Electromagnet Or Highly Inductive Systems Patents (Class 307/104)
  • Patent number: 11664683
    Abstract: Apparatuses and systems are provided for improving wireless power transmission for mobile devices. An enclosure for a mobile device may include a first electrical coil configured to establish a first wireless coupling with a transmitter coil of a power supply and a second electrical coil configured to establish a second wireless coupling with the first electrical coil and to establish a third wireless coupling with a receiver coil of a mobile device. A distance between the receiver coil and the transmitter coil may exceed a range over which the transmitter coil may be able to transfer power to the receiver coil via a single wireless coupling between the transmitter coil and the receiver coil. The first wireless coupling, the second wireless coupling, and the third wireless coupling, when established, may enable the transmitter coil to perform a wireless power transfer to the receiver coil.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: May 30, 2023
    Inventor: Geoffrey Herbert Harris
  • Patent number: 11662694
    Abstract: Provided is a method for deploying multiple solar power units to a location. The method comprises determining a location to which a solar power unit is deploying. The method further comprises determining that a second solar power unit is deploying to a same location as the solar power unit. A redeployment plan for the second solar power unit is generated. The redeployment plan is provided to the second solar power unit. The method further comprising deploying the solar power unit to the location.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 30, 2023
    Assignee: International Business Machines Corporation
    Inventors: Igor S. Ramos, Angelo Danducci, II, Hilary Ricky, Denny Nguyen
  • Patent number: 11664669
    Abstract: A system, recharge apparatus, and method includes transmit coils positioned in a pattern to allow at least one of the transmit coils to establish a wireless link with a receive coil positioned in proximity of the recharge apparatus. A power source is coupled to the transmit coils and configured to selectively energize ones of the transmit coils to transfer power to the receive coil. An energy efficiency detection circuit is configured to detect an electrical response of each one of the transmit coils when energized by the power source, the electrical response indicative of an energy efficiency between the one of the transmit coils and the receive coil. The power source selectively energizes ones of the transmit coils, selected according to a statistical analysis of an historical record and the electrical response indicative of the energy efficiency meeting a minimum efficiency criterion for energy transfer to the receive coil.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 30, 2023
    Assignee: NIKE, Inc.
    Inventor: Summer L. Schneider
  • Patent number: 11664687
    Abstract: A power transmitter (101) provides power to a power receiver (105) via an electromagnetic power transfer signal. The power transmitter (101) comprises an output circuit (302, 103) with a transmitter coil (103) generating the power transfer signal in response to a drive signal generated by a driver (301). A configuration controller (303) switches between power transfer configurations having different maximum power limits and voltage amplitudes for the drive signal. A transmitter (307) transmits a power configuration message to the power receiver (105) comprising data indicative of a voltage amplitude for a first power transfer configuration a receiver (305) receives a power transfer configuration change request message from the power receiver (105). The configuration controller (303) switches the power transmitter (101) to the first power transfer configuration in response to the power transfer configuration change request message.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: May 30, 2023
    Assignee: Koninklijke Philips N.V.
    Inventor: Antonius Adriaan Maria Staring
  • Patent number: 11658515
    Abstract: A wireless power transmission apparatus includes: a transmission coil configured to transmit power to a wireless power reception apparatus, an inverter that includes a plurality of switching elements and that is configured to output a current of a predetermined frequency to the transmission coil through an operation of the plurality of switching elements, and a controller. The controller can be configured to calculate an output level of power transmitted through the transmission coil, determine a load state of the wireless power reception apparatus based on a target level of power transmitted through the transmission coil and the calculated output level, and control the inverter based on the determined load state of the wireless power reception apparatus.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: May 23, 2023
    Assignee: LG Electronics Inc.
