Embedded In Face Plate Patents (Class 313/469)
  • Patent number: 7361417
    Abstract: A phosphor layer having improved contrast and brightness characteristics and a display device including the same are provided. The phosphor layer is made out of an ultra-fine pigment, a dispersant, a phosphor, a photosensitizer and a binder. The phosphor has a uniform distribution along the thickness of the phosphor layer, and the pigment varies in content over the thickness of the phosphor layer. A method of forming the phosphor layer is based on existing phosphor layer processes and includes a reduced number of processing steps than a filter screen method, thereby markedly lowering the manufacturing costs. The phosphor layer can be used in a cathode ray tube, a plasma display panel, a field emission display, and an organic electroluminescent device.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: April 22, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Byung-Heun Kang, Jong-Sang Lee, Jae-Hong Lim, Seok-Hwan Cha, Hong-Kyu Choi
  • Patent number: 7315114
    Abstract: A display apparatus includes a face plate that constitutes a part of a vacuum envelope, a phosphor layer formed on an inner surface of the face plate, and an electron beam source that emits electron beams to the phosphor layer. The face plate includes a light-emitting glass layer containing a light-emitting substance that emits light when electron beams are projected thereon. By extracting energy of electron beams, which have reached the face plate, as light, it is possible to reduce browning that occurs in the face plate and improve brightness of a display image significantly.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: January 1, 2008
    Assignee: Hitachi Displays, Ltd.
    Inventors: Masaki Nishikawa, Hidetsuga Matsukiyo
  • Patent number: 7211942
    Abstract: There is provided a radiation image conversion panel having a sufficient quantity of emitted light and high graininess. The radiation image conversion panel has a phosphor layer containing a stimulable phosphor and a binder. The phosphor layer has at least two layers, and an amount or weight of a binder to a stimulable phosphor in an uppermost layer of the phosphor layer is greater than that of a binder to a stimulable phosphor in other layer than the uppermost layer.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: May 1, 2007
    Assignee: Fujifilm Corporation
    Inventor: Hiroshi Ogawa
  • Patent number: 6813904
    Abstract: A process for fabricating a faceplate for a flat-panel display such as a field emission cathode type display is disclosed, the faceplate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6631627
    Abstract: A process for fabricating a face plate for a flat-panel display such as a field emission cathode type display is disclosed, the face plate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: October 14, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6564586
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display is disclosed, the face plate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: May 20, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6417611
    Abstract: A display screen, in particular a color display screen for a cathode ray tube, comprises a phosphor layer which includes a phosphor composition of a phosphor with a coating comprising a water-soluble organic binder, which is selected from the group formed by the polyurethanes, polyacrylamides, polyamide resins, etherified melamine compounds and melamine-formaldehyde compounds, and etherified urea-formaldehyde resins, and comprising oxygen compounds of one or more elements selected from the group formed by the alkaline earth elements and zinc. Important advantages obtained are a substantially improved sieving behavior of the phosphor powder, an increased adhesion of pigment particles to the phosphor grains, an improved suspension stability as well as an improved adhesion of the phosphor to the display screen glass.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: July 9, 2002
    Assignee: Koninlijke Philips Electronics, N.V.
    Inventors: Friederike Picht, Wolfram Czarnojan, Claus Feldmann, Hans-Otto Jungk, Jacqueline Merikhi, Roel Van De Belt, Anne M. A. Van Dongen, Alexandra J. Heijden
  • Patent number: 6393869
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6369512
    Abstract: A projection tube has a phosphor-coated faceplate at one end of a vacuum envelope and a plural-beam providing electron lens structure at the opposite end thereof. The electron lens structure includes four electrodes having axially-aligned apertures defining parallel channels for the plural electron beams to pass through to be focused and converged onto a small spot on the faceplate. The first and second electrodes of the electron lens structure shape the electron beams and the third and fourth electrodes thereof converge and focus the electron beams toward the same location on the faceplate. The potential applied to the fourth electrode is at or close to the potential at the phosphor, and is substantially higher than the potential applied to the third electrode. The lens structures of the third and fourth electrodes may each include an inner electron lens structure and an outer electron lens structure.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: April 9, 2002
    Assignee: Sarnoff Corporation
    Inventors: Roger Casanova Alig, Dennis John Bechis
  • Patent number: 6337535
    Abstract: Panel in a cathode ray tube having a flat outside and a curved inside surfaces, which can provide a perfect flat image at an appropriate distance of view, wherein a condition of 2.48×106(mm2)≦R×CFT≦4.38×106(mm2) is set for the CRT for use as a TV receiver, and a condition of 2.17×105(mm2)≦R×CFT≦6.93×105(mm2) is set for the CRT for use as a monitor, where R is a curvature represented by at least one of vertical, horizontal and diagonal curvatures of the inside surface of the panel and CFT is a center thickness of the panel.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: January 8, 2002
    Assignee: LG Electronics Inc.
    Inventor: Yong Kun Kim
  • Patent number: 6285122
    Abstract: A color cathode ray tube has a vacuum enclosure including a panel unit having a fluorescent film formed on an inner face, the fluorescent film consisting of densely arrayed three color dot trios of a fluorescent material. A shadow mask is mounted in the vicinity of the fluorescent film. The color cathode ray tube further includes a neck unit housing an electron gun for emitting three electron beams and a funnel unit for joining the panel unit and the neck unit. The panel unit has a diagonal diameter of not more than 52 cm and an effective display area on an outer face of the panel unit has a diagonal radius of curvature of not less than 1,300 mm. The dot trios of the fluorescent material are horizontally arrayed in a number of approximately at least 1600, and a cover film is applied to the panel unit to lower optical transmittance.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: September 4, 2001
    Assignee: Hitachi, Ltd.
