Plural, Diverse Or Diversely Controlled Braking Means Patents (Class 318/370)
-
Patent number: 12206353Abstract: A drive control apparatus for a brushless motor and a related device. The drive control apparatus is configured to more quickly turn off the brushless motor and includes a motor drive circuit connected to the brushless motor, and a discharge circuit connected to the brushless motor and the motor drive circuit. The motor drive circuit is configured to, during a turn-off period of the brushless motor, stop supplying power to the brushless motor, and output an induced current generated by the brushless motor to the discharge circuit. The discharge circuit is configured to, during the turn-off period of the brushless motor, receive the induced current, and apply work by using the induced current, to consume electric energy of the brushless motor, and accelerate turn-off of the brushless motor.Type: GrantFiled: August 29, 2022Date of Patent: January 21, 2025Assignee: HONOR DEVICE CO., LTD.Inventor: Wenbo Zou
-
Patent number: 12107032Abstract: Cooling arrangements are disclosed for solid state circuit breakers. In one arrangement, a MOV is disposed between two pulsating heat pipes. An IGCT is disposed on the other side of each pulsating heat pipe away from the MOV. In another arrangement, a bus bar is integral with a heat spreader disposed between a pulsating heat pipe and an IGCT.Type: GrantFiled: December 17, 2019Date of Patent: October 1, 2024Assignee: ABB SCHWEIZ AGInventors: Colin Tschida, Pietro Cairoli, Hongrae Kim, Francesco Agostini, Luca Raciti, Davide Leoni
-
Patent number: 11993919Abstract: In an electric drive system in which a battery is not connected to a DC bus, even when a load on a traveling electric motor increases suddenly, it is made possible to avoid such a situation that the DC bus voltage drops to a level equal to or lower than an operating voltage of an inverter and the inverter stops working. To this end, a DC bus voltage drop prevention device controls such that, when the voltage of the DC bus drops below a first threshold value, the output torque of the traveling electric motor is decreased according to an amount of decrease in the voltage of the DC bus, and when the voltage of the DC bus drops below a second threshold voltage lower than the first threshold voltage, the output torque of the traveling electric motor is decreased to zero or a value within a range of magnitude with which a work vehicle stays stationary on a level ground.Type: GrantFiled: August 9, 2019Date of Patent: May 28, 2024Assignee: Hitachi Construction Machinery Co., Ltd.Inventors: Satoru Kaneko, Akinori Kamiya, Noritaka Itou, Hiroshi Utashiro
-
Patent number: 11858437Abstract: An electrical assembly may include a bus bar assembly, a sensor assembly, including a circuit board connected to the bus bar assembly, and a sensor, a bracket connected to the bus bar assembly, and a cooling member connected to the bracket. A method of assembling an electrical assembly may include connecting a shunt resistor with a bus bar assembly, connecting a circuit board with the bus bar assembly, connecting the bus bar assembly with the bracket, disposing the cooling member on or about the bracket, and/or connecting the cooling member with the bracket.Type: GrantFiled: October 6, 2021Date of Patent: January 2, 2024Assignee: Lear CorporationInventors: Aric Anglin, Ajmal Ansari, Greg Dickerhoof, Robert M. Schmidt, Rutunj Rai, Hongen Tu
-
Patent number: 11716041Abstract: A motor control apparatus receives a DC power source through a DC terminal and is coupled to a motor. The motor control apparatus includes a brake, an inverter, and a controller. The brake is coupled to the inverter. The brake includes an energy-consuming component and a switch component. The controller controls the inverter to convert the DC power source to drive the motor. When the controller determines that the DC power source is interrupted, the controller stops controlling the inverter, and the switch component is self-driven turned on so that a back electromotive force generated by the motor is consumed through the energy-consuming component.Type: GrantFiled: June 24, 2021Date of Patent: August 1, 2023Assignee: DELTA ELECTRONICS, INC.Inventors: Te-Wei Wang, Yi-Kai Peng, Chen-Yeh Lee
-
Patent number: 11702058Abstract: A brake control system for a motor vehicle comprises a first control device for controlling a first brake actuator, a second control device for controlling a second brake actuator and a third control device for controlling the first and second brake actuator. A switching apparatus is configured to connect the third control device to the first brake actuator and/or to the second brake actuator depending on a fault status of the brake control system.Type: GrantFiled: August 3, 2022Date of Patent: July 18, 2023Assignee: VOLKSWAGEN AKTIENGESELLSCHAFTInventor: Arne Bartels
-
Patent number: 11581831Abstract: The present disclosure discloses a method for braking a permanent magnet synchronous motor and a related device. The method is applied to an electronic speed controller and includes: receiving a signal for braking the permanent magnet synchronous motor sent by a flight controller; sending a first control signal to the permanent magnet synchronous motor, the first control signal being used to control the permanent magnet synchronous motor to decrease its rotational speed to a preset rotational speed range within a first preset time period; and after the first preset time period ends, sending a second control signal to the permanent magnet synchronous motor, the second control signal being used to control the permanent magnet synchronous motor to stop rotating within a second preset time period. According to the method, consistency of shutdown of multiple motors is ensured, and use experience of a drone is improved.Type: GrantFiled: May 17, 2019Date of Patent: February 14, 2023Assignee: AUTEL ROBOTICS CO., LTD.Inventors: Shizhi Yan, Yidong Chen