    Inventors: Hyunwook Moon, Euisung Kim, Jaewoo Lee
  • Patent number: 11657985
    Abstract: The emergency stop switch unit 2 as an operation switch unit includes a direct operation part 20A and an alternative operation part 20B. The direct operation part 20A has an emergency stop button 21 adapted to be directly operated. The alternative operation part 20B is adapted to be linked with the direct operation part 20A and alternatively operates the emergency stop button 21 in place of the direct operation part 20A. The alternative operation part 20B has a reception part 32 that detects a remote operation of the emergency stop button 21 and an electromagnetic solenoid 3 that actuates the emergency stop button 21 on the basis of the remote operation detected by the reception part 32.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: May 23, 2023
    Assignee: IDEC CORPORATION
    Inventors: Shigetoshi Fujitani, Ikuo Maeda, Toshiyuki Kasama, Eiji Yoshi
  • Patent number: 11652368
    Abstract: A power transmission device includes a transmission coil that supplies power to a power reception device, a power supply circuit that converts DC power supplied from a DC power source via a plurality of switching elements connected in a full bridge shape or a half bridge shape between DC power sources and the transmission coil into AC power and supplies the AC power to the transmission coil, a phase adjustment circuit having an LC series circuit connected in parallel with the transmission coil and a switching element connected in series with the LC series circuit, and a control circuit that controls switching on and off of the switching element of the phase adjustment circuit in accordance with a measured value of an amount of current when any of the plurality of switching elements of the power supply circuit is turned off by a current detection circuit.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: May 16, 2023
    Assignee: OMRON Corporation
    Inventors: Goro Nakao, Atsushi Nomura, Yusuke Kawai, Masanobu Nakajo
  • Patent number: 11652369
    Abstract: A method of wireless power transmission includes transmitting, via antenna elements of an antenna array, a plurality of first signals having a first phase and a first gain. The method further includes determining a location of a receiver device based on the plurality of first signals transmitted by the antenna elements of the antenna array. The method includes adjusting, for the antenna elements of the antenna array, one of a phase and a gain based on the location of the receiver device. The method includes transmitting, via the antenna elements, a plurality of second signals having a second phase or a second gain such that the plurality of second signals are focused at a focus region that is approximately the size of an antenna array of the receiver device and provide energy at the focus region that is converted by the receiver device into usable power.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: May 16, 2023
    Assignee: Energous Corporation
    Inventors: Michael A. Leabman, Gregory Scott Brewer
  • Patent number: 11652371
    Abstract: A method of controlling a wireless power transmitter is discussed. The method includes transmitting a power signal having a predetermined strength; measuring a quality factor and a peak frequency of a coil of the wireless power transmitter using the power signal; receiving reference values including a reference quality factor and a reference peak frequency of a wireless power receiver; determining whether or not a foreign object is present in a charging area of the wireless power transmitter based on a comparison of the reference quality factor with the measured quality factor and a comparison of the reference peak frequency with the measured peak frequency; transmitting response signals indicating a result of the determination; and determining whether to continue or stop a wireless charging procedure based on the response signals.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: May 16, 2023
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Jae Hee Park
  • Patent number: 11652366
    Abstract: An integrated device includes a power adapter and a wireless module. The power adapter includes a charging plug and a first connector. The wireless module includes a second connector mateable with the first connector. Each of the power adapter and the wireless module is an independent device. In addition, the power adapter and the wireless module can be detachably combined together through the first connector and the second connector. With this arrangement, when the power adapter and the wireless module are used separately, their respective functions can be achieved. When the power adapter and the wireless module are used in combination, the wireless module can be powered by the power adapter, thereby improving the convenience of using the integrated device.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: May 16, 2023
    Assignee: LUXSHARE PRECISION INDUSTRY CO., LTD.
    Inventors: Yun Feng, Min Fan, Wenjun Tang
  • Patent number: 11646609
    Abstract: A power transfer system comprises a patient transport apparatus and a power transfer device. The power transfer system provides convenience and ease of connection between a power source and the patient transport apparatus to provide power to one or more electrically powered devices on the patient transport apparatus or to provide energy for an energy storage device on the patient transport apparatus.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: May 9, 2023
    Assignee: Stryker Corporation
    Inventors: Kevin M. Patmore, Christopher Ryan Sweeney, Chad Conway Souke, Daniel V. Brosnan, Kurosh Nahavandi, Annie Desaulniers, Alexey Titov, Jeffrey S. Dunfee, II, Aaron D. Furman, Krishna S. Bhimavarapu
  • Patent number: 11646605
    Abstract: Systems and methods are described for transmitting and receiving wireless power. In some embodiments, a wireless power transmission system comprises an antenna array comprising a plurality of antennas and a transceiver module configured to receive a plurality of beaconing signals via the antenna array from a wireless client during a beacon cycle. The system also comprises a controller configured to measure a phase of each of the plurality of beaconing signals and determine a transmit phase configuration for each of the antennas, and a transceiver module configured to send signals to the antenna array based on the transmit phase configuration for delivery of wireless power to the wireless client.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 9, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati
  • Patent number: 11641221
    Abstract: A wireless power receiver, and control methods thereof are provided. The wireless power receiver includes a communication module; and a controller. The controller is configured to identify whether a near-field communication (NFC) tag is detected, wherein the NFC tag is external to a wireless power transmitter and the wireless power receiver, and transmit, by using the communication module, a signal indicating whether the NFC tag is detected to the wireless power transmitter.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: May 2, 2023
    Inventors: Kyung-Woo Lee, Sang-Wook Kwon, Sung-Kweon Park
  • Patent number: 11638819
    Abstract: Embodiments described herein relate to signal generators, systems including signal generators, and related methods. A signal generator includes capacitor(s) to store energy used to generate a treatment signal. The signal generator also includes a waveform shaping circuit, a controller, a voltage sense circuit, and a current sense circuit. The waveform shaping circuit is coupled to the capacitor(s) and includes first, second, third, and fourth switches, each of which is configured to be selectively turned ON and OFF, to allow current to pass through the switch when turned ON, and to prevent current from passing through the switch when turned OFF. The controller selectively controls the switches in order to generate the treatment signal. The controller also selectively controls the switches in order to perform certain fault tests, which rely on voltages sensed by the voltage sense circuit and currents sensed by the current sense circuit.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: May 2, 2023
    Assignee: Galvanize Therapeutics, Inc.
