Vector Control (e.g., Dq-axis Control, 3-2 Phase Conversion, Etc.) Patents (Class 318/400.02)
  • Patent number: 9035580
    Abstract: A control apparatus for a three-phase AC motor includes a current sensor and a current estimation section. The current sensor detects current flowing through one phase of the motor. The current estimation section repeats dq transformation and inverse dq transformation in a predetermined cycle. In the dq transformation, a d-axis current estimation value and a q-axis current estimation value in a rotating coordinate system of the AC motor are calculated based on the detected current and a previous current estimation value of another phase of the AC motor. In the inverse dq transformation, a present current estimation value of the other phase to be obtained at a time of angle advance of one period of the cycle is calculated based on smoothed values of the d-axis current estimation value and the q-axis current estimation value.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: May 19, 2015
    Assignee: DENSO CORPORATION
    Inventors: Takashi Suzuki, Takeshi Itoh, Hirofumi Kako
  • Patent number: 9035589
    Abstract: A method for determining a position of an armature of a synchronous machine relative to a stator of the synchronous machine includes the steps of applying to the synchronous machine a plurality of test current vectors, with each test current vector having identical current magnitude and a different angle in relation to an armature-related d,q coordinate system, during application of the test current vectors to the synchronous machine, determining values of a physical response quantity of the armature proportional to the q component of the test current vectors, determining a first harmonic of the determined values of the physical response quantity as a function of the angle, and determining the position of the armature relative to the stator as a zero crossing of the first harmonic where a first derivative of the first harmonic is positive.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 19, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Mihaly Nemeth-Csoka
  • Publication number: 20150130376
    Abstract: A method for field weakening control of a three phase permanent magnet AC motor in a VFD drive. The VFD drive calculates the three phase voltages to be supplied to the AC motor via a three phase inverter using feedback and feed-forward calculations of quadrature and direct demand currents.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventor: Gary PACE
  • Patent number: 9030136
    Abstract: A motor controlling apparatus including an inverter, a voltage detector, a rotational speed detector, a command value calculating component, an inverter controller, a state detector and an offsetting component. The inverter converts direct-current power to alternating-current power supplied to a motor. The voltage detector detects a direct-current voltage, and the rotational speed detector detects a rotational speed of the motor. The calculating component calculates current and torque command values, and motor rotational speed. The controller provides a control signal to control the inverter based on the current command value. The state detector detects a control state of the inverter, and the offsetting component offsets the detected voltage or rotational speed by an offset amount. The calculating component modifies the current command value based on the offset detected voltage or rotational speed to increase on a negative side a d-axis current command value included in the current command value.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 12, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hidehiko Sugita, Ken Ito
  • Publication number: 20150123577
    Abstract: A control apparatus controls an AC motor by detecting current passing through one phase. The apparatus includes an upper controller which includes a torque command calculation section, and a torque monitoring section monitoring torque to determine whether the torque is within a range, and a lower controller which controls current supply to an inverter based on a torque command value to control the motor, and which acquires information on a current-supply state and a rotation state of the motor and transmits information on a control state to the upper controller. At least one of the controllers estimates a current estimate value of an estimated phase or a d-q axis current estimate value based on a current detection value of the one phase and an electrical angle, and calculates information for monitoring torque based on the current estimate value. The torque monitoring section monitors the torque based on the information.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: Ryuji OMATA, Takahumi OOWADA
  • Patent number: 9024553
    Abstract: A control apparatus of an AC motor improves an electric current estimation accuracy of the AC motor, which includes a three phase motor with an electric current detector to detect an electric current detection value of one of the three phases (a sensor phase). The control apparatus includes an electric current estimation unit that repeatedly performs an inverted dq conversion and a dq conversion. The inverted dq conversion calculates an electric current estimate values for phases other than the sensor phase based on the d/q axis electric current estimate values of a previous cycle. The dq conversion calculates the d/q axis electric current estimate values of a current cycle in a rotation coordinate system of the AC motor based on the electric current estimate values calculated by the inverted dq conversion and the electric current detection value of the sensor phase detected by the electric current detector.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: May 5, 2015
    Assignee: Denso Corporation
    Inventors: Takashi Suzuki, Takeshi Itoh, Hirofumi Kako
  • Patent number: 9024556
    Abstract: In an electrical machine which has time-varying or position-varying disturbances in its output, signals representing the position and values of machine-related parameters are used to solve a model of the machine to calculate the phase currents which are required to minimize the disturbances. The model is able to provide solutions in the presence of limitations of some of the operating conditions of the machine, for example the supply voltage or the error in the signal representing the position.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Nidec SR Drives, Ltd.