-
Patent number: 11563385Abstract: This disclosure proposes a topology that integrates a DC chopper into the Modular Multilevel Converter (MMC) cells of a power converter. The integrated DC chopper may include chopper resistors that may also be advantageously integrated into a heat sink for a power module including at least the power transistors of the MMC cell. Embodiments herein also describe a method for using an MMC cell's IGBTs and chopper resistors for providing a safe discharge of both cell capacitors and DC-link capacitors in different operating conditions.Type: GrantFiled: December 27, 2021Date of Patent: January 24, 2023Assignee: VESTAS WIND SYSTEMS A/SInventors: Ciprian Biris, Cem Özgür Gerçek, Lars Helle, Duy Duc Doan, Tune Pedersen
-
Patent number: 11414063Abstract: A brake control system for a motor vehicle comprises a first control device for controlling a first brake actuator, a second control device for controlling a second brake actuator and a third control device for controlling the first and second brake actuator. A switching apparatus is configured to connect the third control device to the first brake actuator and/or to the second brake actuator depending on a fault status of the brake control system.Type: GrantFiled: May 21, 2020Date of Patent: August 16, 2022Assignee: VOLKSWAGEN AKTIENGESELLSCHAFTInventor: Arne Bartels
-
Patent number: 11381193Abstract: A disconnect override circuit for a power conversion system includes a first input coupled to a user disconnect switch to receive a disconnect input signal, as well as a second input coupled to a motor drive or motor starter to receive a fault signal, and a third input adapted to receive an override signal. The disconnect override circuit has an output configured to provide a disconnect control output signal to control a user disconnect circuit according to the disconnect input signal, the fault signal and the override signal, the output signal having a first state to cause the user disconnect circuit to allow power transfer from the AC input to the motor drive or motor starter, and a second state to cause the user disconnect circuit to prevent power transfer from the AC input to the motor drive or motor starter.Type: GrantFiled: September 21, 2020Date of Patent: July 5, 2022Assignee: Rockwell Automation Technologies, Inc.Inventors: Al J. Campbell, Timothy J. Strandt, Jason H. Downing, Divesh Sachdeva, Daniel J. Middlestetter
-
Patent number: 11001166Abstract: Provided is an electric brake device that achieves improved responsiveness, cost reduction and also reduces the copper loss in an electric motor, thus reducing power consumption. The electric brake device includes a brake rotor (8), a friction member (9), a friction member actuator (6), an electric motor (4), a controller (2), a main power supply (3), and an auxiliary power supply (22). The auxiliary supply (22) is charged with regenerative power from the motor (4). The controller (2) includes a backflow power interruption (26) preventing the main supply (3) from being charged with the regenerative power from the motor (4), and an auxiliary power supply controller (24) causing the auxiliary supply (22) to supply running power to the motor (4) when powering the electric (4) is started in a state in which the regenerative power in the auxiliary supply (22) is greater than or equal to a set voltage.Type: GrantFiled: January 8, 2019Date of Patent: May 11, 2021Assignee: NTN CORPORATIONInventor: Yui Masuda
-
Patent number: 10454392Abstract: A method of performing an emergency stop of a motor is disclosed. The method includes powering a controller with a power supply after an external power source ceases providing power to the motor, controlling the motor to operate in a generator mode, optionally applying power from the motor to the control power supply, and electronically braking the motor while in the generator state. Also disclosed is a motor drive performing the method.Type: GrantFiled: November 9, 2017Date of Patent: October 22, 2019Assignee: Hubbell IncorporatedInventor: Eric Scott Christenson
-
Patent number: 9975433Abstract: An electric vehicle controller includes an inverter that drives a motor by receiving power supplied from an overhead line, a brake chopper circuit that includes a switching device and a braking resistor and is connected in parallel with the inverter, a voltage detector that detects a bus voltage applied to DC buses, and a control unit that performs power consumption control of causing the braking resistor to consume regenerative power supplied from the motor and overvoltage suppression control of suppressing the bus voltage from being excessive. The control unit controls the switching device such that a second duty ratio used at the time of performing the overvoltage suppression control is lower than a first duty ratio used at the time of performing the power consumption control.Type: GrantFiled: August 25, 2014Date of Patent: May 22, 2018Assignee: MITSUBISHI ELECTRIC CORPORATIONInventors: Hiroshi Fujiwara, Yuri Yamamoto, Yu Hirayama
-