    Inventors: Timothy J. Gundert, Paul B. Friedrichs
  • Patent number: 11641121
    Abstract: A system is provided comprising: a materials handling vehicle; a wearable remote control device comprising: a wireless communication system including a wireless transmitter; and a rechargeable power source; a receiver at the vehicle for receiving transmissions from the wireless transmitter; a controller at the vehicle that is communicably coupled to the receiver, the controller being responsive to receipt of the transmissions from the remote control device; and a charging station at the vehicle. The charging station may charge the rechargeable power source of the wearable remote control device. The charging station may comprise a visual indicator.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: May 2, 2023
    Assignee: Crown Equipment Corporation
    Inventors: Trisha M. Luthman, Vern I. Woodruff, III, Jamison S. Frady, Steven R. Pulskamp, Christopher R. Graunke, Michael Corbett
  • Patent number: 11641134
    Abstract: A wireless charging device includes a power source configured to generate a direct current (DC) voltage signal. Also, the wireless charging device includes a driver unit configured to receive the DC voltage signal and convert the DC voltage signal to a first alternating current (AC) voltage signal. Further, the wireless charging device includes a transmitting unit including a resonant capacitor and a resonant coil, coupled to the driver unit, wherein the transmitting unit is configured to receive and transmit the first AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a receiver device based on a change in at least one of a capacitive voltage across the resonant capacitor and an inductive voltage across the resonant coil if the receiver device is positioned within a predetermined distance from the transmitting unit.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 2, 2023
    Assignee: General Electric Company
    Inventors: Sivabalan Mohan, Somakumar Ramachandrapanicker, Arun Kumar Raghunathan, Rajendra Naik, Adnan Kutubuddin Bohori
  • Patent number: 11637451
    Abstract: A power transmitter device of a non-contact power feeding device includes a transmitter coil configured to supply power to the power receiver device, a power supply circuit including a plurality of switching elements connected between a DC power supply and the transmitter coil in a full-bridge configuration or a half-bridge configuration. The power supply circuit may be configured to switch the plurality of switching elements to an on or off state at a switching frequency to convert DC power supplied from the DC power supply into AC power having the switching frequency and supply the AC power to the transmitter coil, and a phase control circuit including at least one LC series circuit connected to both ends of the transmitter coil.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: April 25, 2023
    Assignee: OMRON Corporation
    Inventors: Goro Nakao, Kenichi Tabata, Yusuke Kawai, Atsushi Nomura, Takahiro Takeyama, Masanobu Nakajo
  • Patent number: 11637459
    Abstract: A power transmitter is configured for transmission of wireless power, to a wireless receiver, at extended ranges, including a separation gap greater than 8 millimeters (mm). The power transmitter includes a control and communications unit and an inverter circuit configured to receive input power and convert the input power to a power signal. The power transmitter further includes a coil configured to transmit the power signal to a power receiver, the coil formed of wound Litz wire and including at least one layer, the coil defining, at least, a bottom face. The power transmitter further includes a shielding comprising a ferrite core and a magnetic backing, the magnetic backing configured to substantially back the bottom face of the coil.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: April 25, 2023
    Assignee: NUCURRENT, INC.
