Synchrotron Patents (Class 315/503)
-
Patent number: 12101869Abstract: Disclosed a particle accelerator that accelerates a charged particle beam while circulating the charged particle beam as a circulating beam and outputs some of the circulating beam as an output beam, the particle accelerator including: a first deflection section and a second deflection sections each having a deflection electromagnet; a first straight section, a second straight section, and third straight section each not having the deflection electromagnet; and a control unit, wherein a preceding output deflector of the first straight section deflects some of the circulating beam toward an inner side of a circulating trajectory of the circulating beam to separate the some of the circulating beam as an output beam, wherein a succeeding output deflector of the third straight section deflects the output beam separated from the circulating beam by the preceding output deflector toward an outer side of the circulating trajectory of the circulating beam, and wherein the control unit controls at least the quadrupoleType: GrantFiled: January 29, 2021Date of Patent: September 24, 2024Assignee: National Institutes for Quantum Science and TechnologyInventors: Kota Mizushima, Toshiyuki Shirai
-
Patent number: 11968772Abstract: An optical characterization system is disclosed. The optical characterization system may comprise a synchrotron source, an optical characterization sub-system, and a sensor configured to receive a projected image from a set of imaging optics. The optical characterization sub-system may include at least the set of illumination optics, a set of imaging optics, and a diffractive optical element, a temporal modulator or an optical waveguide configured to match an etendue of a light beam output by the synchrotron source to the set of illumination optics. A method of matching the etendue of a light beam is also disclosed.Type: GrantFiled: April 29, 2020Date of Patent: April 23, 2024Assignee: KLA CorporationInventors: Zefram Marks, Larissa Juschkin, Daniel C. Wack
-
Patent number: 11648420Abstract: The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.Type: GrantFiled: July 15, 2016Date of Patent: May 16, 2023Inventor: Vladimir Balakin
-
Patent number: 10928157Abstract: An electromagnetic accelerator system may include a barrel defining a bore through which an acceleration path extends. An electromagnetic coil may be positioned around the barrel such that the acceleration path extends through a core of the electromagnetic coil. A first electrical contact may be positioned along the acceleration path approximately within the core of the electromagnetic coil and electrically coupled to the electromagnetic coil. A second electrical contact may position along the acceleration path approximately within the core of the electromagnetic coil and spaced apart from the first electrical contact. The second electrical contact may be electrically coupleable to the first electrical contact to complete a circuit when a projectile to be accelerated is positioned therebetween.Type: GrantFiled: November 18, 2019Date of Patent: February 23, 2021Assignee: Ra Matet, LLC.Inventor: Richard C. Busch, II
-
Patent number: 10403980Abstract: Polarization current antennas comprise a dielectric radiator that extends along a z-axis, polarization devices that are positioned adjacent the dielectric radiator along the z-axis that are configured to polarize respective portions of the dielectric radiator and a feed network that is configured to excite the polarization devices with an RF signal to generate a polarization current wave that propagates in the z-axis direction through the dielectric radiator, with acceleration, at (1) a first variable speed that does not decrease as the wave moves along a first portion of the dielectric radiator and that does not increase as the wave moves along the remainder of the dielectric radiator, (2) a second variable speed that does not decrease as the wave moves along the entirety of the dielectric radiator or (3) a third variable speed that does not increase as the wave moves along the entirety of the dielectric radiator.Type: GrantFiled: March 14, 2017Date of Patent: September 3, 2019Assignee: Oxbridge Pulsar Sources Ltd.Inventors: Arzhang Ardavan, Houshang Ardavan
-
Patent number: 10383206Abstract: A cyclotron for accelerating charged particles includes: a first and second superconducting main coils arranged parallel to one another on either side of a median plane; and at least a first and second field bump modules arranged on either side of the median plane, and extending circumferentially over a common azimuthal angle for creating a local magnetic field bump in the main magnetic field. Each of the field bump modules includes at least one superconducting bump coil locally generating a broad magnetic field bump having a bell-shape defined by a first gradient of the z-component in a radial direction, r. Each of the field bump modules further includes at least one superconducting bump shaping unit positioned such as to locally steepen the first gradient produced by the at least one superconducting bump coil, when said at least one superconducting bump shaping unit is activated.Type: GrantFiled: December 7, 2018Date of Patent: August 13, 2019Assignee: Ion Beam Applications S.A.Inventors: Vincent Nuttens, Jarno Van De Walle