    Inventors: Michael Ian Peter Henderson, Joseph Gerald Marcinkiewicz
  • Publication number: 20150115850
    Abstract: A method for controlling an electric motor (such as a synchronous reluctance electric motor) is suggested, in which the torque angle in the d-q-reference frame is at least in part and/or at least at times varied depending on at least one working condition of the electric motor.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 30, 2015
    Inventor: Michael Laursen
  • Patent number: 9018876
    Abstract: When a current sensor fails, instead of a normal-time motor control section, an abnormal-time motor control section drives and controls a motor. The abnormal-time motor control section detects a timing at which motor current I becomes zero in a state in which all the switching devices are turned off (S11 to S13). Every time the motor current I becomes zero, the abnormal-time motor control section sets an ON time T0 corresponding to steering torque |tr| (S14 to S15), and turns on the switching devices corresponding to the direction of the steering torque for the ON time T0 (S17 to S20). With this operation, an average current Iavg corresponding to the steering torque |tr| flows through the motor 20, whereby deterioration of the followability of steering assist is suppressed.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenichiro Aoki
  • Patent number: 9018870
    Abstract: A control device for a rotating electrical machine, which is able to reduce a tracking delay of an actual output torque and actual currents with respect to a fluctuating torque command and fluctuating current commands and to reduce steady state deviations, is obtained. The control device includes a torque current computing unit; an actual current computing unit; a current feedback control unit; and a voltage control unit that controls voltages on the basis of the two-phase voltage commands. The torque command includes a fluctuation cancellation torque command for cancelling transmission torque fluctuations transmitted from the internal combustion engine, and the current feedback control unit includes a harmonic controller that calculates the two-phase voltage commands by using a characteristic of a transfer function corresponding to a periodic function of a frequency of the transmission torque fluctuations.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 28, 2015
    Assignee: Aisin AW Co., Ltd.
    Inventors: Hirokazu Kobayashi, Arinori Shimada, Takeshi Aoki, Subrata Saha, Ken Iwatsuki
  • Patent number: 9013136
    Abstract: A three-phase AC motor (4) has a configuration in which a q-axis inductance is larger than a d-axis inductance by a predetermined amount or more to allow smoothing of power fluctuations due to the power supply voltage of the AC power source (3).
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 21, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Akio Yamagiwa, Toshinari Kondou, Yoshihito Sanga
  • Publication number: 20150102753
    Abstract: A method and system for controlling a vehicle motor are provided. The system includes an inverter that controls the motor to receive a torque command from an external system and output a torque based on the torque command. Additionally, a current command is generated based on the torque command and a operation condition of the motor. A voltage command is generated to be applied to the motor based on the current command and the operation condition of the motor. A pulse width modulation (PWM) command is generated based on the voltage command and the operation condition of the motor. The PWM command is converted to a voltage in a PWM form based on the motor operation condition and is applied to the motor. Then, an unwanted torque output of the motor generated based on a nonlinear characteristic of the motor is added and subtracted to and from the torque command.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 16, 2015
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Taeil Yoo, Han Hee Park
  • Patent number: 9007004
    Abstract: A controller for an AC electric motor, includes a Feed Forward Torque Controller and a load model. The Torque controller directly derives a torque related component of applied motor voltages from a signal representing a torque command input T* and at least one motor parameter. The load model derives a motor speed value including a model of motor speed behavior of the AC electric motor to provide an output signal which represents the motor speed of the AC electric motor. This motor speed output signal is used in determining a frequency of rotation of an applied motor voltage vector. Where an input to the load model is the signal representing the torque command input T*, the load model uses the signal representing the torque command T*, at least over a part of an operating speed range of the AC motor which includes zero speed, to determine the motor speed output signal.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: April 14, 2015
    Assignee: University of Technology, Sydney
    Inventor: Gregory Peter Hunter
  • Publication number: 20150097500
    Abstract: A method of controlling an electric motor (motor) includes providing a processor having an associated memory storing a stator resistance (Rs) estimation (RSE) algorithm that is programmed to implement the RSE algorithm to execute steps including injecting a current waveform at an arbitrary frame of reference into the stator using a field-oriented-control (FOC) motor controller including an Id controller and an Iq controller, and measuring current and voltage values from the motor responsive to the injecting. The measured current and voltage values are then transformed into transformed current and voltage values in a d/q coordinate system. The transformed current and voltage values are low pass filtered to generate filtered d/q current and voltage values, and a value for Rs is estimated from the filtered d/q current and voltage values. The arbitrary frame of reference can be a time-varying frame of reference.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 9, 2015