    Inventor: Md Nazmul Alam
  • Patent number: 11637592
    Abstract: Wireless power may be transferred between systems that are magnetically coupled in reactive near-field proximity. A magnetic field between a first antenna and a second antenna are coupled. The first and second antenna are (i) resonant at an operating frequency, and (ii) located within reactive near-field proximity. The reactive near field proximity represents a region that is less than a distance of 0.159 of the free space wavelength for the operating frequency. The wireless power provides a receiving system with a threshold amount of wireless inductive power exceeding 1 watt. Each of the first and second antennas have a spherical volume with a diameter less than 1/20 of the free space wavelength of the operating frequency and the energy dissipated to far-field radiation, per cycle, due to circulating currents from the first antenna is less than ½ the peak energy stored in the magnetic field.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: April 25, 2023
    Assignee: Electric Sky Holdings, Inc.
    Inventor: Jeffrey Greason
  • Patent number: 11635472
    Abstract: A load driving device includes a synchronous rectifier circuit having a driving-side switching element and a reflux-side switching element; a driver control circuit controls the synchronous rectifier circuit; and a voltage monitor circuit that monitors whether the voltage of an output terminal of the synchronous rectifier circuit is within a predetermined voltage range; where the driver control circuit, upon receiving a diagnosis command, performs control so that when the driving-side switching element is switched from ON to OFF, the reflux-Side switching element is also switched to OFF; and the voltage monitor circuit detects a normal state when the voltage to be monitored is within a normal level during a period in which both the driving-side switching element and the reflux-side switching element are turned OFF.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: April 25, 2023
    Assignee: HITACHI ASTEMO, LTD.
    Inventors: Yuri Ohara, Yasushi Sugiyama, Takeo Yamashita, Masahiro Doi
  • Patent number: 11631995
    Abstract: One embodiment provides a non-contact power transmitter device including a sealed housing provided at least partially within a surface, and a transmitter coil within the sealed housing configured to inductively transfer power to a power receiver device. The power transmitter device also includes a transmitter control unit coupled to the transmitter coil, a transceiver configured to communicate with the power receiver device, and an electronic processor coupled to the transmitter control unit and the transceiver. The electronic processor is configured to establish, using the transceiver, communication with the power receiver device, and negotiate power transfer requirements between the power transmitter device and the power receiver device. The electronic processor is also configured to control the transmitter control unit to transfer power to the power receiver device.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: April 18, 2023
    Assignee: Hubbell Incorporated
    Inventors: John Brower, Matthew Samojeden, Shadi AbuGhazaleh, Robert Simon
  • Patent number: 11631989
    Abstract: An electrical supply holding circuit includes a primary stage and a secondary stage. The primary stage includes a voltage connector connected to a supply network, and a primary winding connected to a voltage converter. The secondary stage includes a secondary winding facing the primary winding, the primary and secondary windings forming two coupled inductances, and a voltage controller to which the secondary winding is connected, the voltage controller being connected to a load and controlling a voltage across the terminals of the load. Directions of the currents flowing through the primary and secondary windings are the reverse of one another, and the voltage converter stops the supply to the primary winding when the supply voltage is less than a threshold voltage and resumes the supply to the primary winding when the supply voltage is greater than a threshold voltage.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 18, 2023
    Assignee: SAFRAN ELECTRONICS & DEFENSE
    Inventor: Louis Grimaud
  • Patent number: 11632000
    Abstract: At least one component for a wireless power transmitter or a wireless power receiver. The at least one component includes a mechanical structure and/or circuitry configured to maintain and/or adjust a coupling coefficient K between the wireless power transmitter and the wireless power receiver, a loaded quality factor Q of the wireless power receiver, or both, such that K times Q is less than a constant.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 18, 2023
    Assignee: MediaTek Inc.
    Inventor: Vladimir Alexander Muratov
  • Patent number: 11631937
    Abstract: Disclosed is a combo antenna module which can improve antenna performance by arranging a radiation pattern for electronic payment such that a portion of the radiation pattern does not overlap a magnetic sheet. The disclosed combo antenna module includes: a radiation pattern for wireless power transmission and a radiation pattern for electronic payment which are formed on a base substrate; and a magnetic sheet arranged to overlap the entire radiation pattern for wireless power transmission and a portion of the radiation pattern for electronic payment.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: April 18, 2023
    Assignee: AMOTECH CO., LTD.