-
Patent number: 10137316Abstract: The invention comprises a charged particle beam, rapid patient positioning system including steps of: positioning a patient relative to a table in a substantially vertical orientation, optionally constraining motion of the patient with one or more constraints, transitioning the table through a semi-vertical orientation, such as with a robot arm, and orientating the patient and table in a substantially horizontal orientation, such as in a position for tumor therapy. Preferably, the robot arm is in common with an arm used to move the patient in traditional proton therapy. Optionally, the robot arm is used to re-orientate the patient into a substantially vertical orientation at the conclusion of a charged particle therapy session.Type: GrantFiled: November 25, 2015Date of Patent: November 27, 2018Inventor: Vladimir Balakin
-
Patent number: 9844124Abstract: At least one method, apparatus and system for providing capturing synchrotron radiation for a metrology tool, are disclosed. A beam using a first light emitting device is provided. The first light emitting device comprises a first electron path bend. A first synchrotron radiation is provided from the first electron path bend to a first metrology tool configured to perform a metrology inspection using the first synchrotron radiation.Type: GrantFiled: March 12, 2015Date of Patent: December 12, 2017Assignee: GLOBALFOUNDRIES INC.Inventors: Erik Robert Hosler, Pawitter J. S. Mangat
-
Patent number: 9649510Abstract: The invention comprises a multi-axis charged particle irradiation method and apparatus. The multi-axis controls includes separate or independent control of one or more of horizontal position, vertical position, energy control, and intensity control of the charged particle irradiation beam. Optionally, the charged particle beam is additionally controlled in terms of timing. Timing is coordinated with patient respiration and/or patient rotational positioning. Combined, the system allows multi-axis and multi-field charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful proximal distal energy about the tumor.Type: GrantFiled: August 4, 2016Date of Patent: May 16, 2017Inventor: Vladimir Balakin
-
Patent number: 9550077Abstract: This disclosure relates to apparatuses and methods for the extraction of particle beams while maintaining the energy levels and precision of the particles and the particle beam. Apparatuses and methods for extracting a charged particle beam from a central orbit in a synchrotron are provided, in which a particle beam is deflected from the central orbit. Parts of the deflected particle beam passes through a stripping foil placed in at least parts of the deflected path such that the particles that pass through the foil are stripped of at least one electron. The electron stripped particles and the non-stripped particles may be separated magnetically.Type: GrantFiled: June 27, 2014Date of Patent: January 24, 2017Assignee: Brookhaven Science Associates, LLCInventor: Nicholaos Tsoupas
-
Patent number: 9237640Abstract: RF device (1) able to generate an RF acceleration voltage in a synchrocyclotron. The device comprises a resonant cavity (2) formed by a grounded conducting enclosure (5) and enveloping a conducting pillar (3) to a first end of which an accelerating electrode (4) is linked. A rotary variable capacitor (10) is mounted in the conducting enclosure at a second end of the pillar, opposite from the first end, comprising at least one fixed electrode (stator) (11) and a rotor (13) exhibiting a rotation shaft (14) supported and guided in rotation by galvanically isolating bearings (20), said rotor (13) comprising one moveable electrode (12) possibly facing the stator (11). When the shaft (14) rotates, the stator and the moveable electrode together form a variable capacitance whose value varies cyclically with time. The rotor (13) is galvanically isolated from the conducting enclosure (5) and from the pillar (3). The stator (11) is connected to the second end of the pillar (3) or to the conducting enclosure (5).Type: GrantFiled: November 13, 2012Date of Patent: January 12, 2016Assignee: Ion Beam ApplicationsInventors: Michel Abs, Jean-Claude Amelia
-
Patent number: 9065244Abstract: A high average power free electron laser (HAPFEL) architecture supporting multiple gain generator configurations with multiple synchronized output beams. The HAPFEL generates straight-line counter-propagating electron beams. Multiple RF electron guns and Superconducting Dual-axis Energy Recovery Linacs (SDERLs) define a fixed physical configuration for generating the counter-propagating electron beams and for recovering electron beam energy. A gain generator may be reconfigured into different configurations without physically reconfiguring the hardware supporting the counter-propagating electron beams.Type: GrantFiled: May 1, 2014Date of Patent: June 23, 2015Assignee: The Boeing CompanyInventor: Mark S. Curtin
