Switching Circuit Structure Or Component (e.g., Inverter, Bridge Circuit, Etc.) Patents (Class 318/400.26)
  • Patent number: 9178462
    Abstract: A motor driver controller including a difference control section; a driver output section; a drive current detection amplifier; and a load short-circuit detection circuit. A motor and sensing resistor is coupled in series and coupled to an output terminal of the driver output section. The difference control section generates a drive voltage command signal in response to a drive current command value and a drive current detection signal. The driver output section drives the motor and sensing resistor, in response to the drive voltage command signal, and a drive current detection amplifier generates a signal fed to the difference control section, in response to a drive current of the sensing resistor. The load short-circuit detection circuit detects an abnormal oscillation waveform signal caused by a short-circuit state between the both ends of the motor.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 3, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Minoru Kurosawa, Kenji Yoshida, Osamu Yamashita
  • Patent number: 9148079
    Abstract: A method for operating an electric motor which is used as an electric servo drive in an electronic power steering system of a motor vehicle for power assistance and which has a number of magnetic elements and phase windings and is actuated and/or controlled by an electronic control unit of the electronic power steering system, wherein a temperature of at least one magnetic element of the electric motor is continuously determined during the operation of the electric motor by way of a temperature model and wherein, based on the temperature of the at least one magnetic element of the electric motor determined by way of the temperature model, an electrical current flowing in at least one of the phase windings of the electric motor is limited, taking into account a predeterminable limit temperature of the at least one magnetic element of the electric motor.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 29, 2015
    Assignee: Robert Bosch Automotive Steering GmbH
    Inventors: Thomas Kuehnhoefer, Alexander Krautstrunk
  • Publication number: 20150145453
    Abstract: A power conversion circuit for supplying power to an inductive load, includes a switching circuit and an energy saving circuit. The inductive load is supplied with electrical power and the energy saving circuit is charged when the switching circuit is conductive, and the inductive load is disconnected from the electrical power supply and the energy stored in the energy saving circuit is discharged to the inductive load when the switching circuit is nonconductive.
    Type: Application
    Filed: November 28, 2014
    Publication date: May 28, 2015
    Inventors: Chi Ping SUN, Fei XIN, Xiu Wen YANG, Shing Hin YEUNG, Yun Long JIANG, Yan Yun CUI
  • Publication number: 20150145452
    Abstract: A power converting circuit for supplying power to an inductive load, includes an inductance, a switching circuit and an energy saving circuit. The inductance is charged when the switching circuit is conductive and discharges energy to the energy saving circuit and the inductive load when the switching circuit is nonconductive. The energy saving circuit discharges energy to the inductive load when the switching circuit is conductive.
    Type: Application
    Filed: November 28, 2014
    Publication date: May 28, 2015
    Inventors: Chi Ping SUN, Fei XIN, Xiu Wen YANG, Shing Hin YEUNG, Yun Long JIANG, Yan Yun CUI
  • Patent number: 9041322
    Abstract: An electric power tool is included in a plurality of types of electric power tools. The plurality of types of electric power tools comprise a plurality of types of battery packs having different rated output voltages and a plurality of types of tool bodies, the housings of which are equipped with an attached part on which each of the battery packs is mounted in a freely removable manner. The attached part possessed by the plurality of types of tool bodies equipped with motors having different voltage characteristics is formed so as to be able to mount an arbitrary one of the plurality of types of battery packs having different rated output voltages. This makes it possible to widen the range of available battery packs and enhance convenience.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: May 26, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hidenori Shimizu, Masaaki Sakaue, Naotake Tanaka, Masaki Ikeda, Masaaki Okada
  • Publication number: 20150137722
    Abstract: In a thyristor control device which converts a first AC voltage to a DC voltage and converts the DC voltage to a second AC voltage to be supplied to a synchronous motor, a DC voltage detector is configured to detect the DC voltage, and is provided with an AC voltage detector configured to detect the second AC voltage and an arithmetic circuit configured to determine the DC voltage on the basis of the second AC voltage detected by the AC voltage detector. As a result, there is no need to separately provide a DV voltage detector, which makes it possible to make the device compact in size and cheap in price.