    Inventors: Hyungil Baek, Jinwon Noh, Kisang Lim, Seonghyun Kim, Chungha Back, Donghyun Im
  • Patent number: 11626903
    Abstract: Wireless power transfer systems, disclosed, include a wireless power transmission system and a wireless power receiver system. The wireless power transmission system includes a transmitter antenna configured to couple with a receiver antenna to transmit alternating current (AC) wireless signals to the receiver antenna. Antenna coupling may be inductive and may operate in conformance to a wireless power and data transfer protocol. A transmission controller drives the transmitter antenna at an operating frequency, and either the wireless power transmission system or the wireless power receiver system may damp the wireless power transmission to create a data signal containing a serial asynchronous data signal.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: April 11, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Mark Melone, Michael Katz
  • Patent number: 11626754
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 11, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11626764
    Abstract: Using inductive currents to wirelessly charge a device via a device connected to a power source. This inductive charging may result when a first mobile device recognizes a second mobile device via a wireless connection (e.g., Bluetooth, Bluetooth Low Energy (BLE), Near-Field Communication (NFC), or the like). An application stored on the first mobile device may recognize a second mobile device by transmitting an advertising packet when the first mobile device is connected to a power source. An advertising packet may be received by the second mobile device and the second mobile device may transmit a response to the advertising packet in order to generate a connection between the first and second mobile devices. The response may include data such as, connection strength, response time, connection preferences, and the like. Upon detection and connection, the second mobile device may be wirelessly charged by the first device via inductive charging.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: April 11, 2023
    Assignee: CAPITAL ONE SERVICES, LLC
    Inventors: Adam Koeppel, Tyler Locke, David Wurmfeld
  • Patent number: 11626811
    Abstract: The present disclosure relates to an integrated boost modular multilevel converter, which has particular, but not sole, relevance to a converter for an inductive or capacitive (wireless) power transfer system. More particularly, the present invention according to an embodiment discloses a modular multilevel power converter (MMPC) comprising: at least one submodule stack having an output for connection to a load and an input for connection to an input power source, at least one inductive element provided between the input and the output, the at least one submodule stack including at least two submodules, each submodule comprising at least one capacitor and a plurality of controllable switches, and the submodules being operable to selectively transfer energy from the at least one inductive element to boost a voltage at the output relative to a voltage at the input.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 11, 2023
    Assignee: Auckland UniServices Limited
    Inventors: Baljit Singh Riar, Duleepa Jayanath Thrimawithana, Regan Andrew Zane, Wenwei (Victor) Wang
  • Patent number: 11626761
    Abstract: The technology described herein relates to wireless power receivers with reconfigurable (or adaptive) antenna configurations for improved wireless power transfer in multipath wireless power delivery environments. In an implementation, a wireless power receiver is described. The wireless power receiver includes one or more radio frequency (RF) antennas, power metering circuitry and control circuitry. The power metering circuitry is adapted to measure at least one characteristic of wireless power received from a wireless power transmission system in a multipath environment. The control circuitry is adapted to monitor the power metering circuitry to determine when the measure of the at least one characteristic of the wireless power fails to meet a preset threshold, and dynamically reconfigure an antenna configuration of the wireless power receiver when the at least one characteristic of the wireless power fails to meet the preset threshold.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 11, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Alireza Pourghorban Saghati
  • Patent number: 11626755
    Abstract: A multi-power-mode ultra-low-power address detector for Radio Frequency (RF) wakeup receivers is provided herein. The address detector is implemented when combined charging and wake-up of a device is required. The method includes a set of components to process a complex address waveform. This address includes a preamble composed of a pulse with a specific width, followed by a digital Pulse Width Modulation (PWM) modulated bit pattern.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 11, 2023
    Assignee: American University of Beirut
    Inventors: Ahmed Abed Benbuk, Nour Kouzayha, Joseph Costantine, Zaher Dawy
  • Patent number: 11621585
    Abstract: Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 4, 2023
    Assignee: WiTricity Corporation