Patent number: 9941687Abstract: Methods for operating a wind turbine system are provided. In one embodiment, a method includes adjusting a threshold direct current (DC) bus voltage for a dynamic brake in a wind turbine power converter above a reference DC bus voltage based on at least one system condition. The method further includes gating the dynamic brake on when an experienced DC bus voltage is equal to or greater than the threshold DC bus voltage, and inputting a dynamic brake condition into a controller when the dynamic brake is gated on. The method further includes determining if a grid fault has occurred, reducing power generation of the wind turbine if no grid fault has occurred, and blocking the power converter if a grid fault has occurred. The method further includes gating the dynamic brake off when the experienced DC bus voltage is less than the threshold DC bus voltage.Type: GrantFiled: June 4, 2013Date of Patent: April 10, 2018Assignee: General Electric CompanyInventors: Huibin Zhu, Xueqin Wu, Shouzhong Chang, Jie Ding
-
Patent number: 9889990Abstract: An electromechanical actuator power drive unit for dynamic braking is provided, comprising an electric motor with a stator, a rotor that rotates with respect to the stator, and windings fixed to the stator. There is a control unit configured to supply a current to the windings. When the control unit is not supplying current to the windings, an electrical device allows current to flow through a parallel current path to the windings. The new current is generated by the interaction of a roller connected with a gear set to the rotor. The roller, and therefore the rotor, is urged in a rotational direction by the translational velocity of a load in contact with the roller. The new current generated by the rotating rotor flows in the opposite direction as the first current supplied by the power supply unit and creates a dynamic braking torque in the electric motor.Type: GrantFiled: November 6, 2015Date of Patent: February 13, 2018Assignee: Ancra International LLCInventors: Daniel Dimitrov, John Nica, Roy Yamatoku
-
Patent number: 9876442Abstract: A single-phase DC/AC inverter has a single-phase inverter bridge with binary switches connected to an RLC low-pass filter. Digital control logic in a control circuit (or in a microcontroller) determines and controls a logic state q determining the position of the switches in the inverter bridge from sensed iL, vC values from the RLC filter. The control logic selects one of multiple possible logic states q based on whether the sensed iL, vC values belongs one of multiple boundary regions of a tracking band in an iL, vC state space.Type: GrantFiled: October 9, 2015Date of Patent: January 23, 2018Assignee: The Regents of the University of CaliforniaInventors: Ricardo G. Sanfelice, Jun Chai
-
Patent number: 9461567Abstract: The drive control device for a drive system including a vertical carrier machine includes: a drive control device (A) for an electric motor (M1) mainly for regenerative operation; a drive control device (B) for an electric motor (M2) mainly for power operation; and a regenerative power storage capacitor (12) that is connected between a positive terminal (P11) and a negative terminal (N1) of a direct-current output line of a converter part (1) via a third inrush current suppression circuit (11) in which a third resistor (R3) and a switch (SW3) are connected in parallel, wherein the capacitor (12) has an electrostatic capacitance and a direct-current internal resistance to produce a current value with which braking torque required for velocity control of the electric motor (M1) mainly for regenerative operation is generated by a charging current flowing at storage of the regenerative energy generated by the electric motor (M1).Type: GrantFiled: August 27, 2013Date of Patent: October 4, 2016Assignee: NAKANISHI METAL WORKS CO., LTD.Inventor: Katsumi Matsushita
-
Patent number: 9369076Abstract: A dynamic braking system for an electric power system includes a switching device coupled to an electrical conductor. The switching device is configured to open and close with a plurality of predetermined frequencies. The dynamic braking system also includes an inductive device coupled to the switching device. The power losses of the inductive device are at least partially a function of the plurality of predetermined frequencies. The dynamic braking system further includes a dynamic braking controller coupled to the switching device. The dynamic braking controller is configured to open and close the switching device with at least one of the predetermined frequencies to dissipate electric power from the electrical conductor at a predetermined rate by regulating the power losses of the inductive device as a function of the predetermined frequencies.Type: GrantFiled: July 12, 2012Date of Patent: June 14, 2016Assignee: General Electric CompanyInventors: Yong Xu, Robert Gregory Wagoner, Jun Zhu, Weng Li, Jincheng Huang
-
Patent number: 9346448Abstract: A vehicle brake hydraulic pressure control apparatus includes a pressure increasing section, a holding section, and a determination section and wheel speed sensors. The pressure increasing section increases a brake hydraulic pressure by driving a motor. The holding section holds a brake hydraulic pressure. The determination section determines whether or not the motor is malfunctional. The wheel speed sensors detect whether or not a vehicle which is at a halt starts to move. If the wheel speed sensors detect that the vehicle starts to move while the holding section is executing a holding control, the pressure increasing section executes a hydraulic pressure re-increasing control by driving the motor, and the determination section determines whether or not the motor is malfunctional based on a detection result by the wheel speed sensors after the brake hydraulic pressure is started to be increased by the hydraulic pressure re-increasing control.Type: GrantFiled: November 14, 2013Date of Patent: May 24, 2016Assignee: NISSIN KOGYO CO., LTDInventors: Yutaka Harada, Takashi Kurosaki, Kenichi Taki