    Inventor: Nobuhiko Hosotani
  • Patent number: 6279348
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6101846
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: August 15, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6013979
    Abstract: The invention relates to a display screen having a phosphor layer of a phosphor composition of a phosphor coated with an oxygen compound of one of the elements magnesium, calcium, barium, zinc and aluminium, and with colloidal SiO.sub.2 having an average particle size of 70 nm.ltoreq.d.ltoreq.130 nm. The invention further relates to a phosphor composition of a phosphor coated with an oxygen compound of one of the elements magnesium, calcium, barium, zinc and aluminium, and with colloidal SiO.sub.2 having an average particle size of 70.ltoreq.d.ltoreq.130 nm, and to a method of manufacturing the phosphor composition.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: January 11, 2000
    Assignee: U.S. Philips Corporation
    Inventors: Friederike Picht, Michael Bredol, Joachim Opitz, Frans Vollebregt
  • Patent number: 5936339
    Abstract: A color image receiving tube comprising three color (red, green and blue) phosphor screens on an inner surface of a face-plate; wherein at least two of said three color phosphor screens are coated with pigments; and wherein said three color phosphor screens have a total reflective brightness less than 70% that of three color phosphor screens with no pigment coating. According to the above-mentioned constitution, a color image receiving tube having a higher emisson brightness and contrast is achieved as compared to a color image receiving tube having the same reflective brightness, where the reflective brightness is obtained by lowering the light transmittance of its face-plate.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Matsushita Electronics Corporation
    Inventors: Hidekazu Hayama, Toshihide Takahashi, Masao Gotoh, Naoyuki Tani
  • Patent number: 5882779
    Abstract: A class of high efficiency (e.g., .gtoreq.20%) materials for use as display pixels to replace conventional phosphors in television, monitor, and flat panel displays. The materials are comprised of nanocrystals such as CdS.sub.x Se.sub.1-x, CuCl, GaN, CdTe.sub.x S.sub.1-x, ZnTe, ZnSe, ZnS, or porous Si or Ge alloys which may or may not contain a luminescent center. The nanocrystals may be doped with a luminescent center such as Mn.sup.2+ or a transition metal. The nanocrystals have passivated surfaces to provide high quantum efficiency. The nanocrystals have all dimensions comparable to the exciton radius (e.g., a size in the range of approximately 1 nm to approximately 10 nm). A quantum dot nanocrystal display phosphor that has a size selected for shifting an emission wavelength of a constituent semiconductor material from a characteristic wavelength observed in the bulk to a different wavelength.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: March 16, 1999
    Assignee: Spectra Science Corporation
    Inventor: Nabil M. Lawandy
  • Patent number: 5814932
    Abstract: Disclosed is a phosphor suitable for use in a cathode-ray tube, a fluorescent lamp, a radiation intensifying screen, which comprises transparent spherical particles having an average particle size of 0.5 to 20 .mu.m and a ratio of the major diameter to the minor diameter of individual particles in the range of 1.0 to 1.5, and ultrafine particles having a diameter of 0.2 .mu.m less in an amount of 5 wt % or less.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: September 29, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naotoshi Matsuda, Masaaki Tamatani, Keiko Albessard, Miwa Okumura, Takeshi Takahara, Takeo Itou
  • Patent number: 5559564
    Abstract: A cathode ray tube apparatus for a projection TV system which improves the color purity of the luminescence in the cathode ray tube, reduces the chromatic aberration by the projection lens, enables the same type of projection lens to be mounted for all of the green, red and blue CRT apparatuses, and enables manufacturing costs to be slashed by such a common use of components. A light-absorbing agent is incorporated into the panel glass so that the transmittance having the light of wavelengths other than the main wavelength of the spectrum of luminescence of the phosphor of the CRT apparatus, is reduced below the transmittance of the light of the main wavelength. By incorporating this agent into the panel glass of a green CRT apparatus the average value of the transmittance of the light of the wavelength in the range of 500 nm to 560 nm becomes higher than the transmittance of the light of the wavelengths outside this range.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: September 24, 1996
    Assignee: Sony Corporation
    Inventor: Tsuneharu Nomura
  • Patent number: 5258145
    Abstract: A method of producing scintillation phosphor X-ray detector arrays using k materials and repetitive manufacturing techniques. The structures formed by this method may be used to detect x-rays, charged particles and neutral particles by converting the incident radiation into optical radiation. Detectors manufactured by the methods of this invention will produce better x-ray images and reduce the amount of radiation a medical patient or industrial target is subjected to.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: November 2, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Robert S. Nelson
  • Patent number: 5227097
    Abstract: A method for manufacturing a stimulable luminescent storage screen, of the type used to store a latent x-ray image, with the image being read-out by excitation of the screen with radiation of a first wavelength, thereby causing the screen to emit radiation of a second wavelength, includes the step of using a transparent single crystal as the initial material for making the screen, and working the transparent single crystal to form the screen. Working of the transparent single crystal can be in the form of pressing the crystal, heating the crystal, or both.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: July 13, 1993
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gerhard Brandner, Wolfgang Blum, Tanja Wegerer
  • Patent number: 4626739
    Abstract: In a CRT system the luminescent screen includes an ordered array of rows and columns of phosphor elements, illustratively made of single crystal material. Each element is surrounded on all sides (except the light output face) by reflective material. To enhance light extraction efficiency, the output face may be textured. An electron beam is made incident on the output face of selected ones of the elements and scans in two dimensions across the plane of the elements. Also described is an arrangement whereby the electron beam is made incident on the back surface of the elements opposite the output face.
    Type: Grant
    Filed: May 10, 1984
    Date of Patent: December 2, 1986
    Assignee: AT&T Bell Laboratories
    Inventor: Joseph Shmulovich