Shaping Or Treating Of Multilayered, Impregnated, Or Composite-structured Article Patents (Class 264/642)
  • Patent number: 10300624
    Abstract: The present disclosure relates to systems, methods and resins for additive manufacturing. In one embodiment, a method for additive manufacturing of a ceramic structure includes providing a resin including a preceramic polymer and inorganic ceramic filler particles dispersed in the preceramic polymer. The preceramic polymer is configured to convert to a ceramic phase. The method includes functionalizing inorganic ceramic filler particles with a reactive group and applying an energy source to the resin to create at least one layer of the ceramic phase from the resin.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: May 28, 2019
    Inventor: Wayde R. Schmidt
  • Patent number: 10060812
    Abstract: A pressure sensor to measure the pressure of a fluid comprises: a metallic membrane to be in contact with the fluid and on which are stacked an electrical insulator and at least one gauge for measuring the deformation of the membrane, the whole forming a sensitive measuring element a cap comprising: a cover comprising a cavity and holes; conductors located in the holes, the sensitive element exhibiting a face opposite the cap and located in a plane P; wherein the sensor comprises: at least one metallic zone, located in a plane parallel to said plane P, for hermetic sealing of the cap on the sensitive measuring element; continuous metallic tracks comprising parts for picking up contact with the conductors and parts for picking up contact with at least the gauge. A method for manufacturing the pressure sensor is also provided.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 28, 2018
    Inventors: Fabien Lemery, Stéphane Jourdan, David Cayez
  • Patent number: 10011724
    Abstract: A coating used in a vapor-oxidative atmosphere has a first layer including SIALON and a second layer covering the first layer and being exposed to the atmosphere, the second layer including mullite, wherein the first layer and the second layer get in contact with each other.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 3, 2018
    Inventors: Takeshi Nakamura, Takashi Tamura, Satoshi Kitaoka, Naoki Kawashima
  • Patent number: 9919971
    Abstract: To provide a zirconia sintered body which has at least two different color tones such as white and black, and which has no color bleeding or no gap between sintered bodies. A zirconia sintered body comprising a first zirconia sintered body and a second zirconia sintered body, characterized in that the first zirconia sintered body is a zirconia sintered body containing aluminum oxide; the second zirconia sintered body is a zirconia sintered body containing a spinel oxide; a bonding plane is formed between the first zirconia sintered body and the second zirconia sintered body; and it has no gap or no color bleeding at the bonding plane.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: March 20, 2018
    Inventors: Hitoshi Nagayama, Naoki Shinozaki, Takeshi Ito, Koji Tsukuma, Shoichi Yamauchi
  • Patent number: 9187809
    Abstract: Consolidated materials comprising a plurality of coated particles dispersed in a tough matrix material are disclosed. The coated particles include a plurality of core particles having an intermediate layer that substantially surrounds each of the core particles. An optional outer layer may be present on the intermediate layer. A matrix contains or substantially contains each of the coated particles, and is formed from at least one third compound including a mixture of W, WC, and/or W2C with Co. The amount of Co in the at least one third compound may range from greater than 0 to about 20 weight %. Methods for providing consolidated materials, and articles comprising such consolidated materials are also disclosed.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: November 17, 2015
    Assignee: Allomet Corporation
    Inventors: John M. Keane, Randall M. German
  • Patent number: 9039947
    Abstract: A system and method for making a layered dental appliance. The system can include a first portion comprising a negative of a first layer of a layered dental appliance, and a second portion comprising a positive shape of a second layer of the layered dental appliance. The method can include providing a mold comprising a negative of an outer shape of a layered dental appliance, and positioning a slurry in the mold, forming a first layer of the layered dental appliance. The method can further include providing a solid structure comprising a positive shape of a second layer of the layered dental appliance, and pressing the solid structure into the slurry in the mold.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: May 26, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Michael Jahns, Gallus Schechner, Martin Goetzinger, Holger Hauptmann, Andreas Herrmann, Marco Sartory
  • Publication number: 20150137404
    Abstract: The invention relates to a novel process for commercial production of bulk functionally graded materials (FGM) with a per-determined axial, radial, and spherical gradient profiles. The process is based on the reiterated deformation of the layers of variable cross-section thicknesses made of different materials. That allows significant savings of time, energy and materials. Metals, ceramics, glasses and polymers in different combinations can be brought together with a continuous or stepwise gradual change from one material to another. The invention can be applied to industrial production of functionally graded materials with different types of gradient profiles, which cannot be produced by the existing technologies and which are sought by many key industries. The mechanical, thermal and optical responses of materials produced by the proposed methods are of considerable interest in optics, optoelectronics, tribology, biomechanics, nanotechnology and high temperature technology.