    Inventors: DAVID PATRICK MAGEE, ANDRÉ VELTMAN, JORGE ZAMBADA
  • Patent number: 9000699
    Abstract: According to one illustrative embodiment, a washing machine comprises a motor including a plurality of coils and one or more permanent magnets, an inverter configured to supply current to the plurality of coils and to measure a back electromotive force (BEMF) waveform from the plurality of coils, and an electronic control unit (ECU) configured to (i) integrate the BEMF waveform to generate an integrated BEMF waveform, (ii) determine a magnetic flux of the one or more permanent magnets using an amplitude of the integrated BEMF waveform, and (iii) control the current supplied by the inverter based at least in part upon the determined magnetic flux.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 7, 2015
    Assignee: Whirlpool Corporation
    Inventors: Matheus A. Bevilaqua, Luiz V. Dokonal, Evandro J. Meurer, Fernando P. Silva, Marcelo C. Silva, Rodrigo S. Teixeira
  • Patent number: 9000695
    Abstract: A sensorless control apparatus may include: a speed command unit configured to output a speed command to an electric motor; a current detector unit configured to detect electric current flowing through the electric motor if a voltage being output according to the speed command is supplied to the electric motor; a rotor angle calculation unit configured to calculate a magnetic flux of a rotor of the electric motor based on the detected electric current and the voltage being output according to the speed command, and to calculate an angle of the rotor from the calculated magnetic flux; and/or an out-of-step sensing unit configured to sense an out-of-step of the rotor according to a comparison of the calculated angle of the rotor with an angle of the rotor estimated based on a sensorless control algorithm.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Oh Hyuk Kwon, Young Doo Yoon, Ho Sun Yoo, So Hee Han
  • Patent number: 9000694
    Abstract: A control apparatus includes, a first calculating unit which calculates first d-phase and q-phase current limit candidate values, a second calculating unit which calculates second d-phase and q-phase current limit candidate values, a q-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first q-phase current limit candidate value as a q-phase current limit value, but otherwise sets the second q-phase current limit candidate value as the q-phase current limit value, and a d-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first d-phase current limit candidate value as a d-phase current limit value, but otherwise sets the second d-phase current limit candidate value as the d-phase current limit value.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 7, 2015
    Assignee: Fanuc Corporation
    Inventors: Hidetoshi Uematsu, SeungJun Lee
  • Patent number: 8994304
    Abstract: Disclosed is a method for controlling a permanent magnet synchronous motor to maximize use of voltages of a battery by voltage phase control within weak magnetic flux area and to achieve compensation for a torque error through a torque compensator when driving the permanent magnet synchronous motor for hybrid vehicles. In particular, the method controls a permanent magnet synchronous motor so that voltage use can be maximized in a weak magnetic flux area by using voltage near maximum voltage through voltage phase control utilizing magnetic flux-based map data receiving a torque command and motor speed/batter output voltage as inputs and torque error can be compensated using a torque compensation filter when a motor constant is changed in the weak magnetic flux by a circumstance parameter, when the permanent magnet synchronous motor mounted in a hybrid vehicle and an electric vehicle is driven.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: March 31, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Industry-Academic Cooperation Foundation, Yeungnam University
    Inventors: Su Hyun Bae, Sung Kyu Kim, Won Kyoung Choi, Mu Shin Kwak, Jul Ki Seok, Se Hwan Kim
  • Publication number: 20150084555
    Abstract: A motor control apparatus includes a calculator, a determinator, and a selector. The calculator calculates a zero vector current predicted to flow through a three-phase AC motor when an inverter operates in a first mode for applying no voltage to the motor. The determinator determines whether a difference between the zero vector current and a command current on a ?? stationary coordinate system falls within an allowable range. The selector selects the first mode as a switching mode of the inverter when the difference falls within the allowable range, and selects a second mode as the switching mode of the inverter upon determination that the difference falls outside the allowable range. The second mode corresponds to a non-zero current vector closest to the command current among six non-zero current vectors defined in fixed directions with respect to the zero vector current on the ?? stationary coordinate system.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 26, 2015
    Inventor: Go Handa
  • Patent number: 8988027
    Abstract: A motor control apparatus according to the embodiment includes a rotational position estimating unit, a change amount estimating unit, and an inductance estimating unit. The rotational position estimating unit estimates a rotational position of a rotor from a motor parameter including a q-axis inductance of a motor on a basis of an output current to the motor and a voltage reference. The change amount estimating unit estimates a change amount of an output torque with respect to a current phase change of the motor corresponding to a high frequency signal whose frequency is higher than a drive frequency of the motor. The inductance estimating unit estimates an inductance value that obtains a maximum torque on a basis of the change amount as the q-axis inductance.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Shingo Fukumaru, Shinya Morimoto, Hideaki Iura, Akira Yamazaki
  • Publication number: 20150077025