-
Patent number: 9190939Abstract: A device for managing electric braking power includes a continuous bus, a dissipation branch, a current sensor, a controller, and an electronic charging switch. The bus includes a first pole for connection to a vehicle electric traction machine, a second pole for connection to a battery, and a connection point for connection to the dissipation branch, which includes an electronic dissipation switch connected to a dissipation resistor. The current sensor and the charging switch are positioned on the bus between the connection point and the second pole. The charging switch controls a flow of current over the bus from the first pole to the second pole. When power sent over the bus is greater than a total of power that charging of the battery can absorb and power that the dissipation resistor can dissipate, the controller causes the charging switch to open.Type: GrantFiled: May 9, 2012Date of Patent: November 17, 2015Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, MICHELIN RECHERCHE ET TECHNIQUE S.A.Inventor: Ivan Modolo
-
Patent number: 9024551Abstract: An integrated power converter includes first and second auxiliary switch modules, and one or more braking switch modules. The first auxiliary switch module is mounted at a first location of a laminated bus bar, and connects a first auxiliary lead with a first power layer and a second power layer of the bus bar. The second auxiliary switch module is mounted at a second location of the bus bar, and connects a second auxiliary lead with the first and second power layers. The braking switch modules are mounted at additional locations of the bus bar, adjacent to the first and second locations. Each braking switch module connects a braking lead with one of the power layers of the bus bar, and with a dual diode module or with the other power layer of the bus bar.Type: GrantFiled: December 31, 2012Date of Patent: May 5, 2015Assignee: General Electric CompanyInventors: Alvaro Jorge Mari Curbelo, Henry Todd Young, Jason Daniel Kuttenkuler
-
Patent number: 8975838Abstract: An electric motor controller includes controller electronics configured to control an electric motor. The electric motor controller also includes a thermoelectric cooler in thermal communication with the controller electronics. The thermoelectric cooler is configured to receive a braking current associated with braking of the electric motor and provide cooling to the controller electronics.Type: GrantFiled: October 5, 2012Date of Patent: March 10, 2015Assignee: Hamilton Sundstrand CorporationInventors: Richard E. Versailles, Robert D. Klapatch, Kerry R. Querns
-
Patent number: 8901861Abstract: Thermal management of various components such as electrical energy storage devices (e.g., batteries, super- or ultracapacitors), power converters and/or control circuits, in electrically powered vehicles may employ active temperature adjustment devices (e.g., Peltier devices), which may advantageously be powered using electrical energy generated by the traction electric motor during regenerative braking operation. Temperature adjustment may include cooling or heating one or more components. The adjustment may be based on a variety of factors or conditions, for instance sensed temperature, sensed current draw, sensed voltage, sensed rotational speed.Type: GrantFiled: July 26, 2012Date of Patent: December 2, 2014Assignee: Gogoro, Inc.Inventors: Hok-Sum Horace Luke, Matthew Whiting Taylor
-
Patent number: 8704467Abstract: An inverter device provided on a washing machine for controlling a permanent magnet motor being provided with a rotor magnet including a first permanent magnet and a second permanent magnet having a level of coercivity smaller than the first permanent magnet. An excitation current is produced to vary the amount of magnetism of the second permanent magnet to execute a dehydrate operation with a magnetic flux of the rotor magnet reduced and to execute an operation being specified to operate at a lower maximum rotation count compared to the dehydrate operation with the magnetic flux of the rotor magnet increased. When the amount of magnetism of the second permanent magnet is varied while rotation of the permanent magnet motor is stopped, a phase of the excitation current for varying the amount of magnetism is switched depending on a rotation stop position of the rotor.Type: GrantFiled: November 4, 2008Date of Patent: April 22, 2014Assignees: Kabushiki Kaisha Toshiba, Toshiba Consumer Electronics Holdings Corporation, Toshiba Home AppliancesInventors: Tsuyoshi Hosoito, Isamu Nitta
-
Patent number: 8686670Abstract: A system and method for determining the holding torque of a brake in a material handling system is disclosed. The material handling system may include a bridge, a trolley, and a hoist, each driven along a different axis by a motor. A brake is operatively coupled to the motor to prevent unwanted motion of the motor. A motor controller is coupled to each motor which controls operation of the motor and its corresponding brake. The motor controller generates a torque command to the motor while keeping the brake set. The initial torque command is less than the holding torque of the brake. The torque command is incremented until motion is detected on the motor. The torque value when motion is detected is stored in the motor controller and displayed to an operator.Type: GrantFiled: December 20, 2011Date of Patent: April 1, 2014Assignee: Magnetek, Inc.Inventors: Kurtis L. Verheyen, Aaron Kureck