    Type: Application
    Filed: May 16, 2014
    Publication date: May 21, 2015
    Inventor: Lev Tuchinskiy
  • Publication number: 20150110846
    Abstract: An osteochondral scaffold has a chondrogenic spiral scaffold in one end of an outer shell made of sintered microspheres, and an osteogenic spiral scaffold in the other end of the outer shell. Each spiral scaffold has nanofibers of a composition selected to promote attachment and proliferation of the desired types of cells. The nanofibers for the chondrogenic spiral scaffold have a different composition than the nanofibers for the osteogenic spiral scaffold. The nanofibers of each spiral scaffold are aligned to orient the attached cells so as to recreate the structure of the native tissue.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 23, 2015
    Inventors: Xiaojun Yu, Paul Lee
  • Patent number: 9005506
    Abstract: A manufacturing method and a manufacturing apparatus of a fiber reinforced composite material are provided, in which the whole fiber-based material is impregnated with a resin and a molding can be performed with high dimensional accuracy. A manufacturing method of a fiber reinforced composite material according to the present invention includes fixing a fiber-based material having a first surface to a first mold to provide an opening for the first surface; setting a second mold having a second surface such that the first surface faces the second surface through a space; filling resin into the space; and relatively moving the second mold and the first mold to bring the second surface closer to the first surface, such that the fiber-based material is impregnated with the resin.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideki Horizono, Shigeru Nishiyama
  • Publication number: 20150097321
    Abstract: A method of making a construction comprising a polycrystalline super-hard structure joined to a side surface of an elongate substrate. The method includes: providing a vessel configured for an ultra-high pressure, high temperature furnace, the vessel having an elongate cavity for containing a pre-sinter assembly and defining a longitudinal axis, the cavity having opposite ends connected by a cavity wall. The pre-sinter assembly comprises the substrate, an aggregation comprising a plurality of super-hard grains arranged over at least a part of the side surface of the substrate, and a spacer structure configured for spacing the substrate apart from the cavity wall. The spacer structure comprises material having a Young's modulus of at least 300 GPa.
    Type: Application
    Filed: April 17, 2013
    Publication date: April 9, 2015
    Inventors: Maweja Kasonde, Leshope Joseph Choenyane, Erens Tshepo Radebe, John James Barry
  • Publication number: 20150084245
    Abstract: The invention refers to a method for producing means with thermal resist for applying at a surface of a heat exposed component. The method includes providing at least one mixture of at least two different inorganic powder materials: with different chemical composition and thermal expansion coefficient, where at least one of the powder materials experiences volume changes due to crystallographic phase change at a given temperature, and/or\where at least one of the two powder materials experiences volume changes due to chemical composition change, forming the at least one mixture into a green body shape, sintering the green body to obtain a ceramic body and cooling the ceramic body and causing micro-cracking during heating and or/sintering and/or cooling to obtain the means with thermal resist. The forming is performed such that a first mixture forming a first layer onto which a second mixture is applied forming a second layer differs in porosity from that first layer to obtain a layered green body.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 26, 2015
    Inventors: Michael STUER, Hans-Peter BOSSMANN
  • Publication number: 20150080495
    Abstract: Disclosed are interfacially modified particulate and polymer composite material for use in injection molding processes, such as metal injection molding and additive process such as 3D printing. The composite material is uniquely adapted for powder metallurgy processes. Improved products are provided under process conditions through surface modified powders that are produced by extrusion, injection molding, additive processes such as 3D printing, Press and Sinter, or rapid prototyping.