    Abstract: A power conversion apparatus includes: an inverter unit having high and low potential-side switching elements corresponding to each phase of a winding of a rotating electrical machine; a current detecting unit; and a control unit controlling the switching elements based on a PWM reference signal and a duty instruction value. The control unit includes: a phase current computing device; and a voltage instruction value computing device. The control unit computes an active voltage vector interval in first and second half periods of one or multiple cycles of the PWM reference signal to be a predetermined period or longer, and computes first and second half duty instruction values to set first and second voltage vector intervals equal to or longer than minimum time to be in the first or second half period.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventor: Takashi SUZUKI
  • Patent number: 8981688
    Abstract: A control device for a three-phase alternate current motor includes: an inverter for driving the motor; current sensors for sensing current in the motor; and a control means having a feedback control operation part for operating a voltage command of each phase and switching the inverter based on the voltage command. When an absolute value of a sum of the current sensed values of three phases is larger than a threshold, the control means: executes a provisional current sensor system abnormality determination; generates a variation visualizing state, in which a response of a feedback control with respect to a variation in the current sensed value caused by the abnormality is delayed or stopped; and performs a phase identification processing for identifying the current sensor on a phase, in which an absolute value of a current deviation is larger than a threshold.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 17, 2015
    Assignee: Denso Corporation
    Inventors: Takashi Suzuki, Hirofumi Kako, Takeshi Itoh
  • Patent number: 8981687
    Abstract: A motor control apparatus includes an A/D converter, which is a hardware part for converting an analog signal of a sensor to a digital signal, a microcomputer, which is a software part, and a drive circuit, which is a hardware part for driving an inverter to supply electric power to a motor. The microcomputer includes calculation blocks, each of which is a calculation block for individually calculating an output from an input. The microcomputer further executes, in parallel to control calculations, software monitor processing for each calculation block to monitor whether the control calculation is executed normally. The motor control apparatus thus can detect a software abnormality without using a monitoring hardware circuit separately.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 17, 2015
    Assignee: Denso Corporation
    Inventor: Yoshihide Kuroda
  • Patent number: 8981701
    Abstract: Provided is an apparatus for compensating offset of a current sensor detecting a motor current supplied by an inverter for PWM (Pulse Width Modulation) control of a motor, the apparatus including a current controller providing a PWM signal generated based on the motor current detected by the current sensor to the inverter, calculating an offset using the motor current detected by the current sensor in response to presence and absence of the PWM control of the motor, or offset-compensating the motor current detected by the current sensor.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: LSIS Co., Ltd.
    Inventor: Gi Young Choi
  • Patent number: 8981692
    Abstract: An electric motor system includes a motor configured to produce a torque signal in response to a torque command. The torque signal has a fundamental frequency component, a first ripple harmonic and a second ripple harmonic. The first ripple harmonic is an integer multiple of the fundamental frequency component. The second ripple harmonic is an integer multiple of the first ripple harmonic. A system and method is provided to generate a ripple reduction signal in response to the torque command that simultaneously cancels the first and the second ripple harmonic in the torque signal. The second ripple harmonic may be canceled with the first ripple harmonic by being projected onto the first ripple harmonic through a transformation matrix.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Dwarakanath V. Simili
  • Patent number: 8981704
    Abstract: Provided are a motor controller for suppressing a torque pulsation with a simple configuration and obtaining a sufficient output torque in the case of an open-type fault occurring in any one of windings of a motor and inverters, and an electric power steering device using the motor controller. In the motor controller for controlling a current supplied from and a voltage applied from a power source with respect to the motor including winding sets of a plurality of systems, when a fault determination unit (31) determines the occurrence of the open-type fault, the supply of the currents to the windings of one of the systems in which the fault has occurred is stopped by control performed on switching elements included in the inverter of the faulty system, whereas the supply of the currents to the windings of the normal system in which the fault has not occurred is continued.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Electronic Corporation
    Inventors: Masaya Endo, Isao Kezobo, Yoshihiko Kimpara, Jiro Okada
  • Patent number: 8981686
    Abstract: An electric motor controller is configured to be coupled to an electric motor. The controller includes an inverter and a control unit coupled to the inverter. The inverter is configured to receive an input voltage and to provide a conditioned output voltage to the electric motor. The control unit is configured to control the electric motor to produce positive torque when direct current (DC) link voltage has a 100% voltage ripple. Methods for controlling an electric motor using the electric motor controller are also provided.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: March 17, 2015
    Assignee: Regal Beloit America, Inc.
