With Means For Short-circuiting A Winding Patents (Class 318/299)
  • Patent number: 11146188
    Abstract: A motor driving control apparatus according to an embodiment includes: a motor driving unit that selectively energizes three-phase coils of a motor; a motor control unit that switches an energizing phase of the coils, the energizing phase being a phase to which the motor driving unit energizes, in a predetermined order by outputting a driving control signal to the motor driving unit; a brake control unit that outputs a brake control signal; an interphase short-circuiting unit that is connected between two-phase coils of the three-phase coils, and that short-circuits the two-phase coil in response to a short-circuiting signal; and a short-circuiting signal output unit that is connected between the interphase short-circuiting unit and one-phase coil that is not different from each of the two-phase coils of the three-phase coils, and that outputs a short-circuiting signal to the interphase short-circuiting unit when the brake control signal is received.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 12, 2021
    Assignee: MINEBEA MITSUMI INC.
    Inventors: Katsunori Yamamoto, Hiroyuki Kato
  • Patent number: 8823306
    Abstract: A PWM signal generation unit generates a PWM signal to drive a motor, based on a current value of the motor sampled by a current value sampling unit, a position or speed of the motor sampled by a motor sampling unit, and a position or speed of a driven object sampled by a driven object sampling unit. An operation stop unit stops the operation of any one of the motor sampling unit and the driven object sampling unit depending on the power stored in the DC link part and power to which the control power source can supply when the alternating-current power source fails.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 2, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoki Masuda, Kiichi Inaba
  • Patent number: 8788167
    Abstract: A clutch control unit includes a clutch motor controller that controls a clutch motor. The clutch motor controller has a target clutch motor current computing unit that computes a target clutch motor current for adjusting torque of the clutch motor to be torque corresponding to an operating state of the vehicle, and a motor driving and braking selection unit that selects a motor driving mode in which the clutch motor is driven by applying feedback control on an output of the clutch motor or a motor braking mode in which the clutch motor is braked by short-circuiting the clutch motor according to a difference between the target clutch motor current and an actually detected clutch motor current. It thus becomes possible to provide a control system of a transmission that engages a clutch by a motor braking force in a manner that suits the running state of the vehicle.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Osamu Ishikawa, Takeru Okabe, Nozomu Kamioka, Tomohisa Shoda, Masaki Horii, Yasufumi Ogawa, Shiro Yonezawa
  • Patent number: 7570004
    Abstract: Methods and systems for detecting a motor shorting relay failure. Exemplary embodiments include methods and systems for determining a motor shorting relay failure in a motor, the motor having first phase winding in a first leg of the motor, a second phase winding in a second leg of the motor, and a third phase winding in a third leg of the motor, the method including applying a first voltage signal to the first leg, applying a second voltage signal to the second leg, applying a test voltage to a test circuit electrically coupled to the third leg, measuring a third voltage signal in the third leg at a first predetermined time in response to the application of the first and second voltage signals and determining a motor shorting relay in the motor, based on the amplitude of the third voltage signal.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Delphi Technologies Inc.
    Inventors: Steven L. Tracht, Yulei Chen
  • Patent number: 6680598
    Abstract: A circuit for the speed recovery of a direct current motor includes an output stage, output stage having a first pair of transistors, a second pair of transistors, and means a first circuit configured to detect a current circulating in the motor. The output stage further includes a second circuit configured to, activate the second pair transistors for a determined first time period so as to short-circuit the motor, and, at the end of the first time period, unbalance the output stage so as to force a maximum current to circulate for a determined second time period as a function of a value detected by the first circuit during the first time period, so as to stop the motor.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: January 20, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ezio Galbiati, Maurizio Nessi, Luca Schillaci
  • Patent number: 6659250
    Abstract: A method of returning an electromechanical axial setting device, particularly suited for friction couplings. The axial setting device includes two setting rings centered on a common axis, one of which is axially held, with the other one being axially displaceably mounted, and one of which is rotationally fixedly held in a housing so as to be prevented from rotating, with the other one being rotatingly drivable. On their respective end faces facing one another, the two setting rings each include an identical multitude of circumferentially extending grooves. Each of the grooves, in a plan view of the end faces, define a depth which rises in the circumferential direction. Pairs of grooves in the setting rings each accommodate a ball. The rotatingly drivable setting ring is connected to an electric motor in respect of drive. The axially displaceable setting ring is loaded by pressure springs towards the axially held setting ring.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 9, 2003
    Assignee: GKN Automotive GmbH
    Inventors: Frank Nestler, Derek Wilson
  • Patent number: 6118241
    Abstract: A dynamic braking system for a brushless motor where energization of the motor winding is achieved through a transistor bridge circuit wherein half of the switching transistors are connected to a positive supply and the remaining switching transistors are connected to a negative supply. Back biased diodes are connected across each of the switching transistors. Dynamic braking is achieved by rendering all transistors connected to one of the supply sources conductive at the same time.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: September 12, 2000
    Assignee: Kollmorgen Corporation
    Inventor: William J. Kazlauskas
  • Patent number: 5914582
    Abstract: A permanent magnet synchronous motor controller includes an inverter for supplying an alternating current power converted from a direct current power to a three-phase permanent magnet synchronous motor, having a pair of switching elements for each of said three phases of the motor; a smoothing capacitor for smoothing the direct current power connected to the inverter in parallel; and a control unit for controlling the motor by ON-OFF controlling each of the switching elements of the inverter, which further including a short circuit transition processing portion for changing control to 3-phase short circuit after performing precursory ON-OFF control of each of the switching elements so as to avoid occurrence of over current at an initial period of performing the 3-phase short circuit while the motor is being rotated.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: June 22, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Yuusuke Takamoto, Ryoso Masaki, Hiroshi Katada, Sanshiro Obara