Abstract: A system that automatically stops an engine when the vehicle is stopped and restarts the engine in response to a predetermined condition is disclosed. The system may generally include an engine and a motor for restarting the engine and driving an auxiliary machine when the engine is stopped, and an electrical power source for supplying electrical power to the motor. The motor may be disposed within a crank pulley housing and configured to be connected to a crankshaft. The motor may restart the engine in response to a predetermined condition. The system may include a gear reduction system for amplifying the torque provided by the motor. The motor may drive an auxiliary machine when the engine is stopped. The engine may drive the auxiliary machine when the engine is operating in drive.
Abstract: There is provided a control scheme for restarting an internal combustion engine of a hybrid powertrain during ongoing vehicle operation. The method includes generating a torque output from an electrical machine to rotate the engine, and determining an engine crank torque. The torque output from the electrical machine is selectively controlled based upon the engine crank torque. The engine is fired when rotational speed of the engine exceeds a threshold. An engine torque simulation model accurately determines engine compression pressures in real-time to accommodate changes in engine operating conditions, based upon present engine operating conditions.
Abstract: There is provided a control scheme for restarting an internal combustion engine of a hybrid powertrain during ongoing vehicle operation. The method comprises generating a torque output from an electrical machine to rotate the engine, and determining an engine crank torque. The torque output from the electrical machine is selectively controlled based upon the engine crank torque. The engine is fired when rotational speed of the engine exceeds a threshold. An engine torque simulation model accurately determines engine compression pressures in real-time to accommodate changes in engine operating conditions, based upon present engine operating conditions.
Abstract: A control device for a hybrid vehicle, the hybrid vehicle comprising an engine and a motor as power sources, the control device including: a battery device sending energy to and receiving energy from the motor, a temperature sensor for measuring the temperature of the battery device; a control section which is adapted to execute a warming control operation for the battery device when the temperature of the battery device is low; and a determination section for determining whether a cylinder deactivation operation is permitted for the engine depending on the running state of the engine. The control section executes a vibration control operation for the engine by operating the motor so as to reduce vibration of the engine when it is determined by the determination section that the partial cylinder deactivation operation is permitted for the engine, and to perform the warming control operation for the battery device by executing a vibration control operation for the engine.
Abstract: A drive system for an industrial truck, comprising an internal combustion engine, a three-shaft epicyclic gearing adapted to be connected to the shaft of the internal combustion engine, a first electric motor which is mechanically coupled to the second shaft of the epicyclic gearing and is connected to an onboard network of the industrial truck, a change-speed gearing coupled to the third shaft of the epicyclic gearing, a summing gearbox coupled to the change-speed gearing the other input shaft of which is connected to a second electric motor which is electrically connected to the onboard network and the output shaft of which is coupled to at least one driven wheel of the industrial truck, a clutch (A) between the first and second shafts of the epicyclic gearing, at least one consumption unit for an additional function of the industrial truck that is coupled to one of the shafts of the epicyclic gearing, a sensor device which measures the speeds of the internal combustion engine, the first and second electric
Abstract: A hill-holding arrangement for an electrically driven vehicle includes a vehicle with a "gas pedal" which generates a torque command signal T.sub.CMD. A switch (314) couples T.sub.CMD to a motor controller (316, 14) which drives the motor (40) and therefore the vehicle. When the "gas pedal" calls for zero torque, and the vehicle speed is zero, the switch responds to logic (FIG. 5), and substitutes a position-holding torque command signal T.sub..theta. for the operator-controlled torque command signal T.sub.CMD. Position controlling torque command T.sub..theta. is generated by a controller (312) which receives a position signal representative of the angular position .theta. of the rotor. The position-holding torque control loop then produces such torque as may be required to prevent the rotor of the motor from moving from its commanded position.
Type:
Grant
Filed:
November 16, 1998
Date of Patent:
September 26, 2000
Assignee:
Lockheed Martin Corporation
Inventors:
Christopher Charles Jones, Timothy Michael Grewe
Abstract: A power output apparatus 110 includes a planetary gear 120 having a planetary carrier, a sun gear, and a ring gear, an engine 150 having a crankshaft 156 linked with the planetary carrier, a first motor MG1 attached to the sun gear, and a second motor MG2 attached to the ring gear. When the driver steps on an accelerator pedal 164 to change the driving point of the engine 150, the power output apparatus 110 calculates an angular acceleration of the sun gear, calculates a torque used for changing the driving point of the engine 150 by multiplying the angular acceleration by a moment of inertia seen from the first motor MG1 of an inertial system consisting of the first motor MG1 and the engine 150, and drives the second motor MG2 by taking into account the torque. This structure enables a desired torque to be output even in a transient time.