    Type: Application
    Filed: July 11, 2014
    Publication date: March 19, 2015
    Inventor: Kurt E. Heikkila
  • Publication number: 20150069675
    Abstract: There are provided a fluororesin thin film which is composed of a fluororesin, which has a thickness of 20 ?m or less and a Gurley's number of 300 seconds or more, and which includes no defects, such as voids and/or cracks; a method for manufacturing the fluororesin thin film in which after a fluororesin dispersion including a dispersing medium and a fluororesin powder dispersed therein is applied on a flat and smooth foil, the dispersing medium is dried, and the fluororesin powder is sintered; the fluororesin dispersion; a fluororesin composite including a porous base material and the fluororesin thin film; a manufacturing method thereof, a porous fluororesin composite formed by stretching the fluororesin composite; and a separation membrane element using the porous fluororesin composite.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Fumihiro HAYASHI, Itsumu FURUMOTO, Shinichi KANAZAWA, Kazuaki IKEDA, Tooru MORITA, Hajime FUNATSU
  • Publication number: 20150069649
    Abstract: Three-dimensional printing processes are disclosed which utilize printable fluids comprising a carrier fluid, a polymeric binder, and nanoparticles. The three-dimensional printing processes are useful for making articles from a build material powder, e.g., a ceramic, metal, metal alloy, or intermetallic powder. The nanoparticles enable low temperature interparticle bonding of the build material powder particles, e.g., by forming bridging bonds between adjacent powder particles, and/or increasing the interparticle friction between the build material powder particles to enhance the structural strength of the as-built article during a thermal treatment over at least a part of the temperature range which has as its low end the temperature at which the structural strength due to the binder becomes insubstantial and as its high end the temperature at which the structural strength due to interparticle sintering of the build material powder becomes substantial, i.e., the article's debile temperature range.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: The ExOne Company
    Inventors: John A. Bai, Kevin D. Creehan, Howard A. Kuhn
  • Patent number: 8974725
    Abstract: A method for producing a brake assembly (22) including friction material (24) molded to a backplate (26) using an improved receptacle plate (20) is provided. The backplate (26) includes openings (30) each having an opening diameter (Do). The receptacle plate (20) includes pins (28) extending transversely from a receiving surface (34). The method includes aligning the openings (30) of the backplate (26) with the pins (28) of the receptacle plate (20). Each pin (28) has a pin diameter (Dp) less than the opening diameter (Do) of the aligned opening (30). The friction material (24) is molded to the backplate (26) by heating the friction material (24) and the receptacle plate (20), and forcing the friction material (24) through the openings (30) of the backplate (26). The pins (28) extend into a center portion (32) of the friction material (24) and improve the degree of curing of the friction material (24).
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 10, 2015
    Assignee: Federal-Mogul Products, Inc.
    Inventors: Stanley Frank Kulis, Jr., Carl Richard Buxton
  • Publication number: 20150062257
    Abstract: A sodium niobate powder includes sodium niobate particles having a shape of a cuboid and having a side average length of 0.1 ?m or more and 100 ?m or less, wherein at least one face of each of the sodium niobate particles is a (100) plane in the pseudocubic notation and a moisture content of the sodium niobate powder is 0.15 mass % or less. A method for producing a ceramic using the sodium niobate powder is provided. A method for producing a sodium niobate powder includes a step of holding an aqueous alkali dispersion liquid containing a niobium component and a sodium component at a pressure exceeding 0.1 MPa, a step of isolating a solid matter from the aqueous dispersion liquid after the holding, and a step of heat treating the solid matter at 500° C. to 700° C.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 5, 2015
    Inventors: Tomoaki Masubuchi, Toshiaki Aiba, Toshihiro Ifuku, Makoto Kubota, Takayuki Watanabe, Tatsuo Furuta, Jumpei Hayashi
  • Patent number: 8956480
    Abstract: The carbon-carbon composite material is obtained by densification with a pyrolytic carbon matrix originating from a precursor in gaseous state at least in a main external phase of the matrix, and, at the end of the densification, final heat treatment is performed at a temperature lying in the range 1400° C. to 1800° C.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 17, 2015
    Assignee: Messier-Bugatti-Dowty
    Inventors: Jean-Marie Jouin, Eric Lherm, Philippe Turgis
  • Publication number: 20150044084
    Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 12, 2015
    Applicant: California Institute of Technology
    Inventor: California Institute of Technology
  • Patent number: 8940223
    Abstract: In the method for manufacturing slabs of ceramic material which envisages preparation of an initial mix comprising ceramic sands with a grain size of less than 2 mm, preferably less than 1.2 mm, a binder and the so-called filler namely mineral powders chosen from feldspars, nephelines, sienites, mixed with clays and/or kaolinites, which powders after firing form a continuous ceramic matrix, deposition of the initial mix on a temporary support for the compaction step by means of vacuum vibrocompression, drying and firing, a binder consisting of an aqueous dispersion of colloidal silica called silicasol is used.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: January 27, 2015
    Inventor: Luca Toncelli
  • Publication number: 20150003028
    Abstract: A housing for an electronic device includes a ceramic base comprising ceramic material, at least one electronic element embedded in the ceramic base, and a buffer layer made of resin. The ceramic base includes an inner surface. The buffer layer is formed on the inner surface. A method for making the housing is also provided.