    Inventors: Aristeidis Karalis, Morris P. Kesler, Katherine L. Hall, Nathan Andrew Pallo
  • Patent number: 11618327
    Abstract: A wireless power transmission device for a vehicle and a method are provided. The wireless power transmission device for a vehicle may transmit a signal for detection of a wireless power reception device by using a lower frequency band that is different from an operating frequency band used to control the vehicle. The wireless power transmission device may receive a response signal for the transmitted signal and a power control signal from the wireless power reception device. The wireless power transmission device may control an operating frequency or a voltage (or both) in the wireless power transmission device for the vehicle according to the power control signal. The wireless power transmission device may transmit wireless power to the wireless power reception device.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 4, 2023
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Chun Kil Jung, Byong Uk Hwang
  • Patent number: 11616406
    Abstract: A wireless power feeding system is provided, comprising a power transmission apparatus configured to transmit predetermined transmission power and a power reception apparatus configured to receive the transmission power and generate input voltage according to the transmission power, wherein the power transmission apparatus includes a power transmission control unit configured to control an amount of the transmission power, the power transmission control unit is configured to receive a modulation signal from the power reception apparatus, and to reduce the transmission power in a case where the modulation signal is not received for a predetermined period after receiving the previous modulation signal, and the power transmission apparatus and the power reception apparatus are configured to control the input voltage to be larger than a predetermined first threshold and below a second threshold which is larger than the first threshold.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: March 28, 2023
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Hiroaki Enomoto, Shiro Taga
  • Patent number: 11616398
    Abstract: A wireless power transmitter and a wireless power receiver are discussed. The wireless power transmitter can include a power converter configured to transfer wireless power to a wireless power receiver, and a communicator/controller configured to control the wireless power. The wireless power transmitter can receive a received power (RP) packet which informs a received power value, transmit in response to the RP packet a bit pattern related to requesting permission to communicate, receive a response packet which invites the wireless power transmitter to send a data packet, transmit a specific packet includes a specific power level in response to the response packet, and negotiate a guaranteed power level with the wireless power receiver. The guaranteed power level can be less than or equal to the specific power level.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: March 28, 2023
    Assignee: LG ELECTRONICS INC.
    Inventor: Yongcheol Park
  • Patent number: 11614630
    Abstract: An HMD includes first and second batteries mounted therein, and includes a plurality of power receivers that receive power from the first and second batteries by wireless transmission, a power supply manager that monitors states of the first and second batteries, a communication interface that performs wireless communication with the first and second batteries, and a plurality of limiters that limit the power received by the plurality of power receivers. A controller causes the limiters to limit power, which is supplied to a load, according to a power use state of the load in the device, and the power supply manager acquires information of remaining power storage amounts of the first and second batteries through the communication interface and displays the acquired information on a display. Therefore, since it is possible to supply power required for driving the device while wearing the HMD, the HMD can be continuously used.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: March 28, 2023
    Assignee: MAXELL, LTD.
    Inventors: Yasuo Yahagi, Takatoshi Shirosugi, Hitoshi Akiyama, Osamu Kawamae
  • Patent number: 11611235
    Abstract: A wireless power transfer holder composed of a receiving space formed by first walling portions to be provided opposite side surfaces, respectively, defining width directions of an electronic device, second walling portions to be provided opposite front and back surfaces, respectively, defining thickness directions of the electronic device, a bottom portion, and an open portion formed opposite the bottom portion, first and second supporting members movable symmetrically forward or backward in the width directions from the first walling portions, respectively, toward the electronic device, to exert bias forces on the side surfaces, respectively, of the electronic device, and an inductive power transferring device mounted on one of the second walling portions to inductively transfer an electric power in a non-contact manner to the electronic device held in the receiving space.
    Type: Grant
    Filed: December 19, 2020
    Date of Patent: March 21, 2023
    Assignee: TOYODA GOSEI CO., LTD.