    Inventors: Roger Carlos Becerra, Ludovic Andre Chretien, Glen C. Young, David Allen Clendenen, Yao Da
  • Patent number: 8981702
    Abstract: Input-output linearization (IOL) and extended state observer (ESO) techniques are applied to a Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM). In one such approach, at least one gain value is determined based at least in part on a given bandwidth value. Operating parameters for the motor are determined based on the at least one gain value and information from a current sensor regarding motor current. Control signals used to the control the motor are determined based on the determined operating parameters. Accordingly, automated control can be effected through setting a bandwidth value through the implementation of IOL and ESO techniques.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Ashish S. Katariya, David P. Magee
  • Patent number: 8975841
    Abstract: A motor control device includes a torque computing section which computes an output torque of an electric motor which is capable of generating magnetic torque by permanent magnets and reluctance torque, a flux weakening angle computing section which determines an angle of a flux weakening current vector that is added to a reference current vector so that a command torque value and the computed torque value correspond with each other, a voltage acquiring section which acquires a terminal voltage of the motor, a flux weakening amplitude computing section which determines an amplitude of the flux weakening current vector so that the terminal voltage of the motor is not more than a maximum voltage applicable to the motor, and a command current computing section which computes a command current vector by adding the flux weakening current vector to the reference current vector.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Sari Maekawa
  • Patent number: 8975840
    Abstract: Disclosed is an apparatus for controlling an IPMSM, the apparatus according to exemplary embodiments of the present disclosure including a first generating unit generating a q-axis reference voltage of a synchronous reference frame from a reference frequency, a current converter generating a current of the synchronous reference frame from a 3-phase current of the IPMSM, and a voltage controller generating a d-axis reference voltage compensating a voltage in response to a load change.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: March 10, 2015
    Assignee: LSIS Co., Ltd.
    Inventor: Kyung Joo Lee
  • Patent number: 8975842
    Abstract: A three-phase permanent magnet motor is controlled by generating two-phase control signals. A rotation speed value is generated representing a rotation speed of the permanent magnet motor based on a q-current reference value and a q-current feedback value, the q-current reference value and the q-current feedback value corresponding to a q-phase winding. A d-phase voltage change value is generated based on a d-current reference value and a d-current feedback value, the d-current reference value and the d-current feedback value corresponding to the d-phase winding. A first d-phase voltage value is generated based on the rotation speed value, the d-phase voltage change value, the d-current reference value and the q-current reference value. A first q-phase voltage value is generated based on the rotation speed value, the q-current reference value and the d-current reference value.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: March 10, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Vladimir Blasko
  • Publication number: 20150064024
    Abstract: A motor controller comprises: a rotation angle estimation unit for estimating and computing a rotation angle of a motor repeatedly based on the current and voltage of the motor without using a motor rotation angle detector; a speed calculation unit for calculating the period of the signal waveform of the rotation angle that is repeatedly estimated and calculated by the rotation angle estimation unit and for calculating an actual rotational speed of the motor based on the period; a drive signal generating unit for generating a drive signal to drive and control the motor based on at least a deviation between the actual rotational speed and a target rotational speed and the rotation angle; and a switching circuit that is switched based on the drive signal to provide drive power to the motor.
