed. The method includes the step of providing a powder comprising a polymer for use in a selective laser sintering machine. The method further includes the step of determining a ratio of a liquid portion of the powder to a solid portion of the powder as a function of temperature within a temperature range. A bed temperature setpoint is selected in the temperature range corresponding to a desired ratio of the liquid portion of the powder to the solid portion of the powder. A temperature of a bed of a selective laser sintering machine is set to the selected bed temperature setpoint, and a part is built from the powder using the selective laser sintering machine.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: October 30, 2018
    Assignee: Hexcel Corporation
    Inventors: Scott DeFelice, Anthony DeCarmine
  • Patent number: 10094628
    Abstract: A method of manufacturing a component susceptible to multiple failure modes includes generating a stereolithography file including a geometry of the component. The geometry of the stereolithography file is divided into a plurality of layers. Each of the layers includes a first portion and a second portion of the component. Energy from an energy source is applied to a powdered material such that the powdered material fuses to form the first portion and the second portion of each of the plurality of layers. Applying energy from the energy source to form the first portion of the plurality of layers includes operating the energy source with a first set of parameters and applying energy from the energy source to form the second portion of the plurality of layers includes operating the energy source with a second set of parameters. The first set and second set of parameters are different.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 9, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sergey Mironets, Vijay Narayan Jagdale, Colette O. Fennessy
  • Patent number: 10086559
    Abstract: A system for online monitoring powder-based 3D printing processes and method thereof are disclosed. A uniform light source having a single wavelength provided by the system is irradiated onto the powder layer before and after applied with glue. Intensities of such reflected images are obtained and subtracted from each other in an image process procedure. A difference obtained through the subtraction is compared with an original 3D model in a computer. If any defect is found such as being larger than a threshold value, the powder-based 3D printing processes will be terminated. Therefore, the technical effects of online printing processes monitoring, time saving and printing resources saving will be achieved.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: October 2, 2018
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Hsin-Yi Tsai, Min-Wei Hung, Kuo-Cheng Huang, Keng-Liang Ou, Ching-Ching Yang
  • Patent number: 10081431
    Abstract: A load bearing element for attachment of a heat generating unit to a heat sensitive supporting structure, wherein said load bearing element includes at least one body integrally formed by additive layer manufacturing, ALM. The body is adapted to provide a controlled heat transfer from said heat generating unit to said heat sensitive supporting structure.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: September 25, 2018
    Assignee: Airbus Operations GmbH
    Inventors: Oliver Seack, Matthias Hegenbart, Hermann Benthien, Markus Piesker, Jens Rohde, Sebastian Palm, Joern Clausen, Matthias Radny, Ulrich Knapp
  • Patent number: 10046393
    Abstract: A lamination molding apparatus capable of supplying a material powder steadily to a recoater head, is provided. A lamination molding apparatus including a chamber covering a desired molding region and being filled with an inert gas having a desired concentration; a recoater head moving in the chamber to supply a material powder on the molding region to form a material powder layer; and a material supplying unit to supply the material powder to the recoater head; wherein the recoater head includes a material holding section to hold the material powder; and a material discharging opening to discharge the material powder in the material holding section.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 14, 2018
    Assignee: Sodick Co., Ltd.