    Type: Application
    Filed: December 6, 2013
    Publication date: January 1, 2015
    Applicant: FIH (HONG KONG) LIMITED
  • Publication number: 20140369842
    Abstract: A method of manufacturing a ceramic core for a blade including a lower part forming a core body, an upper part forming a squealer tip recess and a set of rods for holding the upper part and the lower part together, includes: coating the rods with a material that has a flash point below 1000° C.
    Type: Application
    Filed: December 20, 2012
    Publication date: December 18, 2014
    Inventors: Franck Edmond Maurice Truelle, Alain Grandin, Maidin Mougamadou Aboudalcadar
  • Publication number: 20140349132
    Abstract: The invention relates to a method for producing a compact component (10) comprising a shell (12) and optionally a grid structure (14) situated inside the shell (12) which are made of a shell material, and a core structure (16) that fills an interior of the shell (12) and is made of a core material. The invention further relates to a corresponding compact component that can be produced by means of the method.
    Type: Application
    Filed: November 27, 2012
    Publication date: November 27, 2014
    Inventors: Eckart Uhlmann, Jens Gunster, Cynthia Morais Gomes, Andre Bergmann, Kamilla Koenig-Urban
  • Patent number: 8894919
    Abstract: A method for adding insulation or bulk absorbers into high temperature sandwich structures following fabrication is presented. A slurry of ceramic fibers and/or particles, opacified particles, fugitive fibers, organic binders and inorganic binders is prepared as an aqueous solution. The slurry is cast within a prepared sandwich structure, dried, and heated to form a low density ceramic core material to provide insulation or noise absorption. Following incorporation of the ceramic material, aerogels or phase change materials may also be added to provide additional thermal management benefits.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: November 25, 2014
    Assignee: The Boeing Company
    Inventors: Leanne L. Lehman, Vann Heng, James Philip Ledesma, Jr., Jonathan David Embler
  • Patent number: 8865040
    Abstract: This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: October 21, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu, Lulu Song
  • Patent number: 8852490
    Abstract: Systems and methods for a concrete apparatus with incorporated lifter are provided. A concrete apparatus is formed by placing a reinforcement system in a mold. The reinforcement system comprises a lifter. Concrete is poured into the mold such that the lifter protrudes from the poured concrete. After the concrete has hardened and the mold is removed, the lifter is used to carry and position the concrete apparatus. After the concrete apparatus is positioned, the lifter is removed at the circumference of the concrete apparatus leaving no holes, thereby eliminating water leakage due to lifting methods.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 7, 2014
    Inventor: Pat Halton Fore, III
  • Patent number: 8852473
    Abstract: A pin or tube reinforced polymeric foam and a method of manufacture thereof. The reinforcing pins or tubes are incorporated into the polymeric foam during or after fabrication of the reinforced polymer foam and are preferably coated with an adhesive or binder layer prior to fabrication.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 7, 2014
    Assignee: Wright Materials Research Co.