    Type: Application
    Filed: August 12, 2014
    Publication date: March 5, 2015
    Inventor: Nobuhiko MORIYAMA
  • Patent number: 8970146
    Abstract: The present invention relates to control of synchronous machines. A sensorless control system for an electrical machine is provided comprising a rotor and a stator having one or more phase windings for generating a rotating stator magnetic field. The current in the phase windings is monitored to determine real and imaginary components of the current vector in a rotating reference frame, from which real and imaginary components of the emf vector rotating in the rotating reference frame can also be determined. The ratio of the real and imaginary emf components is calculated, and an angular position of the rotational emf vector is estimated from this ratio. An angular error signal indicative of the deviation of the estimated angular position from a desired position in line with the real axis of the rotating reference frame is determined, and the machine is controlled such that the error signal tends towards zero.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 3, 2015
    Assignee: Technelec Limited
    Inventors: Charles Pollock, Helen Pollock
  • Patent number: 8970140
    Abstract: Provided is an apparatus for controlling speed in induction motor in which tension command and friction loss compensation are used to calculate a torque limit relative to an output of a speed controller, which is then used to limit the speed of the induction motor, whereby a tension sensor and a position sensor are not used in the continuous processing line to improve performance of the vector control type induction motor.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 3, 2015
    Assignee: LSIS Co., Ltd.
    Inventor: Sung Hoon Byun
  • Patent number: 8970142
    Abstract: A control apparatus (10) includes a position detection unit (108) which detects a position of a mover of a linear motor (20) based on a change in an output signal from a magnetic sensor (27), a position control unit (102) which calculates a speed command value based on the position of the mover detected by the position detection unit (108) and a position command value of an external input, an estimation unit (150) which estimates a moving speed of the mover from a current value of a current flowing to a plurality of coils of the linear motor (20), a speed control unit (104) which calculates a current command value based on the speed command value and the estimated moving speed, and a power converter (106) which supplies power to the plurality of coils according to the current command value.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: March 3, 2015
    Assignee: THK Co., Ltd.
    Inventor: Masashi Inoue
  • Patent number: 8970145
    Abstract: A controller for a conventional synchronous motor is configured to produce desired output characteristics. The controller generates a drive current for based on a current command, has a motor correcting section and a gain adjusting section which output a compensated current command based on the current command according to a compensating transfer function for cancelling a first transfer function showing a first torque response characteristic of the synchronous motor and replacing it with a second transfer function showing a second torque response characteristic, and a current controller which generates a drive current corresponding to the compensated current command.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 3, 2015
    Assignee: DMG Mori Seiki Co., Ltd.
    Inventors: Shinji Ishii, Masakazu Soshi, Kazuo Yamazaki
  • Publication number: 20150054431
    Abstract: A control device of a three-phase AC motor includes: an inverter that drives the AC motor; a current sensor that senses a current flowing in a sensor phase of the AC motor as a sensor phase current; and a controller that switches on and off a switching element of the inverter to control a current flowing through the AC motor. The controller includes: a current estimation device that estimates d-axis and q-axis current estimated values based on the sensor phase current and an electric angle of the AC motor; and a zero-crossing interpolation device that interpolates a command value relating to a voltage of the AC motor when the sensor phase current is in a zero cross range, which includes a zero point. When the sensor phase current is in the zero cross range, the zero-crossing interpolation device interpolates the command value with a continuous variable value.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 26, 2015
    Inventors: Ryuji OMATA, Takahumi OOWADA
  • Publication number: 20150054433
    Abstract: A method for controlling an electric motor includes receiving a first control command that is indicative of a desired motor control. A current operating condition for the motor is determined. It is then determined whether the first control command meets at least one predetermined criterion at the current operating condition. A second control command that is different from the first control command is generated when the first control command meets the at least one predetermined criterion. Generating the second control command includes determining a current value of a motor parameter, changing the parameter value, and using the changed parameter value to generate the second control command. The second control command is then used to control the motor.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventors: Hongrae KIM, Michael W. DEGNER, William REYNOLDS
  • Publication number: 20150054432