-
Patent number: 9041318Abstract: A cyclotron that accelerates an ion using a magnetic field includes a hollow yoke and an ion source that is provided in the yoke and generates an ion. The ion source includes a conductive cylindrical body and a filament disposed in the cylindrical body. A current is supplied from a power supply to the filament, and a direction of the current supplied to the filament is changed.Type: GrantFiled: September 4, 2013Date of Patent: May 26, 2015Assignee: SUMITOMO HEAVY INDUSTRIES, LTD.Inventors: Takuya Miyashita, Kazutomo Matsumura
-
Patent number: 8994297Abstract: A low-voltage, multi-beam radio frequency source that operates at a voltage less than or equal to approximately 20-40 kV and that generates at least 600 kW at a pulse width of approximately 5-30 ms. The RF source includes an electron gun having a cathode configured to generate a plurality of beamlets. An input cavity and output cavity are common to the plurality of beamlets. A plurality of gain cavities are provided between the input and output cavities, each having a plurality of openings corresponding to the plurality of beamlets. The cathode may include 10-20 beamlet cathodes formed in a ring, each being configured to generate a single beamlet and each having beamlet optics independent of each other. A beam collector having a plurality of openings corresponding to each of the beamlets may be provided within the output section, where the openings have no RF coupling to each other.Type: GrantFiled: August 31, 2012Date of Patent: March 31, 2015Assignee: Omega P Inc.Inventor: Vladimir Teryaev
-
Publication number: 20150084549Abstract: The present disclosure discloses a method for controlling a standing wave accelerator and a system thereof. The method comprises: generating, by an electron gun, an electron beam; injecting the electron beam into an accelerating tube; and controlling a microwave power source to generate and input microwave with different frequencies into the accelerating tube, so that the accelerating tube switches between different resonant modes at a predetermined frequency to generate electron beams with corresponding energy. According to the above solution, it only needs to change the output frequency of the microwave power source in the process of adjusting energy, without making any change to the accelerating structure per se. Therefore, the method is easy to operate. In addition, the structure of the accelerating tube in the above system is simple, without adding a particular regulation apparatus.Type: ApplicationFiled: September 16, 2014Publication date: March 26, 2015Inventors: Huaibi CHEN, Jianping CHENG, Shuxin ZHENG, Jiaru SHI, Chuanxiang TANG, Qingxiu JIN, Wenhui HUANG, Yuzheng LIN, Dechun TONG, Shi WANG
-
Publication number: 20150073199Abstract: A hard disk drive memory which stores pattern data of a high-frequency to be applied for each combination of energy and intensity of the generated particle beam and a local memory, which reads a plurality of pattern data of a high-frequency for each patient together with a sequential order of changing energy and intensity from the hard disk drive memory and stores data in order to perform a scanning irradiation method in which a layered particle beam irradiation region in a depth direction of an affected part of the patient is formed sequentially by changing energy and intensity of the particle beam sequentially to irradiate an affected part of a patient which is an irradiation subject with the particle beam, and which reads out data faster than the hard disk drive memory are provided.Type: ApplicationFiled: July 24, 2012Publication date: March 12, 2015Applicant: MITSUBISHI ELECTRIC CORPORTIONInventor: Hidenobu Takase
-
Patent number: 8975836Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.Type: GrantFiled: March 14, 2013Date of Patent: March 10, 2015Assignee: Massachusetts Institute of TechnologyInventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
-
Patent number: 8970138Abstract: A control data about the devices constituting the synchrotron are formed by an initial acceleration control data item, a plural extraction control data items, a plural energy change control data items connecting the plural extraction control data items, and a plural deceleration control data items corresponding to the plural extraction control data items. An affected part position detection unit and an extraction permission determination unit are provided to determine whether the position of a marker shown in transparent image information is included within a beam irradiation permission range. If the marker position is found included, the extraction permission determination unit outputs to an interlock system an extraction permission determination signal permitting beam extraction.Type: GrantFiled: July 17, 2014Date of Patent: March 3, 2015Assignee: Hitachi, Ltd.Inventors: Hideaki Nishiuchi, Koji Tobinaga, Kunio Moriyama, Takuya Nomura