    Inventors: Shuji Okazaki, Tsuyoshi Saito
  • Patent number: 10035188
    Abstract: The invention relates to a method for layered production of a three-dimensional object, wherein a powdery or fluid building material, which can be solidified by the effects of electromagnetic or particle radiation, is applied in layers having a layer thickness d, and the locations in each layer which correspond to a cross-section of the object allocated to said layer are solidified by means of electromagnetic or particle radiation. According to the invention, each cross-section consists of a contour region and an inner region and the method comprises the following sub-step: in a sequence of N successive cross-sections, wherein N is a whole number greater than 1, a partial region is defined in every cross-section as a critical region and the rest of the cross-section is defined as a non-critical region, a number of N layers are applied successively, without solidification of the non-critical regions.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 31, 2018
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Joseph Weilhammer, Ludger Hummeler, Juha Kotila
  • Patent number: 9990455
    Abstract: An electronic arrangement for facilitating circuit layout design in connection with three-dimensional (3D) target designs, the arrangement including at least one communication interface for transferring data, at least one processor for processing instructions and other data, and a memory for storing the instructions and other data. The at least one processor being configured, in accordance with the stored instructions, to cause: obtaining and storing information in a data repository hosted by the memory, receiving design input characterizing 3D target design to be produced from a substrate, determining a mapping between locations of the 3D target design and the substrate, and establishing and providing digital output comprising human and/or machine readable instructions indicative of the mapping to a receiving entity, such as a manufacturing equipment, e.g. printing, electronics assembly and/or forming equipment.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: June 5, 2018
    Assignee: TACTOTEK OY
    Inventors: Hasse Sinivaara, Tuomas Heikkilä, Antti Keränen
  • Patent number: 9977425
    Abstract: Method, and corresponding system, for producing an alert during manufacture of a part formed by a plurality of layers. The method includes determining the sensor data values at the working tool positions of each of the plurality of layers based on a correlation of the values of the sensor data relative to time and the working tool positions of each of the plurality of layers relative to time. During the manufacturing process, the sensor data values at the working tool positions of at least one of the plurality of layers are compared to reference data values at the working tool positions for the at least one layer to determine a comparison measure for the at least one layer. An alert is transmitted if the determined comparison measure of a layer is not within a defined range. A defined action is applied to the manufacturing process based on the transmitted alert.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 22, 2018
    Assignee: General Electric Company
    Inventors: Adam McCann, Jacob Berlier, Li Zhang, Brandon Good
  • Patent number: 9751262
    Abstract: A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 5, 2017
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, William Thomas Carter, Mark Allen Cheverton, Pinghai Yang
  • Patent number: 9694544
    Abstract: A three-dimensional geometry is received, and sliced into layers. A first anisotropic fill tool path for controlling a three dimensional printer to deposit a substantially anisotropic fill material is generated defining at least part of an interior of a first layer. A second anisotropic fill tool path for controlling a three dimensional printer to deposit the substantially anisotropic fill material defines at least part of an interior of a second layer. A generated isotropic fill material tool path defines at least part of a perimeter and at least part of an interior of a third layer intervening between the first and second layers.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: July 4, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, David Benhaim, Abraham Parangi, Benjamin Sklaroff
  • Patent number: 9688028
    Abstract: A three-dimensional geometry is received, and sliced into layers. A first anisotropic fill tool path for controlling a three dimensional printer to deposit a substantially anisotropic fill material is generated defining at least part of an interior of a first layer. A second anisotropic fill tool path for controlling a three dimensional printer to deposit the substantially anisotropic fill material defines at least part of an interior of a second layer. A generated isotropic fill material tool path defines at least part of a perimeter and at least part of an interior of a third layer intervening between the first and second layers.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 27, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Rick Bryan Woodruff, David Steven Benhaim, Abraham Lawrence Parangi, Benjamin Tsu Sklaroff
  • Patent number: 9682397
    Abstract: The invention relates to a device (10) and method for the generative production of a component (12). The device comprises two supply tanks (14a, 14b) for taking up powder-form material (16), two overflow tanks (22a, 22b) for taking up excess powder-form material (16), wherein a closing means (24a, 24b) is assigned to each overflow tank (22a, 22b), this means being switchable between a closed position, in which powder-form material (16) cannot be transported into the respective overflow tank (22a, 22b), and an open position, in which powder-form material (16) can be transported into the respective overflow tank (22a, 22b).