    Abstract: A control device of a three-phase AC motor includes: an inverter for driving the motor; a current sensor for sensing a sensor phase current of the motor; and a controller for controlling the motor. The controller includes: a current estimation device for estimating d-axis and q-axis current estimated values based on the sensor phase current and an electric angle of the motor; and a zero-crossing interpolation device for interpolating the d-axis and q-axis current estimated values by fixing the d-axis and q-axis current estimated values when the sensor phase current is in a zero cross range, which includes a zero point, so that the sensor phase current crosses the zero point, and for outputting interpolated d-axis and q-axis current estimated values as fixed d-axis and q-axis values, which are used for a feedback control relating to current flowing through the motor.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 26, 2015
    Inventors: Ryuji OMATA, Takahumi OOWADA
  • Patent number: 8963460
    Abstract: A method for controlling a motor is provided. The method comprises obtaining electrical signals of the motor with a signal unit, the electrical signals comprising a motor torque and an angular velocity, calculating a voltage phase angle of a voltage vector with a calculating component, wherein a command torque, the motor torque, the angular velocity and a voltage amplitude of the voltage vector are inputs of the calculating component, and wherein the voltage phase angle is a variable and the voltage amplitude is a constant. The method further comprises modulating the voltage phase angle and the voltage amplitude to a switching signal for controlling an inverter; converting a direct current voltage to the voltage vector according to the switching signal, and applying the voltage vector to the motor.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Yong Li, Pengju Kang, Ronghui Zhou, Xiangming Shen, Xiao Chen, Zili Cai, Tong Zhao
  • Patent number: 8963461
    Abstract: A motor control device includes an inverter driving an electric motor, a vector controller determining an output frequency and a command output voltage to drive the inverter, a speed controller determining a torque command value, a current command calculation unit and an inertia moment estimation unit obtaining a load torque estimate value and estimating inertia moment that is a combination of inertia moment of a motor rotor and inertia moment of a load apparatus, based on a deviation between an acceleration/deceleration torque output value obtained by subtraction of the load torque estimation from motor torque and an acceleration/deceleration torque estimate value obtained by multiplying a variation amount in the speed estimate value per unit time by an inertia moment estimate value. The speed controller is configured to be capable of adjusting a control parameter based on an inertia moment estimate value estimated by the inertia moment estimation unit.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 24, 2015
    Assignee: Toshiba Schneider Inverter Corporation
    Inventor: Hiroki Arima
  • Patent number: 8963459
    Abstract: A method of driving an alternating-current (AC) motor while periodically obtaining a rotator angle of the AC motor. The method includes: (a) driving the AC motor by a dS-axis voltage, which is a voltage for an exciting current in a stationary reference frame, and a qS-axis voltage, which is a voltage for generating a rotational force in the stationary reference frame, while sequentially applying different dS-axis voltages and different qS-axis voltages to the AC motor in a control injection period; and (b) obtaining a rotator angle by a dS-axis voltage value, a qS-axis voltage value, a dS-axis current value, and a qS-axis current value in the control injection period.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: February 24, 2015
    Assignees: Samsung Techwin Co., Ltd., Seoul National University Industry Foundation
    Inventors: Sang-Min Kim, Sung-Min Kim, Seung-Ki Sul, Seung-Eun Park, Yong-Cheul Kwon, Joon-Ho Park
  • Publication number: 20150048765
    Abstract: An apparatus for controlling a vehicle provided with a motor includes a current command generator that determines first and second axes currents according to driving conditions, and a current controller that generates first and second axes voltages by using the first and second axes currents and feedback currents. An axis converter converts the first and second axes voltages into 3-phase voltages, 3-phase feedback currents into first and second axes feedback currents, and transmits the same to the current controller. A pulse width modulation (PWM) generator receives the 3-phase voltages and generates corresponding 3-phase signals, and a PWM inverter generates 3-phase currents and transmits the same to the axis converter. A motor is driven by the 3-phase currents. A resolver detects a phase of the motor and transmits the same to the current command generator and the axis converter. A resolver offset determining unit calculates a resolver offset value.
    Type: Application
    Filed: December 30, 2013
    Publication date: February 19, 2015
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Jooyoung PARK, Byunghoon YANG
  • Publication number: 20150048766
    Abstract: A control apparatus includes, a first calculating unit which calculates first d-phase and q-phase current limit candidate values, a second calculating unit which calculates second d-phase and q-phase current limit candidate values, a q-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first q-phase current limit candidate value as a q-phase current limit value, but otherwise sets the second q-phase current limit candidate value as the q-phase current limit value, and a d-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first d-phase current limit candidate value as a d-phase current limit value, but otherwise sets the second d-phase current limit candidate value as the d-phase current limit value.