-
Patent number: 8970137Abstract: A synchrocyclotron includes magnetic structures to provide a magnetic field to a cavity, a particle source to provide a plasma column to the cavity, where the particle source has a housing to hold the plasma column, and where the housing is interrupted at an acceleration region to expose the plasma column, and a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column at the acceleration region.Type: GrantFiled: November 8, 2013Date of Patent: March 3, 2015Assignee: Mevion Medical Systems, Inc.Inventors: Kenneth P. Gall, Gerrit Townsend Zwart
-
Patent number: 8963112Abstract: The invention comprises a patient positioning and/or repositioning system, such as a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle radiation therapy. Patient positioning constraints optionally include one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are preferably movable and/or under computer control for rapid positioning, repositioning, and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the charged particle beam path to accurately and precisely target the tumor, and/or in system verification and validation.Type: GrantFiled: October 7, 2013Date of Patent: February 24, 2015Inventor: Vladimir Balakin
-
Patent number: 8952634Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: October 22, 2009Date of Patent: February 10, 2015Assignee: Mevion Medical Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 8941336Abstract: A compact synchrotron radiation source includes an electron beam generator, an electron storage ring, one or more wiggler insertion devices disposed along one or more straight sections of the electron storage ring, the one or more wiggler insertion devices including a set of magnetic poles configured to generate a periodic alternating magnetic field suitable for producing synchrotron radiation emitted along the direction of travel of the electrons of the storage ring, wherein the one or more wiggler insertion devices are arranged to provide light to a set of illumination optics of a wafer optical characterization system or a mask optical characterization system, wherein the etendue of a light beam emitted by the one or more wiggler insertion devices is matched to the illumination optics of the at least one of a wafer optical characterization system and the mask optical characterization system.Type: GrantFiled: June 9, 2014Date of Patent: January 27, 2015Assignee: KLA-Tencor CorporationInventors: Yanwei Liu, Daniel C. Wack
-
Patent number: 8933651Abstract: The invention comprises a flattened magnet coil system that reduces space between a first magnet turning section and a second magnet turning section in a synchrotron accelerator, which reduces or eliminates need for one or more quadrupole focusing elements in the accelerator. Optionally, a coil, in the flattened magnetic coil system, is wrapped about a central metal member between yoke members of a magnet. The coil has a first width and a first thickness along the length of the magnet and a second width and a second thickness along the end of the magnet where the first width is larger than the second width and the second thickness is larger than the first thickness allowing a smaller distance between the first magnet turning section and the second magnet turning section while maintaining current flow in the coil.Type: GrantFiled: November 16, 2012Date of Patent: January 13, 2015Inventors: Vladimir Balakin, Yury Valyaev
-
Patent number: 8928014Abstract: In accordance with certain embodiments, an electric device includes a flexible substrate having first and second conductive traces on a first surface thereof and separated by a gap therebetween, an electronic component spanning the gap, and a stiffener configured to substantially prevent flexing of the substrate proximate the gap during flexing of the substrate.Type: GrantFiled: August 12, 2013Date of Patent: January 6, 2015Assignee: Cooledge Lighting Inc.Inventors: Michael A. Tischler, Paul Palfreyman, Philippe M. Schick
-
Patent number: 8916843Abstract: A system includes a patient support and an outer gantry on which an accelerator is mounted to enable the accelerator to move through a range of positions around a patient on the patient support. The accelerator is configured to produce a proton or ion beam having an energy level sufficient to reach a target in the patient. An inner gantry includes an aperture for directing the proton or ion beam towards the target.Type: GrantFiled: June 25, 2012Date of Patent: December 23, 2014Assignee: Mevion Medical Systems, Inc.Inventors: Kenneth Gall, Stanley Rosenthal, Gordon Row, Michael Ahearn
-
Patent number: 8907309Abstract: The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.Type: GrantFiled: March 7, 2013Date of Patent: December 9, 2014Inventor: Stephen L. Spotts
-