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: June 20, 2017
    Assignee: MTU AERO ENGINES AG
    Inventors: Andreas Jakimov, Steffen Schlothauer, Georg Schlick
  • Patent number: 9649811
    Abstract: A method of additive manufacturing of a three-dimensional object is disclosed. The method comprises sequentially forming a plurality of layers each patterned according to the shape of a cross section of the object. In some embodiments, the formation of at least one of the layers comprises performing a raster scan to dispense at least a first building material composition, and a vector scan to dispense at least a second building material composition. The vector scan is optionally along a path selected to form at least one structure selected from the group consisting of (i) an elongated structure, (ii) a boundary structure at least partially surrounding an area filled with the first building material, and (iii) an inter-layer connecting structure.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 16, 2017
    Assignee: Stratasys Ltd.
    Inventor: Eduardo Napadensky
  • Patent number: 9533372
    Abstract: A method for operating an additive manufacturing apparatus, the method comprises directing a first energy beam along a surface contour vector in a build plane. A second energy beam is directed along a plurality of substantially parallel hatch vectors disposed in the build plane inward of the surface contour vector. A sum of the surface contour vector and the plurality of hatch vectors define a processed powder region in the build plane. A third energy beam is directed along an offset contour vector in the build plane. The offset contour vector includes a plurality of unprocessed powder regions in the build plane between the surface contour vector and the plurality of hatch vectors.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: January 3, 2017
    Assignee: United Technologies Corporation
    Inventor: Christopher F. O'Neill
  • Patent number: 9321192
    Abstract: A process is described for manufacturing articles by selective fusion of polymer powder layers, especially the rapid prototyping by solid-phase laser sintering of a powder based on a copolyamide of type 6 having a low enthalpy of cold crystallization. Further described, are the articles obtained by such a process.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 26, 2016
    Assignee: RHODIA OPERATIONS
    Inventors: Cécile Corriol, Pierre-Yves Lahary
  • Patent number: 9254535
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: February 9, 2016
    Assignee: Velo3D, Inc.
    Inventors: Benyamin Buller, Erel Milshtein
  • Patent number: 9242413
    Abstract: The invention relates to a device (13) for constructing a laminar body (5) from a plurality of superimposed layers of free-flowing material, in particular particulate material, an a build platform (6) within a working area (11). The layers are solidified in locally predetermined regions by the action of binders and are joined together so that at least one molded body (4) is formed by the solidified and joined regions of the layers. The device comprises a discharging device (1) movable back and forth over the working area (11) in at least one discharge direction and having at least one discharge opening (14) from which the free-flowing material can be discharged in individual superimposed layers during the movement of the discharging device (1).
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 26, 2016
    Assignee: VOXELJET AG
    Inventors: Andreas Hartmann, Dominik Schmid
  • Patent number: 9238310
    Abstract: An apparatus and method for the layer-by-layer production of three-dimensional objects wherein a powder layer is melted with a laser beam shaped such that the focus maximum power density is less than 50% greater than the average power density, is provided. Also provided are the corresponding mouldings.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 19, 2016
    Assignee: Evonik Degussa GmbH
    Inventors: Maik Grebe, Sylvia Monsheimer, Wolfgang Diekmann, Juergen Kreutz
  • Patent number: 9174391
    Abstract: The present invention relates to a device for manufacturing three-dimensional models by means of a 3D printing process, whereby a build platform for application of build material is provided and a support frame is arranged around the build platform, to which said support frame at least one device for dosing the particulate material and one device for bonding the particulate material is attached via the guiding elements and the support frame is moveable in a Z direction, which essentially means perpendicular to the base surface of the build platform, said movement provided by at least two vertical positioning units on the support frame. In this respect, it is provided that the positioning units are respectively separate components and are arrangeable on the support frame independently from one another and the location and orientation of such can be adjusted independently from one another.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: November 3, 2015
    Assignee: VOXELJET AG
    Inventors: Andreas Dominik Hartmann, Ingo Ederer
  • Patent number: 9144941