    Type: Application
    Filed: September 29, 2014
    Publication date: February 19, 2015
    Inventors: Hidetoshi UEMATSU, SeungJun LEE
  • Patent number: 8957613
    Abstract: A control device for a three-phase alternate current motor, includes: a control phase current acquisition means; a monitor phase current acquisition means; a rotation angle acquisition means; a two-phase control current value current calculation means; a one-phase current estimated value estimation means; a voltage command value calculation means; an other phase current estimation means for calculating a monitor or a control phase current estimated value; an abnormality detection means for detecting an abnormality in a monitor phase or a control phase current sensor; and a switching means for switching between a monitoring stop mode, in which the voltage command value is calculated based on the two-phase control current value, and a monitoring mode, in which the voltage command value is calculated based on the one-phase current estimated value, and the abnormality detection means detects the abnormality, at predetermined time intervals.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 17, 2015
    Assignee: Denso Corporation
    Inventors: Takashi Suzuki, Hirofumi Kako, Takeshi Itoh
  • Patent number: 8957616
    Abstract: A control device for a three-phase alternate current motor includes: a control phase current acquisition means; a monitor phase current acquisition means; a rotation angle acquisition means; a two-phase control current value calculation means; a one-phase current estimated value estimation means; a voltage command value calculation means; an other phase current estimation means for calculating a monitor or a control phase current estimated value; an abnormality detection means for detecting an abnormality in a monitor phase or a control phase current sensor; a number-of-revolutions calculation means for the motor; a number-of-revolutions determination means for determining whether the number of revolutions is not larger than a predetermined determination value; and a switching means between a two-phase control mode when the number of revolutions is not larger than the determination value and a one-phase control mode when the number of revolutions is larger than the determination value.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 17, 2015
    Assignee: DENSO CORPORATION
    Inventors: Takashi Suzuki, Hirofumi Kako, Takeshi Itoh
  • Publication number: 20150042249
    Abstract: An estimating method for a rotor position of a motor and an estimating device for the same are disclosed herein. The estimating method includes injecting a first high frequency signal to the motor at a first estimating angle, generating a first sensing signal of the motor in a period when the first high frequency signal is injected to the motor, injecting a second high frequency signal to the motor at a second estimating angle, generating a second sensing signal of the motor in a period when the second high frequency signal is injected to the motor, determining a quadrant of an operating angle according to the first sensing signal and the second sensing signal, and acquiring the rotor position according to the first sensing signal, the second sensing signal, and the quadrant of the operating angle.
    Type: Application
    Filed: January 21, 2014
    Publication date: February 12, 2015
    Applicant: DELTA ELECTRONICS, INC.
    Inventor: Yi-Cherng LIN
  • Patent number: 8952645
    Abstract: In the case of speed-regulated high-power drives and with simultaneously high demands on accuracy or dynamics, the object of the invention is to reduce a very high level of complexity of the power electronics (high clock frequency), the motor (high precision) and mechanical transmission (low-play transmission elements). For this purpose, the invention proposes a drive device for rotational and/or t translational movements. The drive has a plurality of drives for the joint, mechanically coupled driving of a working machine or for moving a mass. It also has a control device. At least one drive is intended to provide the power (as a power drive). At least one further drive is provided and mechanically coupled as a servo-drive for controlling or regulating the accuracy and/or dynamics of the overall drive. The control device controls and regulates the at least two mechanically coupled drives.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 10, 2015
    Assignee: Lenze Automation GmbH
    Inventor: Carsten Fraeger
  • Patent number: 8952637
    Abstract: In a control device for a three-phase rotating machine with first and second winding sets, a current feedback computing section includes a current sum controller and a current difference controller. The current sum controller multiplies, by a sum gain, an error between a sum of current command values for alternating currents output from first and second inverters and a sum of sensed current values and computes a sum of voltage command values. The current difference controller multiplies, by a difference gain, an error between a difference of the current command values and a difference between the sensed current values, and computes a difference of voltage command values. In a variable-responsiveness mode, a gain ratio between the sum gain and the difference gain is varied according to a reference frequency such that the current sum controller and the current different controller are different in responsiveness.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: February 10, 2015
    Assignee: Denso Corporation
    Inventor: Takashi Suzuki
  • Patent number: 8952640
    Abstract: Provided is an actuator control apparatus including: an observer configured to estimate a state of a load based on a state equation including at least one modeled load parameter; a controller which outputs a signal for controlling the load; a compensation unit which compensates for the signal output from the controller; and an estimator configured to estimate a change of a load parameter, to decide a gain of the compensation unit based on the estimated change of the load parameter, and to update the modeled load parameter.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Taek Lim, Jong-Sun Ko, Jin-Woo Cho