-
Publication number: 20140001987Abstract: A motor drive device (20) includes a circuit (31) (e.g., an inverter) with a connection configuration that is switchable among: (a) a drive operative connection configuration that allows a motor unit (6) to be driven with power supplied from a battery unit; (b) a regenerative braking connection configuration; and (c) a short-circuit connection configuration that causes motor coils of the motor unit (6) to short-circuit to create a braking force. The motor drive device (20) also includes a short-circuit current controller (26) configured to control a short-circuit current that flows when the connection configuration of the circuit is (c) the short-circuit connection configuration. The motor drive device (20) also includes a regenerative braking and short-circuit braking switching controller (25) that may cause switching from (b) the regenerative braking connection configuration to (c) the short-circuit connection configuration, or vise versa.Type: ApplicationFiled: March 12, 2012Publication date: January 2, 2014Inventor: Koichi Okada
-
Patent number: 8610384Abstract: A device converts electrical energy into heat in the field of drive voltage technology and/or high voltage technology. The device contains a brake resistance and at least one controllable brake power semiconductor for controlling the conversion, enabling a rapid and economical transformation of effective power into heat as required. To this end, the brake resistance contains a plurality of individual brake resistances that are each part of a bipolar submodule. The submodules are connected in series, form a submodule series connection, and at least partially contain an energy accumulator respectively connected in parallel to an associated individual brake resistance and a controllable brake power semiconductor, which allows the current flow over the respectively associated individual brake resistance in a brake position, and interrupts the current flow over the brake resistance in a normal operating position.Type: GrantFiled: August 17, 2009Date of Patent: December 17, 2013Assignee: Siemens AktiengesellschaftInventors: Mike Dommaschk, Ingo Euler, Herbert Gambach, Joerg Lang, Quoc-Buu Tu, Carsten Wittstock, Klaus Wurflinger, Andreas Zenkner
-
Patent number: 8581531Abstract: An electric power converting apparatus includes a switching circuit, a PWM controller, conducting PWM all phase shut-off and zero-vector outputting, a unit configured to detect or estimate current flowing through a motor, a unit configured to conduct a DC braking, and a current comparator configured to compare between a DC braking time maximum current setup value, and a current value obtained by the unit configured to detect or estimate current. The PWM all phase shut-off and zero-vector outputting are conducted, repetitively, by the PWM controller, if the current comparator determines that a current value, which is obtained by the unit configured to detect or estimate current, exceeds the DC braking time maximum current setup value, when conducting the DC braking to obtain a braking power by running current through the motor.Type: GrantFiled: January 16, 2013Date of Patent: November 12, 2013Assignee: Hitachi Industrial Equipment Systems Co., Ltd.Inventors: Yusaku Onuma, Yusuke Arao
-
Patent number: 8441223Abstract: Disclosed herein is a torque control method for a high-speed Switched Reluctance Motor (SRM), which controls a torque in the high-speed operation of a 2-phase SRM. In the torque control method for a high-speed SRM, a positive torque (T*mA) of an active phase (A phase) of the two phases of the SRM is compensated for based on a negative torque attributable to an inactive phase (B phase) of two phases during a compensation control enable interval (ENA) ranging from a time point at which the active phase (A phase) is turned on to a time point at which tail current of the inactive phase (B phase) remains. Accordingly, the present invention can remarkably reduce a torque ripple occurring in high-speed operation mode in consideration of the influence of a negative torque attributable to tail current.Type: GrantFiled: February 9, 2011Date of Patent: May 14, 2013Assignee: Kyungsung University Office of Industry-Academy CooperationInventors: Jin-Woo Ahn, Dong-Hee Lee
-
Patent number: 8427086Abstract: An electric drive system comprises a generator, a traction motor, a brake resistor, a bus, and a control unit. The generator, the traction motor, and the brake resistor are coupled electrically to the bus. The control unit is configured to determine a pulse-width-modulation duty cycle for the brake resistor (“brake duty”) and control operation of the brake resistor according to the brake duty, wherein the brake duty can be a value intermediate of constant OFF and constant ON. A method of operating the electric drive system is also disclosed.Type: GrantFiled: April 26, 2010Date of Patent: April 23, 2013Assignee: Deere & CompanyInventor: Zimin W. Vilar
-