    Inventor: Seng Tan
  • Patent number: 8845953
    Abstract: The present invention includes a method of preparing a ceramic precursor article, the ceramic precursor made thereby, a method of making a ceramic article and an article made by that method. It also includes a method of replicating a ceramic shape. Also included is a method of making a ceramic precursor, and the finished ceramic article therefrom, involving a compression step, and a compression-capable printer apparatus.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: September 30, 2014
    Assignee: Tethon Corporation
    Inventors: John A. Balistreri, Sebastien Dion
  • Patent number: 8840831
    Abstract: A method of producing a PCD body includes the step of providing a region of coarser diamond particles between a source of binder phase and a region of fine grained diamond particles having a particle size less than 2 ?m. The binder phase is caused to infiltrate the diamond mass through the region of coarser diamond particles under elevated temperature and pressure conditions suitable to produce PCD. The invention further provides for a PCD diamond composite manufactured by the method of the invention wherein the PCD body is substantially free of abnormal diamond growth.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: September 23, 2014
    Inventors: Geoffrey John Davies, Gerrard Peters
  • Publication number: 20140264995
    Abstract: Ceramic implants, such as spinal implants, may comprise a dense shell and a porous core. In some implementations, methods for manufacturing the implants may comprise one or more stages at which the core material abuts the shell so as to form a mechanical attachment therewith while both the core and the shell are in a green state. The core and the shell may be fired together, and the resultant implant may, in some embodiments, comprise a unitary piece of ceramic material. Some embodiments may comprise silicon nitride ceramic materials.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Amedica Corporation
    Inventors: Ramaswamy Lakshminarayanan, Paul Sheffield, James Ludlow
  • Publication number: 20140265062
    Abstract: Ceramic orthopedic implants may have one or more dense inner layers and one or more porous outer layers. Methods for manufacturing the implants may include one or more stages during which the dense inner layer(s) are partially compressed. At least one porous outer layer may include coating particles that are present at a surface of one or more inner layer(s) while pressure is applied to attach the coating particles to the inner layer(s) and to further compress one or more of the inner layer(s). Various layers may be formed until an implant, or other device, is formed having the desired density gradient and/or other properties, as disclosed herein.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Amedica Corporation
    Inventors: James Sanchez, Paul Sheffield, James Ludlow, Ramaswamy Lakshminarayanan
  • Publication number: 20140271565
    Abstract: The present invention provides a highly-sintered fluorapatite glass-ceramic comprising a high Ca/Al or Sr/Al mole-ratio, that possesses a microstructure that induces apatite/bone deposition.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 18, 2014
    Applicant: University of Iowa Research Foundation
    Inventors: Isabelle Denry, Julie Holloway
  • Patent number: 8834752
    Abstract: A system and method for making a layered dental appliance. The system can include a first mold comprising a negative of a first layer of a layered dental appliance, a second mold comprising a negative of a second layer, and a dental core dimensioned to be at least partially received in the first mold and the second mold. The method can include positioning a first slurry in the first mold, and pressing the dental core into the first slurry to form a first article comprising the dental core and a first layer formed from the first slurry. The method can further include removing the first article from the first mold, positioning a second slurry in the second mold, and pressing the first article into the second slurry to form a second article comprising the dental core, the first layer, and a second layer formed from the second slurry.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Martin Goetzinger, Holger Hauptmann, Gallus Schechner, Michael Jahns
  • Publication number: 20140197579
    Abstract: An additive layer manufacturing method for producing a shaped article, comprising providing a powdered thermoplastic polymer material (7, 8) having a re-solidification temperature at most 10% below its melting temperature on the Celsius scale, depositing successive layers of the powdered polymer material (7, 8) and selectively sintering each layer prior to deposition of the subsequent layer so as to form the article, wherein during its production the article is maintained at a temperature above the glass transition temperature and significantly below the re-solidification temperature of the polymer.
    Type: Application
    Filed: May 9, 2012
    Publication date: July 17, 2014
    Applicant: EADS UK LIMITED
    Inventor: Jonathan Meyer
  • Publication number: 20140183799
    Abstract: A process for the preparation of a ceramic or glass ceramic shaped article using stereolithography and using a slip based on a radically polymerizable binder, polymerization initiator and filler, which comprises (A) at least one acidic monomer of general formula I (B) photoinitiator, and (C) ceramic and/or glass ceramic particles.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Ivoclar Vivadent AG
    Inventors: Urs Karl Fischer, Norbert Moszner, Volker Rheinberger, Wolfgang Wachter, Johannes Homa, Werner Längle
  • Publication number: 20140183798
    Abstract: An apparatus for forming a cutting insert. The apparatus may include compression device having a first sleeve with a bore therein. The first sleeve may receive a substantially hollow can. A plurality of solid particulates may be positioned within the can, and a substrate material or other punch may also be positioned in the can. A forming device of the compression device may be located adjacent an end of the can in which the solid particulates are located. The forming device may include at least one protrusion extending from an inner surface thereof into the bore. The protrusion may be adapted to deform the can while also forming the plurality of solid particulates into a solid mass having one or more reliefs and one or more lobes therein.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: Smith International, Inc.
