Abstract: A device for hydraulically clamping tools or workpieces, a tool holder or workpiece holder for short, has a clamping portion for clamping a tool or workpiece. An interior of the clamping portion has a plurality of chambers which are connected in fluidic communication by way of a channel system. In order to be able to change, in particular increase, the dynamic rigidity of the hydraulically clampable tool/workpiece holder, a central throttle point is arranged in the channel system. The central throttle point has an adjustment element with which a flow cross section in the central throttle point can be changed.
Abstract: A fixture for securing a thin-walled component includes a support having one or more securing devices for securing the component to the support. An inflatable pressure element is adapted to press, when inflated, against a flexible liner located adjacent the thin wall of the component. The inflated pressure element and the liner act to damp vibrations in the component during machining of another side of the thin wall. The liner has at least one stiffening element located opposite a position where a machining operation is performed on the other side of the thin wall. The stiffening element holds the liner away from the thin wall to create a cavity between the liner and the thin wall.
Abstract: The invention concerns a method and a coiler mandrel for coiling metal strip (110), wherein the coiler mandrel (100) comprises a mandrel body (120), a plurality of radially expandable segments (115) arranged around the mandrel body (120), and a plurality of hydraulic cylinders (116) by which the segments (115) can be moved in the radial direction. To be able to coil the metal strip with a circular coil eye even when the friction varies in the individual cylinders, the invention proposes that each cylinder (116) of the plurality of cylinders be individually controlled.
Abstract: A group of fixtures for thin-walled shell/cylindrical components (10) while they are being machined internally and externally, has a mounting base (1) having mounting holes, positioning pins and clamps to locate one end of the thin-walled component. A supporting arbour or cylinder (5) is fixed in the base. A circular lid (12) is fixed to the supporting arbour or cylinder and has a wedged step to locate the other end of the cylindrical component for internal and external machining, or the major open end of shell component for internal machining. A pair of modified vehicle wheel inner tubes (8) are disposed around the supporting arbour or cylinder. A multi-layered sacrificial liner (7) surrounds the pressure element and is adapted to fit between it and the thin-walled components.
Abstract: The present invention is a unique motor comprising a containment chamber having thick walls surrounding a thin wall, is created when a plug is fusible joined. An inlet port and preferably a purging port are located in the thick walls. A motion is created when said expansion wall expands as said containment chamber is pressurized.
Abstract: The clamping apparatus (10) has a clamping ring (13) of an elastomer, which has a U-shaped cross section. The clamping ring (13) is seated in a recess (15) in a holding device (12) having parallel side walls. The recess (50) can be connected via a connecting line (18) to a hydraulic or pneumatic pressure source. The outside of the web part (21) of the U-profile acts as a clamping surface (24). Embedded in the area of this clamping surface is a number of clamping elements (27) made of a material of higher strength, in which at least that envelope line which faces away from the clamping surface (24) is exposed. The clamping elements (27) have the same axial extent as the clamping ring (13). One of the side walls of the recess (15) is formed by a clamping part (31), which is part of a clamping device (36) and is guided axially displaceably on the holding device (12) and is sealed off with respect to the latter by means of a circumferential seal element (34).
Abstract: A plurality of clamping motion elements with clamping jaws are moved out of an initial position towards a workpiece under a low operating pressure and caused to bear thereagainst. When all the clamping jaws bear uniformly against the workpiece, a full clamping pressure is applied to clamp the workpiece fast in position.