Patent number: 8907311Abstract: A system includes a patient support and an outer gantry on which an accelerator is mounted to enable the accelerator to move through a range of positions around a patient on the patient support. The accelerator is configured to produce a proton or ion beam having an energy level sufficient to reach a target in the patient. An inner gantry includes a robotic arm capable of directing an aperture for directing the proton or ion beam towards the target.Type: GrantFiled: November 22, 2011Date of Patent: December 9, 2014Assignee: Mevion Medical Systems, Inc.Inventors: Kenneth Gall, Stanley Rosenthal, Gordon Row, Michael Ahearn
-
Patent number: 8896239Abstract: The invention comprises a charged particle beam injection method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes a negative ion beam source, vacuum system, an ion beam focusing lens, and/or a tandem accelerator. The negative ion beam source uses electric field lines for focusing a negative ion beam. The negative ion source plasma chamber includes a magnetic material, which provides a magnetic field barrier between a high temperature plasma chamber and a low temperature plasma region. The injection system vacuum system and a synchrotron vacuum system are separated by a conversion foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system.Type: GrantFiled: May 21, 2009Date of Patent: November 25, 2014Inventor: Vladimir Yegorovich Balakin
-
Patent number: 8884256Abstract: A septum magnet includes a yoke that can be separated at the approximately center portion thereof in the axis direction; a septum coil; a return coil; and a vacuum duct that is inserted between the septum coil and the return coil. The septum coil is formed in such a way as to be able to be separated into a first portion and a second portion in response to separation of the yoke; and in a space between the septum coil and the vacuum duct, there is provided an auxiliary coil, in two portions of which, corresponding to the first portion and the second portion of the septum coil, electric currents flow in opposite direction to each other in a circumferential direction.Type: GrantFiled: February 13, 2012Date of Patent: November 11, 2014Assignee: Mitsubishi Electric CorporationInventors: Kengo Sugahara, Katsuhisa Yoshida, Toshihiro Otani, Shinichi Masuno, Fumihiko Kashima
-
Patent number: 8872446Abstract: A welding method of welding a cylindrical stiffening member to an outer circumference of a superconducting accelerator tube body uses a laser beam in a process of manufacturing a superconducting accelerator tube. The laser beam is configured such that a distribution profile of energy density on an irradiated face to which the laser beam is irradiated is a Gaussian distribution profile having a peak section, and the energy density of the peak section is 5.8Ă—105 W/cm2 or more.Type: GrantFiled: February 10, 2011Date of Patent: October 28, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Shuho Tsubota, Katsuya Sennyu, Fumiaki Inoue
-
Patent number: 8841866Abstract: The invention comprises a charged particle beam extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency cavity system to induce betatron oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.Type: GrantFiled: May 21, 2009Date of Patent: September 23, 2014Inventor: Vladimir Yegorovich Balakin
-
Publication number: 20140252994Abstract: A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arc section and a straight section in the racetrack shape.Type: ApplicationFiled: May 23, 2014Publication date: September 11, 2014Inventor: Dejan Trbojevic
-
Patent number: 8823291Abstract: The present invention relates to a dual-frequency resonant cavity (6) for cyclotron which includes a dee (10), a pillar (20), and a conducting enclosure (40) surrounding the pillar and the dee, an end of the pillar being connected to the base of the conducting enclosure and an opposite end of the pillar (20) supporting the dee (10). The conducting enclosure and the pillar form a transmission line comprising at least three portions (20a, 20b, 20c), each portion having a characteristic impedance (Zc1, Zc2, Zc3). The characteristic impedance Zc2 of the intermediate portion (20b) is substantially lower than the characteristic impedances Zc1 et Zc3 of the two other portions (20a, 20b), which makes it possible to have the cavity resonate according to two modes in order to produce two distinct frequencies, without having to make use of moving components such as for example sliding short-circuits or mobile plates.Type: GrantFiled: June 28, 2011Date of Patent: September 2, 2014Assignee: Ion Beam Applications, S.A.Inventor: Michel Abs
-
Patent number: 8791656Abstract: An example particle accelerator includes a magnet to generate a magnetic field, where the magnet includes first superconducting coils to pass current in a first direction to thereby generate the first magnetic field, and where the first magnetic field is at least 4 Tesla (T). The example particle accelerator also includes an active return system including second superconducting coils. Each of the second superconducting coils surrounds, and is concentric with, a corresponding first superconducting coil. The second superconducting coils are for passing current in a second direction that is opposite to the first direction to thereby generate a second magnetic field having a magnetic field of at least 2.5 T. The second magnetic field has a polarity that is opposite to a polarity of the first magnetic field.Type: GrantFiled: May 31, 2013Date of Patent: July 29, 2014Assignee: Mevion Medical Systems, Inc.Inventors: Gerrit Townsend Zwart, James Cooley
