Abstract: A tool replacing device including a case member is disclosed. In the case member, engaging balls supported between a holding member and a movable member is projected into the holding member by an extruding surface of the movable member, resiliently urged by a second spring, thereby allowing a tool to be engaged. By pressing the movable member against a resilient urging force of the second spring, the engaging balls can be moved in the movable member. Also, since there are provided shock sensors for detecting a moving distance of the holding member holding the tool, collision or the like of the tool can be detected. Even if power supply is stopped, the present tool replacing device can hold the tool.
Abstract: A clamping fixture features a chuck provided with a locking mechanism for releasably locating a workpiece pallet. The locking mechanism comprises a plurality of clamping members which in the locked position are engineered to engage a clamping spigot connected to the workpiece pallet. Each clamping member, or alternatively an actuating member assigned to a clamping member, is provided with a feedthru bore which on correct locking and/or release of the corresponding clamping members is closed off at one end. The feedthru bores are connectable by a common connecting conduit to a compressed air source. In addition, at least one sensor is provided for sensing air flow in the connecting conduit by means of which it can detected whether the clamping members are correctly released or locked.
Abstract: A piston is displaced by a pressure fluid supplied to a chuck body, whereupon a pair of first and second fingers that constitute a gripping member are operated to open and close along a base body. Further, a shaft-shaped bobbin is inserted through the interior of the first and second fingers, and a coil is wound around a small diameter portion of the bobbin. Accompanying opening/closing operations of the first and second fingers, an opening/closing amount thereof is detected based on a change in impedance of the coil.
Abstract: The invention relates to rotating machine element that contains a mechanism actuated by a fluid pressure. The aim of the invention is to allow for a supply of actuation fluid also during the rotation. To this end, a non-rotating control element (2) is mounted on two fluid bearings (3) on the machine element, said bearings being spaced apart in the axial direction and allowing flows of actuation fluid to flow from one element to the other. Feed lines (R, S) in the control element are provided with a series of radially inwards facing ports (13, 14) and reception channels (17, 18) in the machine element, a series of radially outward facing orifices (15, 16) being disposed in such a manner that in every relative position both elements for every individual flow of actuation fluid are disposed such that at least one port (13, 14) is aligned with one associated orifice (15, 16).
Abstract: A self-centering element for clamping workpieces via deflecting pins, which act between a drive element and self-centering slides. Deflecting pins, which are provided with grooves in which carrier prisms are arranged, are introduced in pairs into recesses in a housing in a plane located in parallel to the mounting surface of the element. The carrier prisms have wedge surfaces, which are slidingly guided in the grooves of the deflecting pins. The deflecting pins are controlled by pistons, which are arranged in the same plane but at right angles to the deflecting pins. The forces are transmitted beginning from the piston via the deflecting pins to the carrier prisms and then to the self-centering slides, which are connected to the carrier prisms and which move the clamping jaws.
Abstract: A chuck unit for a machine tool is capable of holding a workpiece installed on a spindle by workpiece holding members that move in a radial direction with respect to an axial center. Workpiece holding rods are provided at the workpiece holding member and move radially. Screw operating portions are operated by a rotating operation jig at an outer peripheral side of the chuck unit. A workpiece end face abutment moves and holds the workpiece in the axial direction.
Abstract: A chuck adapter attachable to a fixed chuck mechanism for converting the fixed chuck mechanism to a compensating chuck mechanism includes an attachment plate for connection to the head of the fixed chuck mechanism. The attachment plate includes a plurality of slots formed therein for alignment with respective drive jaws on the fixed chuck head. A plurality of adapter jaws are provided, each movable along a respective one of the plate slots, each adapter jaw including a movable clamping pin extending therefrom, and each adapter jaw including a hydraulic displacement member which reacts to movement of the clamping pin. A hydraulic circuit is provided in fluid communication with each of the hydraulic displacement members for maintaining substantially the same clamping force on each of the clamping pins as the clamping pins move.