    Inventor: Yuhki Ichikawa
  • Patent number: 11611243
    Abstract: Object detection for wireless power transmitters and related systems, methods, and devices are disclosed. A controller for a wireless power transmitter is configured to receive a measurement voltage potential responsive to a tank circuit signal at a tank circuit, provide an alternating current (AC) signal to each of the plurality of transmit coils one at a time, and determine at least one of a resonant frequency and a quality factor (Q-factor) of the tank circuit responsive to each selected transmit coil of the plurality of transmit coils. The controller is also configured to select a transmit coil to use to transmit wireless power to a receive coil of a wireless power receiver responsive to the determined at least one of the resonant frequency and the Q-factor for each transmit coil of the plurality of transmit coils.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: March 21, 2023
    Assignee: Microchip Technology Incorporated
    Inventors: Santosh Bhandarkar, Alex Dumais
  • Patent number: 11609121
    Abstract: A temperature-regulating unit includes a base, a thermal element, a contactless sensing assembly, and a controller. The base is configured to support at least one of a pan or a food product. The thermal element is positioned to thermally regulate the at least one of the pan or the food product. The contactless sensing assembly is positioned to acquire sensor data regarding the at least one of the pan or the food product. The controller is configured to receive the sensor data from the contactless sensing assembly and adaptively control the thermal element based on the sensor data.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 21, 2023
    Assignee: Hatco Corporation
    Inventors: Nick Bassill, John Scanlon, Fei Shang, Ishan Shah, Mark Gilpatric, Dave Rolston, Ronghua Yu
  • Patent number: 11605979
    Abstract: A power receiving device according to the present disclosure includes a power receiving section that receives power from a power feed device with use of a power receiving coil; and a communication section that transmits coil information to the power feed device, the coil information indicating whether or not a coil is provided near the power receiving coil.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: March 14, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Osamu Kozakai, Hiroaki Nakano, Takashi Miyamoto
  • Patent number: 11605980
    Abstract: A multi-transmitting multi-receiving magnetic-resonance wireless charging system for a medium-power electronic apparatus includes a magnetic-resonance transmitting module and a magnetic-resonance receiving module. The magnetic-resonance transmitting module includes a transmitting-end Bluetooth-communication and control module and at least two magnetic-resonance transmitting channels. Each magnetic-resonance transmitting channel includes a direct current/direct current (DC/DC) regulator module, a radio-frequency power amplifier source, a matching network and a magnetic-resonance transmitting antenna which are connected sequentially. The magnetic-resonance receiving module includes a receiving-end Bluetooth-communication and control module, a power synthesis and protocol module and at least two magnetic-resonance receiving channels.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 14, 2023
    Assignee: CHENGDU SPROUTING TECHNOLOGY CO., LTD.
    Inventors: Yiqiang Yu, Wei Li
  • Patent number: 11605987
    Abstract: Systems, methods and apparatus for wireless charging are disclosed. A charging device has a plurality of charging cells provided on a charging surface, a charging circuit and a controller. The controller may be configured to detect an object in proximity to a surface of the charging device through a passive ping. The controller is also configured to ping the detected object with an active ping, and determine whether a ping response is received from the object in response to the one or more active pings from the charging device. Additionally, the controller is configured to stop the active pinging of the detected object when no ping response is received in the charging device after a count of successively issued active pings from the at least one coil exceeds a predetermined number. The result is lockout of digital pinging when passive pinging detects an object that is non-responsive to active pings.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: March 14, 2023
    Assignee: AIRA, INC.
    Inventor: Eric Heindel Goodchild
  • Patent number: 11605976
    Abstract: Systems and methods are provided for wireless transmission of power or information. A supplying system include a signal source and a transmitter unit. A consuming system includes an electrical load and a receiver unit. Electrical power or information are transmitted wirelessly from the supplying system to the consuming system. The transmitter unit can include a step up transformer. The receiver unit can include a step down transformer. The transmitter unit and receiver unit are not connected to a common ground, resulting in a truly wireless system for transmitting power or information.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: March 14, 2023
    Inventor: Richard Marion Mansell
  • Patent number: 11601504
    Abstract: Support of coexistence of wireless transmission equipment in shared wireless medium environments is disclosed, which is applicable to various types of wireless transmission equipment. For instance, a wireless power transmission system (WPTS) delivers power to wireless power receiver clients via transmission of wireless power signals using one or more frequencies and/or channels within shared wireless medium environments in which other wireless equipment is operating, such as access points and stations in wireless local area networks (WLANs). The WPTS is configured to co-exist with the operations of the other wireless equipment within the shared wireless medium environment by adapting its transmission operations to utilize frequencies or channels that do not interfere with other equipment and/or implementing co-channel and shared channels operations under which access to channels is implemented using standardized WLAN protocols such as PHY and MAC protocols used for 802.11 (Wi-Fi™) networks.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: March 7, 2023
    Assignee: Ossia Inc.
    Inventors: Scott Elliott, Dale Mayes, Robert Giometti
  • Patent number: 11597291
    Abstract: A drone-based product delivery mechanism in which power is transferred between the drone's battery and a product's battery while the product is in transit to its destination. For a short distance delivery, the drone battery may be used to charge the product battery so that the product is delivered with a fully-charged battery. On the other hand, for long distance deliveries, the power from a fully-charged product battery may be used to charge the drone's battery to extend the flight time/radius of the drone or to supplement the drone battery to conserve its power. The power transfer may be carried out using a wireless connection or a wired connection. The wireless connection may be a Qi interface, whereas the wired connection may be a Universal Serial Bus (USB) connection. The product packaging may be re-designed to allow the desired power transfer between the drone and the product inside the packaging.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 7, 2023
    Assignee: Dell Products L.P.