    Abstract: A process for the layer-by-layer production of three-dimensional objects, through selective melting and solidification of pulverulent substrates is provided. According to the process the construction chamber is inertized with an inertizing gas which is of higher density than air. An apparatus for conducting the process is also provided.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 29, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Maik Grebe, Wolfgang Diekmann, Stefan Altkemper
  • Patent number: 9095900
    Abstract: The invention relates to a generative production method for producing a component by selectively melting and/or sintering a powder several times consecutively by introducing an amount of heat by means of beam energy, such that the powder particles melt and/or sinter in layers, wherein the powder particles (1) are made of a first material (2) and the powder particles are surrounded by a second material (3) partially or over the entire surface thereof, wherein the second material has a lower melting point than the first material and/or lowers the melting point of the first material when mixed with the first material. The invention further relates to a corresponding powder and to a prototype produced from said powder.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: August 4, 2015
    Assignee: MTU AERO ENGINES AG
    Inventors: Manuel Hertter, Erwin Bayer, Markus Waltemathe, Klaus Broichhausen, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov
  • Patent number: 9079803
    Abstract: A hybrid core for manufacturing high temperature parts includes a non-refractory metal portion and a refractory metal portion wherein at least a portion of the non-refractory metal portion and the refractory metal portion are manufactured by using an additive manufacturing process.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 14, 2015
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventor: JinQuan Xu
  • Patent number: 9073264
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing sintering of the powder of the predetermined portion or melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, and then irradiating another predetermined portion of the new powder layer with the light beam, the steps (i) and (ii) being repeatedly performed in a chamber; wherein a localized gas flow is provided in the chamber, and at least a part of a fume generated by the irradiation of the light beam is entrained by the localized gas flow.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: July 7, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Norio Yoshida, Isao Fuwa, Yoshikazu Higashi
  • Patent number: 9059449
    Abstract: Methods of heat treating at least one component of a solid oxide fuel cell (SOFC) system. The method includes heating the at least one component with a rapid thermal process, wherein the rapid thermal process heats at least a portion of the component at a rate of approximately 50° C./sec or more.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 16, 2015
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Ryan Hallum, Michael Gasda, Arne Ballantine, Ravi Oswal
  • Publication number: 20150145177
    Abstract: An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device and contourless object data is shown and described. A voxel matrix is superimposed over an object model defined by three-dimensional object data to determine active voxels that intersect at least a portion of the object model. The active voxels are related to a path generation reference frame of an apparatus for making a three-dimensional object to generate solidification energy source event data that defines scanning (y) axis locations and/or solidification times at which a linear solidification device supplies solidification energy to a solidifiable material.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Global Filtration Systems, a dba of Gulf Filtration Systems Inc.
    Inventors: Ali El-Siblani, Alexandr Shkolnik, Alexander Nam, Mohamad Janbain
  • Publication number: 20150148467
    Abstract: The present invention comprises a laser sintering powder composition comprising: greater than 30 to 90 wt. % of a hydrogenated styrene-butadiene/styrene-styrene (S(EB/S)S) block copolymer or a hydrogenated styrene-butadiene-styrene (SEBS) block copolymer, or a mixture thereof; 10 to less than 70 wt. % of a C3 to C8 polyolefin, or a mixture of two or more polyolefins, 0 to 20 wt. % mineral oil, 0.2 to 1 wt. % of one or more antioxidants, 0 to 5 wt. % colorant, 0 to 20 wt. % surface modifying agent, wherein the total of the above ingredients is 100 wt. %, and optionally 0 to 5 parts by weight of a powder flow agent, based on 100 weight parts of the laser sintering powder composition. The composition has a melt flow rate of at least 20 grams/10 min. at 190° C./2.16 kg mass. The invention also comprises laser sintered articles and methods for making the same.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Applicant: KRATON POLYMERS U.S. LLC
    Inventors: Marcus GREGER, Freddy Vervoort
  • Publication number: 20150139849