    Inventors: Michael Stewart, Yi Fang, Scott L. Horman, Jeremy Peterson
  • Patent number: 8741196
    Abstract: A body may be provided having first and second ends having threaded outer surfaces. A bore may extend between the first and second ends. A tool may be provided having a first outer mold-line surface, a second opposing surface, and a hole extending between the first and second opposing surfaces. The first end may be threadedly attached and sealed, at the second opposing surface, to an inner surface of the hole. A cap may be threadedly attached and sealed to the second end of the body. A composite may be consolidated against the first outer mold-line surface of the tool. The cap may be unthreadedly removed from the second end. A drill bit may be inserted into the bore, through the tool hole, and against the composite to drill a composite hole.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: June 3, 2014
    Assignee: The Boeing Company
    Inventor: John E. McCracken
  • Publication number: 20140126135
    Abstract: An information handling system chassis is built at least in part from ceramic elements. For example, a transparent aluminum oxide ceramic portion covers a touchscreen to provide a rigid outer surface for accepting end user inputs. As another example, a ceramic chassis element has a ceramic material formed around a metal material of similar substance with bonding of the ceramic to the underlying material enhanced with oxidation of the outer surface of the metal material.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: DELL PRODUCTS L.P.
    Inventors: Nicholas D. Abbatiello, Deeder M. Aurongzeb
  • Patent number: 8713966
    Abstract: The disclosure relates to methods of forming a vessel and to the resulting vessel. The vessel may be formed by providing a first fumed silica soot layer comprised of primary particles of fumed silica soot, and then providing over the first fumed silica soot layer a second fumed silica soot layer comprised of agglomerated particles formed into an agglomerated form from primary particles of fumed silica soot. The primary particles of the first fumed silica soot layer may have a substantially uniform density distribution, and the agglomerated particles of the second fumed silica soot layer may have a substantially non-uniform density distribution. The methods may include consolidating the first and second soot layers together to form a consolidated body.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Douglas H Jennings
  • Publication number: 20140066225
    Abstract: A golf putter head is made entirely of pottery clay and can have a glazed body and an unglazed striking face. This putter head is preferably fabricated by forming a basic disc shape on a potter's wheel and then removing a portion of the disc shape away to form a striking face. A putter with a mallet shaped head can be formed. After drying, the clay can be glazed and then fired. The putter head can alternatively be fabricated using a ram press molding technique.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Inventor: David Robert Fernandez
  • Publication number: 20140011658
    Abstract: A ceramic particle with at least two microstructural phases comprising an amorphous phase, representing between 30 volume percent and 70 volume percent of the particle, and a first substantially crystalline phase comprising a plurality of predominately crystalline regions distributed through the amorphous phase is disclosed. A process for making the ceramic particle is also disclosed.
    Type: Application
    Filed: March 26, 2012
    Publication date: January 9, 2014
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Tihana Fuss, Laurie San-Miguel, Kevin R. Dickson, Walter T. Stephens
  • Patent number: 8623263
    Abstract: A process for curing a porous muffler preform defined by a plurality of glass fibers and a heat-curing thermoset or thermoplastic materials applied to the plurality of glass fibers is disclosed herein. The process includes the step of enclosing the muffler preform in a chamber. The process also includes the step of surrounding the muffler preform with steam. The process also includes the step of causing steam to enter the muffler preform from multiple directions.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 7, 2014
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Norman T. Huff, Janakikodandaram Karra
  • Publication number: 20130307201
    Abstract: An additive manufacturing process includes providing a powder mixture having a ceramic constituent and a reactive metal constituent, and reacting and fusing the powder mixture with a directed energy source to form a geometry.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Inventor: Bryan William McEnerney
  • Patent number: 8585947
    Abstract: A process for manufacturing a composite block of closed geometry, in the form of a continuous ring, based on fibers and on a crosslinkable resin, by continuous winding and superposition of several layers of a tape of reinforcement fibers embedded in a matrix based on a composition comprising a crosslinkable resin. The process comprises from upstream to downstream, the following steps: producing a rectilinear arrangement (12) of reinforcement fibers (11) and conveying this arrangement in a feed direction (F); degassing the arrangement (12) of fibers by the action of a vacuum (13); after degassing, impregnating said arrangement (12) of fibers under vacuum with said resin composition in the liquid state (17); passing the pre-preg thus obtained through a die (20) to make said pre-preg into the form of a tape (21) composed of reinforcement fibers (11) in their liquid resin (17) matrix, the thickness of said tape being less than 0.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 19, 2013
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Jean-Paul Meraldi, Antonio Delfino
  • Patent number: 8568649
    Abstract: The present invention includes a method of preparing a ceramic precursor article, the ceramic precursor made thereby, a method of making a ceramic article and an article made by that method. It also includes a method of replicating a ceramic shape. Also included is a method of making a ceramic precursor, and the finished ceramic article therefrom, involving a compression step, and a compression-capable printer apparatus.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: October 29, 2013
    Assignee: Bowling Green State University
    Inventors: John Balistreri, Sebastien Dion
  • Publication number: 20130280514
    Abstract: A chemical oxygen generator with enhanced structural integrity. In some embodiments, the chemical core of the chemical oxygen generator is reinforced with one or more reinforcing structures that are integral with the core. In some embodiments, as the core burns, the one or more reinforcing structures become fused with the core.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 24, 2013
    Applicant: AVOX SYSTEMS, INC.