    Inventors: Sathish Kumar Bikumala, Jace W. Files
  • Patent number: 11601016
    Abstract: An electronic device for providing a wireless charging function and a method thereof is provided. The electronic device includes a housing, a touch pad which is disposed in the housing and includes an electrode pattern and multiple openings formed on the electrode pattern, a wireless charging coil, and a processor operationally connected to the touch pad and the wireless charging coil, wherein the processor is configured to perform a touch detection function of detecting a touch by an inputting subject by using at least one electrode pattern of the touch pad, calculate a capacitance variation of the touch pad while the touch detection function is performed, determine whether the inputting subject requires a charging function, based on the calculated capacitance variation, and, in response to determining that the inputting subject requires the charging function, perform a charging function of transmitting power by using the wireless charging coil.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: March 7, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kisung Jung, Myoungjun Choi, Duckwon Yoon, Byongjeon Lee
  • Patent number: 11601163
    Abstract: Wireless power transfer systems, disclosed, include a wireless power transmission system and a wireless power receiver system. The wireless power transmission system includes a transmitter antenna configured to couple with a receiver antenna to transmit alternating current (AC) wireless signals to the receiver antenna. Antenna coupling may be inductive and may operate in conformance to a wireless power and data transfer protocol. A transmission controller drives the transmitter antenna at an operating frequency, and either the wireless power transmission system or the wireless power receiver system may damp the wireless power transmission to create a data signal containing a serial asynchronous data signal.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: March 7, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Mark Melone, Michael Katz
  • Patent number: 11598820
    Abstract: A load testing device includes: a resistance unit; a cooling fan that cools the resistance unit; a circuit breaker; a first terminal part that is connected to a test target power source; and a charge/discharge unit that has a charger and a first power storage device. The charge/discharge unit is connected with a test target power source cable being between the first terminal part and the resistance unit, between the first terminal part and the circuit breaker. The first power storage device 45a stores electric power supplied from the test target power source. The cooling fan drives based on electric power from at least the charge/discharge unit.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: March 7, 2023
    Assignee: TATSUMI RYOKI CO., LTD
    Inventor: Toyoshi Kondo
  • Patent number: 11594901
    Abstract: A multifunctional charging station is provided. The multifunctional charging station includes a housing, an alarm clock, an AC input connector, an AC output interface, a DC output interface, a luminous display screen, a wireless charging system, a controller and a managing circuit. The multifunctional charging station is configured to optimally supply electrical power to AC and DC electric devices, while wirelessly charging electric devices at the same time, and functions as an alarm clock and lighting system (e.g., a nightlight).
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 28, 2023
    Assignee: Shenzhen Chifrog Technology Co., Ltd.
    Inventors: Fang Li, Yunzheng Jiang
  • Patent number: 11594917
    Abstract: A device includes a rectifier connected to a receiver coil, a first overvoltage protection apparatus connected between inputs of the rectifier and ground, and a second overvoltage protection apparatus connected between an output of the rectifier and ground, wherein in an overvoltage event, the first overvoltage protection apparatus and the second overvoltage protection apparatus are controlled based upon a comparison between a switching frequency of the device and a predetermine frequency threshold.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 28, 2023
    Assignee: NuVolta Technologies (Hefei) Co., Ltd.
    Inventors: Sichao Liu, Jinbiao Huang
  • Patent number: 11584247
    Abstract: A wireless power feeding control apparatus for a vehicle includes a positioning unit and an examination unit. The vehicle is provided with a power receiving coil that wirelessly receives electrical power from a power transmitting coil of a power transmission facility, a parking lock mechanism, and a parking lock sensor that outputs an electrical signal corresponding to a locked state of a wheel established by the parking lock mechanism. The positioning unit positions the power transmitting coil or assists in positioning the power transmitting coil on the basis of a quantity of electricity generated by the power receiving coil receiving a magnetic field from the power transmitting coil subjected to weak excitation weaker than excitation during electrical power transmission. The examination unit checks the locked state of the wheel after the weak excitation is stopped and before the electrical power transmission is started.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 21, 2023
    Assignee: SUBARU CORPORATION
    Inventors: Daigo Tateishi, Ryohei Hoshi, Hirofumi Yabe, Fumiyuki Moriya, Hidehiro Takagi