    Abstract: acting on a powder layer in a working zone, containing a device for layering said powder, said device including: means for storing powder, means for distributing powder that travel over the working zone to distribute powder in a layer having a final thickness for additive manufacturing, feeding means that transfer powder from storage means to distributing means, metering means that control the quantity of powder transferred from storage means to distributing means, said machine being wherein: storage means are positioned higher than the working zone, feeding means utilize gravity, feeding means and the metering means move with the distributing means, the machine has two separate working zones and two separate working trays that move independently of one another, each of the working trays is associated with only one working zone, and the layering device is common to both working zones.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 21, 2015
    Applicants: MICHELIN RECHERCHE ET TECHNIQUE, S.A., COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Frederic Pialot, JR., Gilles Walrand, Pierre Wiel
  • Publication number: 20150130118
    Abstract: A powder shaping method comprises: providing a powder on a target surface; providing a laser beam to illuminate the powder so as to form a pre-treated powder; and providing an energy beam to illuminate the pre-treated powder for enabling a shaping process. In addition, a powder shaping apparatus comprises a base, a target surface, a powder supply unit and an energy beam source system. The target surface is disposed on the base and can be fixed or moved on the base. The powder supply unit provides a powder on the target surface. The energy beam source system has a laser source and an energy source, the laser source provides a laser beam to illuminate the powder to form a pre-treated powder, and the energy source provides an energy beam to further illuminate the pre-treated powder to make a shaping process.
    Type: Application
    Filed: December 20, 2013
    Publication date: May 14, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: CHUNG-WEI CHENG, KUANG-PO CHANG, CEN-YING LIN, SHU-YI WANG
  • Publication number: 20150108695
    Abstract: A stack forming apparatus according to embodiments comprises a nozzle and a controller. The nozzle is configured to selectively inject more than one kind of material to a target and to apply laser light to the injected material to melt the material. The controller is configured to control the kind and supply amount of material to be supplied to the nozzle.
    Type: Application
    Filed: March 12, 2014
    Publication date: April 23, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Naotada OKADA
  • Patent number: 9005513
    Abstract: An object of the present invention is to easily eliminate fumes inside a chamber, so as to improve a positional accuracy of irradiation with a light beam and a machining accuracy in a method for manufacturing a three-dimensional shaped object. A stacked-layers forming device 1 includes a powder layer forming unit 3, a light beam irradiating unit 4, a base 22 which is fixed and on which a powder layer 32 is formed, a lifting/lowering frame 34 which surrounds the circumference of the base 22 and is freely capable of being lifted and lowered, a cover frame 36 which has a window 36a allowing transmission of light beam in its top surface, and whose bottom surface is opened, and which is disposed on the lifting/lowering frame 34 to form a chamber C, and a gas tank 71 for supplying an ambient gas. The lifting/lowering frame 34 is lowered to reduce the volume of the chamber C, so as to discharge fumes generated inside the cover frame 36, which performs replacement with the ambient gas.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoshi Abe, Norio Yoshida, Yoshikazu Higashi, Isao Fuwa
  • Publication number: 20150098546
    Abstract: The invention pertains to a nuclear fuel assembly grid or a portion or a part of the grid, such as a grid strap and/or an integral flow mixer that is at least partially constructed of a composition containing one or more ternary compounds of the general formula I: Mn+1AXn??(I) wherein, M is a transition metal, A is an element selected from the group A elements in the Chemical Periodic Table, X is carbon or nitrogen, and n is an integer from 1 to 3.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC
    Inventors: PENG XU, Edward J. Lahoda
  • Patent number: 8999222
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a part of a surface portion of the three-dimensional shaped object is formed as a low-density solidified portion whose solidified density ranges from 50% to 90% so that an application of pressure can be performed by a gas flowing through the low-density solidified portion.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 7, 2015
    Assignees: Panasonic Corporation, OPM Laboratory Co., Ltd
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto
  • Publication number: 20150093283
    Abstract: Improved devices and methods for additive manufacturing of implant components are disclosed, including improvements relating to utilizing support structures, aligning implant designs within the manufacturing apparatus, and making patient-adapted implants.