Patent number: 8362722Abstract: A power converter device for achieving a stable braking operation, preventing excessive current to flow therein, when conducting DC braking on a permanent synchronous motor, comprises: a switching circuit for converting DC to AC; a PWM controller means, for controlling ON or OFF of said switching circuit; a means for detecting or estimating current flowing through a permanent magnet synchronous motor; and a means for executing DC braking of said permanent magnet synchronous motor, wherein there are provided a DC braking maximum current setup value, which is determined from an outside or is determined in advance within an inside, and a PWM all-phases cutoff function and a zero vector output function within said PWM controller means, within said PWM controller means, whereby the PWM all-phases cutoff and the zero vector output are repeated within said PWM controller means, if a current value, which is obtained by said means for detecting or estimating the current, exceeds said DC braking maximum current setup vType: GrantFiled: November 3, 2010Date of Patent: January 29, 2013Assignee: Hitachi Industrial Equipment Systems Co., Ltd.Inventors: Yusaku Onuma, Yusuke Arao
-
Patent number: 8305018Abstract: If it is determined that excess power is generated based on overcharge information of a power storage device, a controller starts an operation of consuming the excess power by an excessive power consuming circuit. The controller counts elapsed time from the time point when the power consuming operation started, and if the counted elapsed time exceeds a minimum on-time set in advance, switches the excessive power consuming circuit from active to inactive state. The minimum on-time is set based on a pattern that is expected to cause generation of excessive regenerative power from an AC electric motor because of abrupt change in running status of an electric powered vehicle mounting a motor drive system.Type: GrantFiled: February 9, 2009Date of Patent: November 6, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventor: Masaki Okamura
-
Patent number: 8299735Abstract: A fan system including a motor with a coil, a storage unit, a driver, and a buffer circuit is provided. The coil module has a first connection terminal and a second connection terminal. The storage unit electrically couples with a voltage source, stores electrical energy when the voltage source is available, and releases the stored electrical energy to carry out a brake operation when the voltage source is unavailable. The driver electrically couples with the first and second connection terminals of the coil module to control a direction of an inductor current passing through the coil module. The buffer circuit electrically couples with the coil module. In the brake operation, the buffer circuit operates to form a transient potential between the first and second connection terminals of the coil module and to consume electrical energy of the inductor current, for gradually stopping the motor in a buffering time period.Type: GrantFiled: January 27, 2010Date of Patent: October 30, 2012Assignee: Sunonwealth Electric Machine Industry Co., Ltd.Inventors: Alex Horng, Tung-An Chen, Cheng-Nan Tsai, Kun-Tien Wu, Kuan-Yin Hou
-
Patent number: 8283879Abstract: A braking controller of a three-phase permanent magnetic brushless DC motor for directly driving a screw pump includes a detection circuit for detecting power supply states of the three-phase permanent magnetic brushless DC motor and a braking circuit for controlling the braking startup according to the power supply states of the three-phase permanent magnetic brushless DC motor. When the motor is supplied with power, the braking circuit is cut off. When the motor is not supplied with power and the screw pump drives the motor to reverse, the braking circuit starts up.Type: GrantFiled: August 4, 2006Date of Patent: October 9, 2012Assignee: Millennium Oilflow systems & Technology Inc.Inventors: Jun Liu, Yongjian Tang, Hengli Cong
-
Patent number: 8094435Abstract: A power drive stack system comprises a series of power electronic modules, each one of the modules containing power components and module contacts electrically and mechanically aligned for building a portion of a complete AC/DC drive stack. The modules utilize a common set of circuit connection points that are matched to a common set of physical connection points. The modules can be plugged together like building blocks to form a large variety of AC/DC drive stacks that can be tailored to meet an exact system requirement. The drive stack may be used in conjunction with a controller to adjust the torque and speed of an AC/DC electric motor.Type: GrantFiled: May 3, 2007Date of Patent: January 10, 2012Assignee: Parker-Hannifin CorporationInventors: Jeremy Howes, David Levett, John Froeb
-
Patent number: 8041475Abstract: An electric parking brake system includes an electric parking brake mechanism that includes a brake which suppresses rotation of a wheel and an electric motor which applies or releases the brake, and that maintains a vehicle at a standstill while the brake is applied. A parking switch selectively outputs an application command for applying the brake and a release command for releasing the brake in response to an operation of an operating portion for the parking switch. A parking switch malfunction determination unit determines whether the parking switch malfunctions, and a parking brake automatic control unit automatically applies the brake by operating the electric motor when an ignition switch of the vehicle is turned off in response to an operation of an operating portion for the ignition switch, in a case where the parking switch malfunction determination unit determines that the parking switch malfunctions.Type: GrantFiled: March 25, 2008Date of Patent: October 18, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventors: Kozo Fujita, Tomohiro Yamashita, Hideo Kondo, Hidehiro Yamamoto
-