-
Patent number: 8771480Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.Type: GrantFiled: June 20, 2013Date of Patent: July 8, 2014Assignee: Xyleco, Inc.Inventor: Marshall Medoff
-
Patent number: 8760086Abstract: An accelerator for accelerating two beams of charged particles and for producing a collision of the beams includes: an apparatus for producing an electrostatic potential field such that the two beams are acceleratable or deceleratable by the electrostatic field, a reaction zone for collision of the charged particles; first and second acceleration distances for the first and second beams, each acceleration distance directed towards the reaction zone, wherein the reaction zone is arranged geometrically with respect to the potential field and to the acceleration distances such that the particles of the beams are acceleratable towards the reaction zone along the first and second acceleration distances and, after interaction in the reaction zone and passage through the reaction zone, are deceleratable in the potential field, such that energy used by the potential field apparatus for accelerating the beams towards the reaction zone can be at least partially recovered by the deceleration.Type: GrantFiled: April 5, 2011Date of Patent: June 24, 2014Assignee: Siemens AktiengesellschaftInventor: Oliver Heid
-
Patent number: 8754596Abstract: A DC high voltage source may include a capacitor stack having a first electrode that can be brought to a first potential, a second electrode arranged concentrically with the first electrode and which can be brought to a second potential different from the first potential, at least one intermediate electrode arranged concentrically between the first and second electrodes and which can be brought to an intermediate potential between the first and second potentials, a switching device for charging the capacitor stack, to which switching device the electrodes of the capacitor stack are connected and which is configured such that upon operation of the switching device the electrodes of the capacitor stack arranged concentrically with respect to each other can be brought to increasing potential levels, wherein the switching device comprises electron tubes, e.g., controllable electron tubes. A particle accelerator comprising such a DC high voltage source is also provided.Type: GrantFiled: February 2, 2011Date of Patent: June 17, 2014Assignee: Siemens AktiengesellschaftInventor: Oliver Heid
-
Patent number: 8747624Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.Type: GrantFiled: June 20, 2013Date of Patent: June 10, 2014Assignee: Xyleco, Inc.Inventor: Marshall Medoff
-
Patent number: 8749179Abstract: A compact synchrotron radiation source includes an electron beam generator, an electron storage ring, one or more wiggler insertion devices disposed along one or more straight sections of the electron storage ring, the one or more wiggler insertion devices including a set of magnetic poles configured to generate a periodic alternating magnetic field suitable for producing synchrotron radiation emitted along the direction of travel of the electrons of the storage ring, wherein the one or more wiggler insertion devices are arranged to provide light to a set of illumination optics of a wafer optical characterization system or a mask optical characterization system, wherein the etendue of a light beam emitted by the one or more wiggler insertion devices is matched to the illumination optics of the at least one of a wafer optical characterization system and the mask optical characterization system.Type: GrantFiled: August 12, 2013Date of Patent: June 10, 2014Assignee: KLA-Tencor CorporationInventors: Yanwei Liu, Daniel C. Wack
-
Publication number: 20140152199Abstract: To reduce the number of steps of generating control pattern data needed for achieving beam irradiation with desired energy in the beam extraction from a synchrotron accelerator, a data generator 41 divides adjusted control pattern data, defines the divided data intervals as data modules, and reuses each of the data modules to generate new control pattern data. For extraction energy level changes, which are characteristic of multi-energy extraction, energy change control pattern data is generated based on the extraction pattern data before an energy level change and the extraction pattern data after the energy level change by using an interpolation function thereby to allow the control pattern data to be automatically generated. Effects of residual magnetic fields are calculated in advance, and then adjustment values that allow for the effects of the residual magnetic fields are incorporated into the control pattern data and operation is controlled.Type: ApplicationFiled: November 26, 2013Publication date: June 5, 2014Applicant: Hitachi, Ltd.Inventors: Haruki ARITA, Moemi TAKEDA