    Inventors: Christopher C. Lawrenson, Matthew D. Gates, Kurt L. Jandzinski, William A. Mack
  • Patent number: 8562901
    Abstract: The current invention provides a method to fabricate a crack-free continuous fiber-reinforced ceramic matrix composite by eliminating shrinkage stresses through a unique combination of freeze forming and a non-shrinking matrix composition. Cracks related to drying shrinkage are eliminated through freeze forming and cracks related to sintering shrinkage are eliminated by using a matrix that does not shrink at the given sintering temperature. After sintering, a crack-free ceramic composite is obtained.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Tai-Il Mah, Kristin A. Keller, Michael K. Cinibulk
  • Patent number: 8557164
    Abstract: A liquid discharge head includes a substrate having an energy generating element configured to generate energy required to discharge liquid, a discharge port configured to discharge the liquid and provided in an opposed relationship to the energy generating element, a wall member defining a chamber adapted to store the energy required to discharge liquid the energy being generated by the energy generating element, a discharge portion defining a fluid path connecting the chamber and the discharge port, a supply path facilitating supplying the liquid into the chamber, and a pair of hollow portions provided in the wall member, wherein the hollow portions oppose each other and sandwich at least the entire discharge port in a direction from the discharge port to the substrate, and the hollow portions are independent of the chamber.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: October 15, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naozumi Nabeshima, Toru Yamane, Takumi Suzuki, Masahiko Kubota, Tamaki Sato, Ryoji Kanri, Maki Hatta, Kazuhiro Asai
  • Patent number: 8535600
    Abstract: A method for producing a high temperature-resistant article comprises an assembling step of foaming an assembly of a first substrate and a second substrate with an adhesive layer interposed therebetween and comprising paste of powder of at least one carbide of niobium carbide, hafnium carbide, tantalum carbide and tungsten carbide; and a bonding step of heating the assembly to bond the first substrate and the second substrate by sintering, thereby obtaining a high temperature-resistant article comprising the assembly after sintering.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventor: Daisuke Nakamura
  • Publication number: 20130210605
    Abstract: A refractory composition and processes for manufacture are provided where the compositions possess improved refractory alkali resistance and superior handling properties. Compositions and processes for their manufacture may include a plurality of ceramic particles and a binder sintered to the particles wherein the binder includes crystalline aluminum orthophosphate distributed as the result of an in situ reaction of aluminum metaphosphate with alumina. Kits provided according to the invention provide materials for use in manufacture of a composition where the kit includes aluminum metaphosphate and a nonfacile additive.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 15, 2013
    Inventor: Jens Decker
  • Patent number: 8501665
    Abstract: The present invention provides a method for manufacturing a film catalyst, including forming a catalyst layer on one side or each side of a base material to obtain a film catalyst, bending the film catalyst, and optionally cutting the film catalyst, wherein the bending step is conducted by bending the film catalyst with a bending tool composed of two gears that are oppositely arranged as meshing each other while a protective material having a compressibility of 40 to 95% is inserted between the catalyst layer of the film catalyst and the two gears.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 6, 2013
    Assignee: Kao Corporation
    Inventors: Kunio Matsui, Masayasu Sato, Yoshimi Yamashita