Patent number: 7940016Abstract: The present invention relates generally to regenerative braking methods for a hybrid vehicle such as a hybrid locomotive, which are compatible with optimum management of a large battery pack energy storage system. Four methods for recovering energy from regenerative braking and for transferring this energy to an energy storage systems are disclosed. These methods may also be used with battery operated vehicles.Type: GrantFiled: August 9, 2005Date of Patent: May 10, 2011Assignee: RailPower, LLCInventors: Frank Wegner Donnelly, John David Watson, Ronald B. Bailey, Andrew C. Tarnow
-
Patent number: 7880418Abstract: The following invention is an electromechanical system (1) that is to be connected to an electricity supply (7), comprising: an electric machine (2) that can operate as an independent generator with a rotating shaft, and a switching system (9) allowing i) in the first configuration, the electric machine to operate as a motor in the case where the connected device (4) is normally driven or as a generator in the case where the coupled device is normally driving, and ii) in the second configuration, the electric machine to operate as an independent generator, the electrical energy generated by the electric machine (2; 22) being dissipated in the machine and in a dissipative load (13).Type: GrantFiled: October 12, 2006Date of Patent: February 1, 2011Assignee: Moteurs Leroy-SomerInventor: Christian Petit
-
Patent number: 7812555Abstract: An electric powertrain for use with an engine and a traction device is disclosed. The electric powertrain has a DC motor/generator operable to receive at least a portion of a first mechanical output from the engine and produce a DC power output. The DC motor/generator is also operable to receive DC power and produce a second mechanical output. The electric powertrain further has a drivetrain operable to receive the DC power output and use the DC power output to drive the traction device. The drivetrain is also operable to generate DC power when the traction device is operated in a dynamic braking mode.Type: GrantFiled: April 30, 2007Date of Patent: October 12, 2010Assignee: Caterpillar IncInventor: Rodwan Tarek Adra
-
Patent number: 7781992Abstract: A power supply device for an electric motor, operated either in a normal operating mode and/or an emergency operating mode, in particular, for an actuator in a motor vehicle and a method for operation of an electric motor in a normal operating mode and/or an emergency operating mode, in particular, for an actuator in a motor vehicle. The electric motor is powered by AC in the normal operating mode and by DC in the emergency operating mode, in particular, in a fault situation.Type: GrantFiled: December 15, 2005Date of Patent: August 24, 2010Assignee: Schaeffler KGInventor: Christian Acker
-
Patent number: 7773369Abstract: A cooling arrangement is disclosed for electrical components which are arranged in a housing of a soft starter which in particular may be designed for operation of an electric motor. In at least one embodiment, the cooling arrangement includes at least one fan arranged inclined in an opening in a housing wall such that the rotation axis of the fan is at an angle to the normal to the housing wall.Type: GrantFiled: January 16, 2008Date of Patent: August 10, 2010Assignee: Siemens AktiengesellschaftInventors: Marco Dornauer, Norbert Reichenbach
-
Patent number: 7764029Abstract: An activation circuit and a method for operating an activation circuit for a DC motor having an electrically actuated stopping brake, in particular for adjusting a rotor blade of a wind or water power facility. The activation circuit includes an emergency operation supply unit and a three-phase bridge inverter. The emergency operation supply unit is connected so it is disconnectable via an emergency operation network switching element to the intermediate circuit of the three-phase bridge inverter, the DC motor is connected via an emergency operation motor changeover element either to the three-phase bridge inverter or to the emergency operation supply unit, and the stopping brake is connected via an emergency operation brake changeover element either to the three-phase bridge inverter or to the emergency operation supply unit.Type: GrantFiled: October 16, 2007Date of Patent: July 27, 2010Assignee: Moog Unna GmbHInventors: Andreas Buente, Lars Kauke, Dirk Fedder
-
Patent number: 7737647Abstract: The invention concerns a reversible current rectifier, for connection to part of a polyphase network and to a continuous bus comprising a plurality of rectifier cells each rectifier cell including a rectifying device and a on-way electronic switch connected in anti-parallel with the rectifier device, the rectifying devices of different cells being arranged so as to form one rectifier. Each rectifier cell comprises means for controlling the electronic switch of the cell arranged to control the latter in closure after detecting a conduction of the rectifying device of the cell so as to enable current to be returned to the network. The control means are arranged to receive a signal external to the cell, for controlling the opening of the electronic switch, derived from another rectifier cell.Type: GrantFiled: July 5, 2005Date of Patent: June 15, 2010Assignee: Moteurs Leroy-SomerInventors: Jean-Marie Andrejak, Christian Andrieux, Mathias Tientcheu-Yamdeu, Alexandre Lagarde
-