-
Publication number: 20140139147Abstract: The invention comprises a flattened magnet coil system that reduces space between a first magnet turning section and a second magnet turning section in a synchrotron accelerator, which reduces or eliminates need for one or more quadrupole focusing elements in the accelerator. Optionally, a coil, in the flattened magnetic coil system, is wrapped about a central metal member between yoke members of a magnet. The coil has a first width and a first thickness along the length of the magnet and a second width and a second thickness along the end of the magnet where the first width is larger than the second width and the second thickness is larger than the first thickness allowing a smaller distance between the first magnet turning section and the second magnet turning section while maintaining current flow in the coil.Type: ApplicationFiled: November 16, 2012Publication date: May 22, 2014Inventors: Vladimir Balakin, Yury Valyaev
-
Patent number: 8723451Abstract: An accelerator for charged particle may include: a capacitor stack which includes a first electrode that can be brought to a first potential, a second electrode that is concentric to the first electrode and can be brought to a second potential differing from the first potential, and at least one intermediate electrode that is concentrically arranged between the first electrode and the second electrode and can be brought to an intermediate potential lying between the first potential and the second potential; a switching device to which the electrodes of the capacitor stack are connected and which is designed such that the concentric electrodes of the capacitor stack can be brought to increasing potential stages during operation of the switching device; a first and a second acceleration channel formed by first and second openings in the electrodes of the capacitor stack such that charged particles can be accelerated along the first and second acceleration channel by means of the electrodes; and a device which cType: GrantFiled: February 2, 2011Date of Patent: May 13, 2014Assignee: Siemens AktiengesellschaftInventor: Oliver Heid
-
Patent number: 8716958Abstract: A microwave device for accelerating electrons includes an electron gun providing an electron beam along an axis in a microwave structure for accelerating the electrons of the beam, an input for the electron beam, an output for accelerated electrons, and a series of coupled cavities along said axis, of central resonant frequency, an input for a microwave signal for excitation of the microwave structure by one of the cavities, a radiofrequency generator providing the excitation microwave signal to the acceleration microwave structure, and a central unit controlling the variation of energy of the electrons at the output of the microwave structure. The radiofrequency generator comprises a frequency control input for changing the frequency of the excitation microwave signal around the central resonant frequency, the change producing a variation of the energy of the accelerated electrons of the beam at the output of the microwave structure.Type: GrantFiled: August 19, 2010Date of Patent: May 6, 2014Assignee: ThalesInventor: Serge Sierra
-
Patent number: 8704464Abstract: A charged particle orbit control device (100) is used in a ring-shaped charged particle accelerator or a charged particle storage ring. The charged particle orbit control device (100) is configured to enable the orbit of a charged particle to return to the original orbit in multiple cycles. The charged particle orbit control device (100) includes multiple bending magnets (1) that bend the charged particle (3). In the charged particle orbit control device (100), the bending angle and relative position of each bending magnet (1) are prescribed such that every time the charged particle (3) passes through, the orbit of the charged particle (3) in each bending magnet (1) alternately switches between two orbits.Type: GrantFiled: December 19, 2011Date of Patent: April 22, 2014Assignee: Hiroshima UniversityInventors: Shigemi Sasaki, Atsushi Miyamoto
-
Publication number: 20140094641Abstract: An example particle accelerator includes the following: a resonant cavity in which particles are accelerated, where the resonant cavity has a background magnetic field having a first shape; and an extraction channel for receiving particles output from the resonant cavity. The extraction channel comprises a series of focusing regions to focus a beam of received particles. At least one of the focusing regions is a focusing element configured to alter a shape of the background magnetic field to a second shape that is substantially opposite to the first shape in the presence of a magnetic field gradient resulting from reduction of the background magnetic field from the resonant cavity to the extraction channel.Type: ApplicationFiled: September 27, 2013Publication date: April 3, 2014Applicant: Mevion Medical Systems, Inc.Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
