Abstract: A method for manufacturing a high-strength cold-rolled steel sheet includes a temperature distribution forming step of forming a temperature distribution in a width direction of a steel sheet such that a temperature of the steel sheet increases from an end of the steel sheet in the width direction toward a center part of the steel sheet in the width direction, and a water quenching step of performing water quenching treatment on the steel sheet by immersing, in cooling water, the steel sheet on which the temperature distribution is formed in the width direction.
Abstract: Described herein is an apparatus for reinforcing a metallic material includes a rotatable tool that is insertable into the metallic material. The rotatable tool is configured to plastically deform the metallic material. The apparatus also includes a coolant delivery mechanism that is coupled to the rotatable tool. The coolant delivery mechanism is configured to deliver a coolant to the metallic material.
Abstract: The invention relates to a furnace system and a method for the controlled heat treatment of sheet metal components in individual component zones. The invention proposes a furnace system that is suitable for partly heating components made of steel sheet to a temperature above the AC3 temperature. The furnace system has a production furnace for heating the steel sheet parts to a temperature that is close to but below the AC3 temperature, said furnace system further having a profiling furnace with at least one level. The at least one level has an upper and a lower part and a product-specific intermediate flange that is introduced into a corresponding receiving area. The product-specific intermediate flange is designed to impose a specified temperature profile on the component with temperatures over AC3 for regions to be hardened and below AC3 for softer regions. Furthermore, the invention relates to a corresponding method for partly heating steel sheet parts to a temperature above the AC3 temperature.
Abstract: A procedure for hardening at least one surface (S, L) of a wall (W) of a component (T), in which the surface to be hardened (S, L) is inductively heated with at least one inductor (2), in which liquid is filled into a gap (P) between the surface to be hardened (S, L) and the inductor (2) while heating the surface to be hardened (S, L), in which the side (AS) of the wall (W) opposite the side (IS) of the wall (W) provided with the surfaces to be hardened (S, L) is sprayed with liquid while heating the surface to be hardened (S, L), and in which at least one liquid jet (KI) is aimed at a zone (RZ) of the wall (W) that is adjacent to the surface to be hardened (S, L), and to be precluded from heating by the inductor (2). The procedure according to the invention makes it possible to tailor the hardening of at least one surface to the respective requirements, even on the walls of complexly shaped components with a small wall thickness.
Type:
Grant
Filed:
June 24, 2002
Date of Patent:
November 23, 2004
Assignee:
Elotherm GmbH
Inventors:
Hans-Jürgen Leissner, Peter Schulte, Waldemar Gezarzick, Richard Dyksik
Abstract: An apparatus (10) for heat treat hardening multiple wear surfaces (24,26,28) of a metal workpart (14). Flame burners (38) and associated trailing quenches (36) travel along a linear and vertical path (13) across the workpart (14) to flame harden the wear surfaces (24,26,28) thereon. The workpart (14) is mounted on support studs (60) extending from a turntable (52), and clamping arms (66) securely engage the workpart (14) with the support studs (60). The turntable (52) rotates the workpart (14) relative to the travel path (13) of the flame burners (38) to move flame hardened surfaces (24,26,28) out of the travel path (13) and move unhardened surfaces (24,26,28) into the travel path (13) for flame hardening by the flame burners (38).
Abstract: Method and apapratus for inhibiting stress corrosion cracking adjacent weldments in steel workpieces such as stainless steel pipe through generation of a controllable throughwall temperature differential by exposure of one workpiece surface to extermally generated radiant heat while maintaining a flow of coolant fluid past the other surface thereof.
Abstract: A method and apparatus of quench hardening to a desired depth the inner surface of an axially extending bore in an elongated, thin-walled workpiece having an outer, axially extending surface wherein the bore has a selected, uniform cross-sectional shape, which method and apparatus involves providing an inductor with an outer shape generally matching, but smaller than, the cross-sectional shape of the bore, supporting the workpiece with the axis entending vertically, energizing the inductor with a known frequency and at a selected power level, moving the energized inductor downwardly through the bore to inductively heat the inner surface progressively while applying no fluid quench to the inner surface, letting the workpiece cool and then moving the inductor upwardly through the bore to progressively heat the inner surface while progressively liquid quenching the inner surface immediately below and after the progressive heating operation.
Abstract: The furnace effects a partial heat-treatment of drills and similar tools having a clamping portion and a working portion and with respect to which it is important to subjecting only the working portion, to a heat treatment, particularly hardening. The physical properties of the clamping portion are, retained essentially in their original state during the heat treatment. The furnace is provided with a tool receiver that cooperates with hearth-bottom plates that are traversed by cooling fluid. The tool receiver assures that the drills or other similar tools are maintained in their clamping portion at substantially the same temperature level during the heat treatment while the working portion of the tools is freely exposed to the heating and quenching.
Type:
Grant
Filed:
March 8, 1982
Date of Patent:
April 10, 1984
Assignee:
Ferdinand Limque
Inventors:
Ferdinand Limque, Cornelis H. Luiten, Franz Bless, Reinhard Neubauer, Dietmar Lange