Patent number: 7556129Abstract: A brake assembly is configured for a strapping tool tensioning motor. The brake assembly includes a one-way bearing operably connected to the motor output shaft. The bearing has at least two stop members. A brake element is mounted to the motor movable toward and away from the bearing for movement into and out of engagement with one of the bearing stop members. A brake release is connected to the brake element. The brake element is biased into engagement with a bearing stop member. When the brake is engaged with the bearing stop member, the motor can freely rotate in the first direction and cannot rotate in the second reverse direction. The brake release moves the brake element out of engagement with the one of the bearing stop members and the motor can freely rotate in the second reverse direction until the brake release is reengaged with one of the bearing stop members.Type: GrantFiled: December 14, 2005Date of Patent: July 7, 2009Assignee: Illinois Tool Works, Inc,Inventors: Dorene K. Nix, legal representative, Robert J. Nix
-
Patent number: 7498756Abstract: A braking system for electric step motors that operate in conjunction with a light assembly, including a moving head for pan or tilt thereof or for moving internal optical components. The step motors are connected to driving means to reduce movement speed of the moving head during power down and are connected through switches with a first operating position to connect the driving means to the step motors, and with a second power down position to establish a current path through a motor winding. Movements after power down take place very slowly and without generating noise for use in a theatre where the lamp may be switched off because a fuse burn out, and so cease operation without making disturbing noise. In a controlled power down, noise is reduced when several lamp fixtures placed side by side at the same time move to a stop position.Type: GrantFiled: November 8, 2006Date of Patent: March 3, 2009Assignee: Martin Professional A/SInventor: Jan Oechsle
-
Patent number: 7362065Abstract: Several embodiments of electric vehicle control and control apparatus wherein the amount of regenerative braking of the vehicle and the type of braking is determined by current conditions to provide simpler and more effective control regardless of condition of the power source for the vehicle.Type: GrantFiled: April 7, 2005Date of Patent: April 22, 2008Assignee: Yamaha Motor Electronics Co LtdInventor: Yukiyasu Takano
-
Patent number: 7291996Abstract: An optical disc drive 1 includes a spindle motor 11 for rotating the optical disc 2 and a spindle driver for driving the spindle motor 11 equipped with a rotation number counter 232 for measuring the rotation number of the spindle motor 11. A brake for braking the spindle motor 11 to reduce the rotation number thereof, can include at least three types of brake modes, and a selector for selecting one of the types of brake modes in response to the rotation number measured by the rotation number counter 232 when the rotation number of the spindle motor 11 is to be reduced. The optical disc drive 1 may further include a judging circuit for judging whether the rotation number of spindle motor 11 measured by the rotation number counter 232 reaches a predetermined target rotation number when the rotation of the optical disc 2 is to be stopped by the spindle motor 11.Type: GrantFiled: September 25, 2003Date of Patent: November 6, 2007Assignee: Mitsumi Electric Co., Ltd.Inventors: Yoshiaki Aso, Takashi Tateshima, Tatsuya Goto
-
Patent number: 7224137Abstract: The present invention provides an instantaneous fan stopping method and structure thereof. The method and structure can eliminate the inertial rotating state of the fan when the power supplied to the fan is cut off. In accordance with the present invention, a closed circuit is formed between the two terminals of the coil used to drive the fan. When the closed circuit is formed, the inertial rotation of the fan can generate an induced current in this coil, which, in turn, generates a magnetic force to stop the fan.Type: GrantFiled: February 24, 2005Date of Patent: May 29, 2007Assignee: Delta Electronics, Inc.Inventors: Magellan Chiu, Chun-Lung Chiu, Po-Tsun Kuo, Wen-Shi Huang
-
Patent number: 7176648Abstract: An energy management control apparatus for a molding machine that includes a first electrically-driven prime mover configured to drive at least a first molding machine device, and a second electrically-driven prime mover configured to drive at least a second molding machine device, includes a common DC link configured to provide DC energy to the first electrically-driven prime mover and to the second electrically-driven prime mover. A slave axis is configured to supply and absorb energy from to/from the common DC link.Type: GrantFiled: May 18, 2004Date of Patent: February 13, 2007Assignee: Husky Injection Molding Systems Ltd.Inventor: Christopher Wai-Ming Choi
-
Patent number: 7170246Abstract: A motor control apparatus supplying braking power to brake a motor comprises a braking power providing unit to receive input power having an input power voltage lower than a braking power voltage and to boost the input power voltage up to the braking power voltage to brake the motor; a switching unit closing to allow the braking power providing unit to store the input power and opening to allow the braking power providing unit to output the braking power by boosting the input power voltage and a stored power voltage up to the braking power voltage; and a controller to control the switching unit to close and to open. With this configuration, a motor control apparatus is provided, in which an additional braking power supply supplying braking power to brake a motor is not needed, thereby decreasing a production cost and a size of a product.Type: GrantFiled: February 3, 2004Date of Patent: January 30, 2007Assignee: Samsung Electronics Co., Ltd.Inventor: Jang-Hyoun Youm