-
Patent number: 8680792Abstract: An accelerator assembly includes a first chip and a second chip. An acceleration channel is formed into a surface of a first side of the first chip. The first side of the first chip is covalently bonded to a first side of the second chip such that the channel is a tubular void between the first and second chips. The channel has a tubular inside sidewall surface, substantially no portion of which is a metal surface. The channel has length-to-width ratio greater than five, and a channel width less than one micron. There are many substantially identical channels that extend in parallel between the first and second chips. In one specific example, the assembly is part of a Direct Write On Wafer (DWOW) printing system. The DWOW printing system is useful in semiconductor processing in that it can direct write an image onto a 300 mm diameter wafer in one minute.Type: GrantFiled: August 7, 2013Date of Patent: March 25, 2014Assignee: Transmute, Inc.Inventors: Kim L. Hailey, Robert O. Conn
-
Publication number: 20140055058Abstract: An accelerator system includes a plurality of cells. Each cell includes a focus magnet and a defocus magnet each configured to create a magnetic field so as to confine and accelerate a particle beam, the focus magnet being configured to focus the particle beam in a horizontal direction and defocus the particle beam in a vertical direction, and the defocus magnet being configured to focus the particle beam in a vertical direction and defocus the particle beam in a horizontal direction. Each of the plurality of cells is configured to confine the particle beam in an isochronous orbit during acceleration. The accelerator system is a non-scaling fixed field alternating gradient particle accelerator (FFAG).Type: ApplicationFiled: August 24, 2012Publication date: February 27, 2014Applicant: PARTICLE ACCELERATOR CORPORATIONInventor: Carol Johnstone
-
Publication number: 20140048707Abstract: A compact synchrotron radiation source includes an electron beam generator, an electron storage ring, one or more wiggler insertion devices disposed along one or more straight sections of the electron storage ring, the one or more wiggler insertion devices including a set of magnetic poles configured to generate a periodic alternating magnetic field suitable for producing synchrotron radiation emitted along the direction of travel of the electrons of the storage ring, wherein the one or more wiggler insertion devices are arranged to provide light to a set of illumination optics of a wafer optical characterization system or a mask optical characterization system, wherein the etendue of a light beam emitted by the one or more wiggler insertion devices is matched to the illumination optics of the at least one of a wafer optical characterization system and the mask optical characterization system.Type: ApplicationFiled: August 12, 2013Publication date: February 20, 2014Applicant: KLA-Tencor CorporationInventors: Yanwei Liu, Daniel C. Wack
-
Patent number: 8643314Abstract: A particle accelerator that is a synchrocyclotron accelerating charged particles and which includes an acceleration electrode that accelerates the charged particles; a high frequency power source that supplies the electric power to the acceleration electrode; a control unit that adjusts the frequency of the electric power supplied from the high frequency power source based on energy of the charged particle which is accelerated; and a matching circuit that has a coil and a capacitor, and performing impedance matching between the acceleration electrode and the high frequency power source, wherein the matching circuit has an inductance adjustment unit electrically adjusting the inductance of the coil.Type: GrantFiled: May 9, 2012Date of Patent: February 4, 2014Assignee: Sumitomo Heavy Industries, Ltd.Inventor: Yutaka Touchi
-
Patent number: 8629633Abstract: A DC high voltage source may include: (a) a capacitor stack having a first electrode which can be brought to a first potential, a second electrode concentric with the first electrode and which can be brought to a second potential different from the first potential, and a plurality of intermediate electrodes concentric with respect to each other and concentrically between the first and second electrodes and which can be brought to a sequence of increasing potential levels between the first and second potentials, and (b) a switching device to which the electrodes of the capacitor stack are connected and which is configured such that, during operation of the switching device, the electrodes of the capacitor stack can be brought to the increasing potential levels, wherein the distance of the electrodes of the capacitor stack decreases toward the central electrode. An accelerator comprising such a DC high voltage source is also provided.Type: GrantFiled: February 2, 2011Date of Patent: January 14, 2014Assignee: Siemens AktiengesellschaftInventors: Oliver Heid, Timothy Hughes