    Type: Application
    Filed: April 13, 2013
    Publication date: April 2, 2015
    Inventors: Bob Miller, David P. Hesketh
  • Publication number: 20150090392
    Abstract: An area of a composite laminate structure is reworked by scarfing the area, generating a 3-D map of the scarfed area, and installing a rework patch that is built based on the 3-D map.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: The Boeing Company
    Inventors: Blake Anthony Bertrand, Steven Donald Blanchard
  • Publication number: 20150089803
    Abstract: A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 2, 2015
    Applicant: The Aerospace Corporation
    Inventor: Henry Helvajian
  • Publication number: 20150086409
    Abstract: A method for forming a three-dimensional article comprising applying a first powder layer on a work table; directing a first energy causing said first powder layer to fuse in first selected locations to form a first cross section where said first energy beam is fusing a first region with parallel scan lines in a first direction and a second region with parallel scan lines in a second direction; fusing at least one of the scan lines in said first region in said first direction immediately before fusing at least one of said scan lines in said second region in said second direction; applying a second powder layer and directing the energy beam causing said second powder layer to fuse in second selected locations where the energy beam is fusing said first region with parallel scan lines in a third direction and said second region in a fourth direction.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 26, 2015
    Inventor: Calle Hellestam
  • Patent number: 8981010
    Abstract: The invention relates to the use of a powder made of a polymer, which of two or more components with functionalities suitable for Diels-Alder reactions, or of a powder mixture (dry blend) made of powders respectively of at least one of the reactive components, where these together enter into the Diels-Alder reaction with one another and are capable of a retro-Diels-Alder reaction, in a rapid-prototyping process. The invention further relates to moldings produced with use of said polymer powder through a layer-by-layer shaping process in which regions of a powder layer are melted selectively. The molding here can be removed from the powder bed after cooling and hardening of the regions previously melted layer-by-layer.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: March 17, 2015
    Assignee: Evonik Roehm GmbH
    Inventors: Friedrich Georg Schmidt, Stefan Hilf, Jiawen Zhou, Nathalie Guimard, Christopher Barner-Kowollik, Kim Klaus Oehlenschlaeger
  • Publication number: 20150069668
    Abstract: An example multi-dimensional component building system includes a first chamber having at least one base disposed therein, a second chamber adjacent to and in fluid communication with the first chamber through a first door, and a third chamber adjacent to and in fluid communication with the second chamber through a second door. The second chamber is fluidly sealed from the first chamber if the first door is in a closed position. The second chamber is configured to receive the at least one base via a first transfer mechanism if the fluid parameters of the first chamber are approximately equal to the fluid parameters of the second chamber. The second chamber includes a directed heat source and a build-up material configured to form a component on the at least one base by melting or sintering. The third chamber is fluidly sealed from the second chamber if the first door is in a closed position.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Sergey Mironets, Agnes Klucha, Wendell V. Twelves, JR., Benjamin T. Fisk
  • Publication number: 20150068629
    Abstract: A three-dimensional printing process, a swirling device, and a thermal management process are disclosed. The three-dimensional printing process includes distributing a material to a selected region, selectively laser melting the material, and forming a swirling device from the material. The swirling device is printed by selective laser melting. The thermal management process includes providing an article having a swirling device printed by selective laser melting, and cooling a portion of the article by transporting air through the swirling device.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Applicant: General Electric Company
    Inventors: Srikanth Chandrudu KOTTILINGAM, Victor John MORGAN, Benjamin Paul LACY, John Wesley HARRIS, Jr., David Edward SCHICK
  • Patent number: 8974727
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a heater element is disposed on the solidified layer during the repeated steps (i) and (ii), and thereby the heater element is situated within the three-dimensional shaped object.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 10, 2015
    Assignees: Panasonic Corporation, OPM Laboratory Co., Ltd
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto