Terminal Voltage Or Counter E.m.f. Of Motor Patents (Class 318/145)
  • Patent number: 11671038
    Abstract: A method and controller for controlling a Wound Field Synchronous Machine (WFSM) of an electric power generation system (EPGS) having a field winding and a stator armature winding is provided. The controller includes an adjustable component coupled to the generator and a power factor controller for adjusting the adjustable component to lower the power factor of the WFSM as a function of power output to a load of the EPGS to stabilize a current in the field winding.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: June 6, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Michael C. Harke, John F. Defenbaugh
  • Patent number: 10608470
    Abstract: An inductive power transfer receiver is provided including a receiving coil (13) in series with a capacitor (14), a voltage multiplier (15) for providing a DC output, and a power control switch (18) controlled by a controller (19) for regulating the power supplied to a load. An inductive power transfer receiver is provided including a receiving coil in series with a capacitor, a charge pump for providing a DC output, and a power control switch controlled by a controller for regulating the power supplied to a load. A method of power flow control in an inductive power transfer circuit having a power control switch is also provided. The method includes detecting two operational transitions in the circuit and determining a reference timing bases on which operational transition is detected earliest within a detection window. The reference timing is used to developing a signal for controlling the power control switch.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 31, 2020
    Assignee: Apple Inc.
    Inventors: Saining Ren, Lawrence Bernardo Dela Cruz, Daniel Robertson
  • Patent number: 10432102
    Abstract: Disclosed examples include isolated dual active bridge (DAB) DC to DC converters with first and second bridge circuits, a transformer with a sense coil, and a secondary side control circuit to provide secondary side switching control signals to regulate an output voltage or current signal by controlling a phase shift angle between switching transitions of the secondary side switching control signals and switching transitions of a secondary side clock signal, where the secondary side control circuit includes a clock recovery circuit to synchronize the secondary side clock signal to transitions in a sense coil voltage signal of the sense coil.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: October 1, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pierluigi Albertini, Maurizio Granato, Giacomo Calabrese, Roberto Giampiero Massolini, Joyce Marie Mullenix, Giovanni Frattini
  • Patent number: 10291138
    Abstract: Disclosed examples include isolated dual active bridge (DAB) DC to DC converters with first and second bridge circuits, a transformer with a sense coil, and a secondary side control circuit to provide secondary side switching control signals to regulate an output voltage or current signal by controlling a phase shift angle between switching transitions of the secondary side switching control signals and switching transitions of a secondary side clock signal, where the secondary side control circuit includes a clock recovery circuit to synchronize the secondary side clock signal to transitions in a sense coil voltage signal of the sense coil.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: May 14, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pierluigi Albertini, Maurizio Granato, Giacomo Calabrese, Roberto Giampiero Massolini, Joyce Marie Mullenix, Giovanni Frattini
  • Patent number: 9385585
    Abstract: In a method based on the MPDTC algorithm for controlling an inverter of an electrical system, the harmonics and resonances in the inverter can be damped by extracting frequency information from predicted data of the MPDTC algorithm and by damping harmonic distortion of the electrical system by reintroducing the extracted frequency information into a control loop of the inverter.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: July 5, 2016
    Assignee: ABB Research Ltd.
    Inventors: Tobias Geyer, Georgios Papafotiou, Silvia Mastellone
  • Patent number: 8928260
    Abstract: A traction motor system calculates motor flux by generating a real time effective resistance of a resistance grid calculated from motor torque and measured voltage on a DC link. Calculating effective resistance avoids solely relying on DC link voltage, which can be influenced by conditions such as wheel slip and drop out of one or more resistance grids. The effective resistance calculation is based on nominal motor values using known power levels and conditions. From these nominal values and the effective resistance, various scaling factors based on actual motor power can be generated and used to adjust a nominal flux reference to more accurately reflect actual motor flux. The scaling factors include power and torque scaling factors and a resistance scaling factor that is active during conditions such as wheel slip.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Caterpillar Inc.
    Inventors: Alexander Cameron Crosman, III, Joshua M. Williams
  • Patent number: 8618758
    Abstract: The invention relates to an electric device (1) comprising an alternating current electric motor (3) and a control inverter (5) for controlling the phase or phases of the motor (3). The motor (3) comprises, on at least one winding of at least one phase (PA, PB, PC), a point (Ma, Mb, Mc) for measuring a voltage relative to a predefined potential (M), the measurement point (Ma, Mb, Mc) being chosen so that it divides the winding into a first (Za1; Zb1; Zc1) and a second (Za2; Zb2; Zc2) portion such that the electromotive forces (ea1, ea2) induced in the two portions are phase-shifted relative to one another and means (11A; 11B; 11C) for measuring the voltage between the measurement point and the predefined potential. The invention also relates to an associated method for measuring electromotive forces.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 31, 2013
    Assignee: Valeo Systemes de Controle Moteur
    Inventors: Boris Bouchez, Luis de Sousa
  • Patent number: 8525453
    Abstract: A damper system for a vehicle including an electromagnetic damper, wherein the electromagnetic damper includes: (i) an electromagnetic motor; (ii) a motion converting mechanism; and (iii) an external circuit including (A) a first connection passage, (B) a second connection passage, (C) a first-connection-passage-current adjuster, and (D) a second-connection-passage-current adjuster, wherein the damper system comprises an external-circuit controller including: (a) a main-adjuster control portion configured to perform, on one of the first-connection-passage-current adjuster and the second-connection-passage-current adjuster that is designated as a main adjuster, a first control for mainly damping the relative vibration of the sprung portion and the unsprung portion; and (b) an auxiliary-adjuster control portion configured to perform, on one of the first-connection-passage-current adjuster and the second-connection-passage-current adjuster that is designated as an auxiliary adjuster, a second control for assisti
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: September 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Atsushi Ogawa
  • Patent number: 7723933
    Abstract: A vehicular generator-motor control apparatus wherein a winding field type salient-pole generator-motor 1 (in FIG. 1) for a vehicle is subjected to a conduction control by a DC-AC converter 2, characterized in that a stator 1A of the vehicular winding field type salient-pole generator-motor 1 is energized by rectangular wave voltages at those conduction start angles ? of respective phases of the stator 1A which are shifted a predetermined angle relative to a rotor position, and that the conduction start angles ? of the respective phases change substantially continuously in accordance with an input voltage of the DC-AC converter 2 and a revolution speed of the generator-motor 2.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: May 25, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masahiko Fujita, Yoshihito Asao
  • Patent number: 7629776
    Abstract: A control and power module for a rotating electrical machine comprising a power circuit containing a number of branches, and a control circuit designed for controlling the power circuit when the machine operates in a nominal mode. The inventive module is characterized in that the control circuit is also designed for monitoring an output voltage from the power circuit and blocking at least one branch of the power circuit in a conduction state when the output voltage reaches an at least first threshold value so that the machine functions in a degraded mode. The invention is for use in an alternator starter.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: December 8, 2009
    Assignee: Valeo Equipments Electriques Moteur
    Inventors: Michael Chemin, Francois-Xavier Bernard, Frederic Leroux
  • Patent number: 7492113
    Abstract: There is provided a brushless motor drive control circuit capable of assuring an S/N ratio of a predetermined counter electromotive voltage and suppressing lowering of efficiency of a brushless motor at a high-speed rotation.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: February 17, 2009
    Assignee: Rohm Co., Ltd.
    Inventor: Norihiro Maeda
  • Patent number: 7129669
    Abstract: A motor controller comprising, a detector configured to perform a difference processing for information relating to a counter electromotive force and an induced electromotive force generated by a stepping motor, and to generate a driving control signal based on a result of the difference processing, and a driver configured to drive the stepping motor based on the driving control signal.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: October 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yutaka Mamyoda
  • Patent number: 6559611
    Abstract: At a starting of a motor which receives an electric power from a generator driven by an engine, an excitation current controller controls an excitation current so as to cause an output frequency of a generator to approach a predetermined frequency which is lower than a rated frequency when an output voltage detected by an output voltage detector is reduced to lower than a first predetermined voltage. Thereafter, the excitation current controller controls the excitation current so as to cause the output voltage of the generator to be the rated voltage when the output voltage detector detects a second predetermined voltage which is higher than the first predetermined voltage. In this way, the load capacity which enables the starting by the engine-driven generator without directly controlling the engine is improved.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 6, 2003
    Assignee: Satake Corporation
    Inventors: Satoru Satake, Yukio Hosaka, Hideharu Maruyama, Yuuji Matsumoto, Kiyonori Nakaoka
  • Patent number: 6433496
    Abstract: A motor controlling semiconductor integrated circuit for controlling a motor by a PLL control is provided comprising output transistors for driving a motor, a position detecting means detecting a rotational position of a rotor in said motor, for generating a position detection signal, a phase comparing means comparing said position detection signal with a reference clock, for generating a phase difference detection signal, and means receiving said phase difference detection signal, for controlling an on-duty of said output transistors on the basis of a duty of said phase difference detection signal.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: August 13, 2002
    Assignee: NEC Corporation
    Inventor: Hirokazu Kawagoshi
  • Patent number: 6429614
    Abstract: A device and method for driving a polyphase DC motor, in which a phase selector circuit, in each case, selects only one phase, which is fed to a commutation detection circuit. After each commutation detected by a commutation detection circuit, as a result of a pulse of constant duration generated by a monoflop, the phase discriminator circuit and, as a consequence, the commutation logic are advanced in a fixed and preestablished sequence. This occurs irrespective of the rotation direction of the motor using the sequential logic device embodied by the commutation logic. When the motor rotates in the preferred direction, constant current-flow angles of 120° are achieved for each phase. When the motor rotates in the reverse direction, markedly varying current-flow angles of the individual phases are generated, and these varying current-flow angles, as a function of the course of the specifically corresponding voltages induced in the individual phases, result in a counter-torque.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: August 6, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Krauth, Wolfgang Schwenk
  • Patent number: 6081084
    Abstract: An alternator having a sensorless power angle control includes a three phase stator winding and three stator winding outputs connected to a controlled full wave rectifier bridge with a dc output. The controlled full wave rectifier bridge includes upper MOSFET switches and lower MOSFET switches with body diodes. Operation of the alternator results in a three phase back EMF generated in the stator windings and phase voltages across each of the stator windings. The output of the alternator is increased by introducing a phase shift between the back EMF and the phase voltages, resulting in an optimized power angle. In order to provide a reference for the phase of the back EMF, a zero crossing detector is provided which monitors the zero voltage crossings across the body diodes of the lower MOSFET switches. The negative to positive zero voltage crossings across the body diodes of the lower MOSFET devices correspond to the negative to positive zero crossings of the three phase back EMF.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: June 27, 2000
    Assignee: Delco Remy America, Inc.
    Inventor: David R. Crecelius
  • Patent number: 6051951
    Abstract: An alternator for an engine normally operated as a generator is caused to operate as a synchronous motor according to the operating condition of the engine. If power generation by the alternator 1 is no longer necessary because a battery 9 is fully charged, or when the engine enters an acceleration condition, a switching controller 5 switches stator coils 12 for the alternator 1 from an output controller 7 to a rotating magnetic field generator 8. The rotating magnetic field generator 8 causes a stator 1S to generate a rotating magnetic field that rotates with a same rotation speed of a rotor 1R, so that the alternator 1 operates as a synchronous motor to generate such a torque 50 as to assist the torque or rotation of the engine.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: April 18, 2000
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hideaki Arai, Kazuyuki Kubo, Takuya Fujita
  • Patent number: 6034492
    Abstract: A D.C. motor-generator and an electric double layer capacitor are fixedly connected directly to each other and a rotary shaft of the motor-generator is rotated in one direction by an external force to generate D.C. electric energy which is stored in the electric double layer capacitor. By supplying the electric energy from the electric double layer capacitor to the D.C. motor-generator, the stored electric energy can be discharged as mechanical rotation energy. By deriving the stored energy as electric energy, an emergency power source can be provided.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: March 7, 2000
    Assignee: NEC Corporation
    Inventors: Takashi Saito, Yukari Kibi
  • Patent number: 6023135
    Abstract: A turbogenerator/motor control system having a plurality of proportional integral control loops including a fuel command control loop and a current command control loop. The exhaust gas temperature of the gas turbine of the turbogenerator/motor is maintained at a constant value with stability is achieved by varying the sampling times of the different proportional integral controls within the control loops.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 8, 2000
    Assignee: Capstone Turbine Corporation
    Inventors: Mark G. Gilbreth, James Brian Dickey, Charles R. Gilbreth, Jr., Edward C. Edelman
  • Patent number: 5998944
    Abstract: An apparatus and method for controlling a lifting magnet (12) of a materials handling machine (10) to eliminate arcing between contacts (70-80) within the magnet controller (26) as is well as is large voltage spikes. The controller (26) selectively excites the shunt field windings (66,68) of a direct current generator (22). The magnitude and direction of the current passing through the shunt field windings (66,68) is varied by the magnet controller (26) to control the magnitude and polarity of the voltage at the generator output (23). The armature (60) of the generator (22) is rotatably driven by a hydraulic motor at an essentially constant speed to minimize voltage variations at the output (23) of the generator (22). At least the drop cycle is controlled through use of a current transducer (200) that senses current flowing to the lifting magnet so that the electronic controller is able to control the flow of current to the lifting magnet based upon the sensed current in the magnet circuit.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: December 7, 1999
    Assignee: Caterpillar Inc.
    Inventors: Ronald W. Clutter, Kenneth J. Chlad, Timothy L. Cooper, Charles A. Robinson
  • Patent number: 5977730
    Abstract: A hydraulic circuit (124) is defined in a manifold (130) which may be aluminum, steel, or any other suitable material. The circuit (124) regulates the flow of hydraulic fluid to the hydraulic motor (120) and thus ensures that the motor rotates at an essentially constant speed, independent of the speed of the hydraulic pump (122) supplying the circuit. The circuit includes a pressure compensated flow control valve assembly (140) with an adjustable flow control valve (142) that regulates the flow of hydraulic fluid to the motor (120). The assembly (140) also includes a balanced piston-type pressure compensator (144) that ensures a select pressure differential across the flow control valve (142) such that the flow through the valve (142) remains at least essentially constant. This constant flow through the pressure compensated flow control valve assembly (140) ensures an essentially constant rotational speed of the motor (120).
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: November 2, 1999
    Assignee: Caterpillar Inc.
    Inventors: Ronald W. Clutter, Kenneth J. Chlad, Timothy L. Cooper, Charles A. Robinson
  • Patent number: 5959416
    Abstract: An apparatus and method for controlling a lifting magnet (12) of a materials handling machine (10) to eliminate arcing between contacts (70-80) within the magnet controller (26) as well as large voltage spikes. The controller (26) selectively excites the shunt field windings (66,68) of a direct current generator (22). The magnitude and direction of the current passing through the shunt field windings (66,68) is varied by the magnet controller (26) to control the magnitude and polarity of the voltage at the generator output (23). The armature (60) of the generator (22) is rotatably driven by a hydraulic motor at an essentially constant speed to minimize voltage variations at the output (23) of the generator (22). The magnet controller (26) includes a programmable logic controller (40) which selectively opens and closes the contactors (70-80) within the controller (26).
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: September 28, 1999
    Assignee: Caterpillar Inc.
    Inventors: Ronald W. Clutter, Kenneth J. Chlad, Timothy L. Cooper, Charles A. Robinson
  • Patent number: 5903116
    Abstract: A turbogenerator/motor controller with a microprocessor based inverter having multiple modes of operation. To start the turbine, the inverter connects to and supplies fixed current, variable voltage, variable frequency, AC power to the permanent magnet turbogenerator/motor, driving the permanent magnet turbogenerator/motor as a motor to accelerate the gas turbine. During this acceleration, spark and fuel are introduced in the correct sequence, and self-sustaining gas turbine operating conditions are reached. The inverter is then disconnected from the permanent magnet generator/motor, reconfigured to a controlled 60 hertz mode, and then either supplies regulated 60 hertz three phase voltage to a stand alone load or phase locks to the utility, or to other like controllers, to operate as a supplement to the utility. In this mode of operation, the power for the inverter is derived from the permanent magnet generator/motor via high frequency rectifier bridges.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: May 11, 1999
    Assignee: Capstone Turbine Corporation
    Inventors: Everett R. Geis, Brian W. Peticolas
  • Patent number: 5844384
    Abstract: A control circuit of the current to the secondary and a control circuit of the voltage to the secondary are such that the current for charging the battery and the current for starting will each have a defined maximum value, and such that the voltage at the battery terminals will have a predetermined maximum value.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: December 1, 1998
    Assignee: Lacme
    Inventors: Valery Hamm, Yves Mulet-Marquis
  • Patent number: 5648705
    Abstract: A conventional full wave diode bridge of an alternator is replaced with a full wave controlled rectifier bridge having controlled switches in place of diodes. Phase control is performed by the switches of the controlled rectifier bridge to preempt natural commutation and shift the phase of the alternator phase voltages relative to the phase currents. The phase angle control disrupts the normal unity power factor operation of the alternator and causes additional reactive current flow in a three phase stator winding of the alternator to source the controlled rectifier bridge. The result is that for the same operating conditions the controlled switches of the controlled rectifier bridge boost output from the alternator by from 40% to 60%.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: July 15, 1997
    Assignee: Ford Motor Company
    Inventors: Daryl Steven Sitar, Paul Theodore Momcilovich, MD Abul Masrur, Feng Liang, Garold Paul Myers, Shahram Zarei
  • Patent number: 5619108
    Abstract: A vehicle alternating-current generator control device having a single in-line molded package type control component with its leads arranged on one side. Disposed on the control component is an extension adapter with its ends connected to the leads of the control component and other ends connected to conductor links. A holder designed for an open-type control component is thus used for a single in-line molded package type control component.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: April 8, 1997
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Keiichi Komurasaki, Kyoko Kurusu
  • Patent number: 5189355
    Abstract: An apparatus for controlling conditions in response to an operator input, the apparatus including a rotary knob coupled to the shaft of the rotor of a stepper motor having first and second stator windings, in quadrature, with each winding being center tap grounded to provide first and second winding portions for each winding. One pair of first winding portions are used for providing pulse inputs to a microprocessor on rotation of the knob, in either direction, via a pulse control system, with the microprocessor providing command signals to a braking control system, which includes a direct current power control source, which may be either a voltage or current control source. The power control source, in turn is in circuit relation with the pair of second winding portions.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: February 23, 1993
    Assignee: Ampex Corporation
    Inventors: David N. Larkins, Glenn T. Yoshida, Thomas L. Helmers
  • Patent number: 5030898
    Abstract: Method and apparatus for optimizing power delivered by a prime mover-driven electric power alternator to an adjustable speed electric traction motor during high speed operation. The alternator is suitably controlled to deliver constant power if its output voltage does not exceed a first predetermined magnitude corresponding to a "corner point" speed of the motor and to limit the voltage magnitude when motor speed exceeds this corner point, thereby preventing excitation current from exceeding the maximum continuous field current rating of the alternator. As motor speed increases above corner point speed, less power is delivered to the motor, but the power reduction is minimized by increasing the voltage limit above the first predetermined magnitude. The amount of voltage limit increases, up to a predetermined maximum amount, is proportional to the amount load current in the motor decreases below its magnitude when motor speed equals corner point speed.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: July 9, 1991
    Assignee: General Electric Company
    Inventors: Paul R. Hokanson, Edward S. Matulevich
  • Patent number: RE40713
    Abstract: A turbogenerator/motor controller with a microprocessor based inverter having multiple modes of operation. To start the turbine, the inverter connects to and supplies fixed current, variable voltage, variable frequency, AC power to the permanent magnet turbogenerator/motor, driving the permanent magnet turbogenerator/motor as a motor to accelerate the gas turbine. During this acceleration, spark and fuel are introduced in the correct sequence, and self-sustaining gas turbine operating conditions are reached. The inverter is then disconnected from the permanent magnet generator/motor, reconfigured to a controlled 60 hertz mode, and then either supplies regulated 60 hertz three phase voltage to a stand alone load or phase locks to the utility, or to other like controllers, to operate as a supplement to the utility. In this mode of operation, the power for the inverter is derived from the permanent magnet generator/motor via high frequency rectifier bridges.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: May 19, 2009
    Assignee: Capstone Turbine Corporation
    Inventors: Everett R. Geis, Brian W. Peticolas