    Type: Application
    Filed: May 11, 2012
    Publication date: May 21, 2015
    Applicant: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Hiroshi Ogino, Akinobu Ando, Yasuhiko Hosokawa
  • Patent number: 9030135
    Abstract: An electric power steering apparatus includes an EPS actuator that applies assist force to a steering system, and an ECU that controls operation of the EPS actuator. The ECU includes an inverter device, a gate driver circuit, a gate driver power source, a microcomputer, and the like. The microcomputer switches assist control to assist stop control, based on an indication of a voltage decrease in the gate driver power source.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: May 12, 2015
    Assignee: JTEKT Corporation
    Inventor: Hiroshi Kawamura
  • Patent number: 9024558
    Abstract: A bridge output circuit includes an output terminal, a high side transistor, a low side transistor, a high side driver for controlling a gate voltage of the high side transistor, a low side driver for controlling a gate voltage of the low side transistor, and a controller for controlling the high side and low side drivers. The low side driver includes a first current source, a second current source, and a first assist circuit. The controller is configured to control the turning-on and turning-off states of the first current source, the second current source and the first assist circuit.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: May 5, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Hisashi Sugie
  • Patent number: 9024557
    Abstract: A drive system for an electrical load such as an electric motor or generator comprises a PWM converter and a controller therefore. A signal indicative of a condition of the converter outpost is used in a controller to drive an optimal value of PWM switching frequency based on a load characteristic that is used to control the pulse switching frequency. The system takes account of the overall system in deriving an efficient PWM switching frequency.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: May 5, 2015
    Assignee: Control Techniques Ltd
    Inventor: Colin Hargis
  • Patent number: 9024554
    Abstract: A method for controlling an inverter in a system including a load, a motor for driving the load, and an inverter for operating the motor comprises when a load amount of the load is reduced to below a sleep level, checking whether a time corresponding to a sleep delay has lapsed; when the load amount of the load is still below the sleep level even after the sleep delay, varying an operating frequency of the motor, and if there is no change in a feedback from the load in response to the variation in the operating frequency, controlling the inverter to enter a sleep mode.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 5, 2015
    Assignee: LSIS Co., Ltd.
    Inventor: Hong Min Yun
  • Patent number: 9013129
    Abstract: An inverter device may include a converter unit configured to receive single phase AC power to output DC power; a capacitor unit configured to absorb the DC power; an inverter unit configured to synthesize the absorbed DC power to output the drive power of a load; and a converter controller configured to control the converter unit based on the AC power and the output DC power of the converter unit, wherein the converter controller includes a converter gate signal generator configured to control a plurality of gates contained in the converter unit; and an input line harmonic voltage generator configured to output converter additional power having a predetermined multiple of the frequency of the fundamental frequency component of the AC power with the same size as that of the fundamental frequency component of the AC power to an adder connected to the input side of the converter gate signal generator.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: April 21, 2015
    Assignee: LSIS Co., Ltd.
    Inventors: Seung Cheol Choi, Anno Yoo
  • Patent number: 9013125
    Abstract: An electric power converter of an electric rolling stock includes: a converter unit (a first electric-power converting unit) that receives a direct-current voltage and outputs a direct-current voltage controlled to a predetermined value; and an inverter unit (a second electric-power converting unit) that is connected to the output side of the converter unit and drives an electric motor. The converter unit includes a converter control unit (a first control unit) that, based on the input voltage thereof, generates an output voltage command that is a control command for controlling the condition of the output voltage of the converter unit.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: April 21, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hidetoshi Kitanaka
  • Patent number: 9000699
    Abstract: According to one illustrative embodiment, a washing machine comprises a motor including a plurality of coils and one or more permanent magnets, an inverter configured to supply current to the plurality of coils and to measure a back electromotive force (BEMF) waveform from the plurality of coils, and an electronic control unit (ECU) configured to (i) integrate the BEMF waveform to generate an integrated BEMF waveform, (ii) determine a magnetic flux of the one or more permanent magnets using an amplitude of the integrated BEMF waveform, and (iii) control the current supplied by the inverter based at least in part upon the determined magnetic flux.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 7, 2015
    Assignee: Whirlpool Corporation
    Inventors: Matheus A. Bevilaqua, Luiz V. Dokonal, Evandro J. Meurer, Fernando P. Silva, Marcelo C. Silva, Rodrigo S. Teixeira
  • Patent number: 9000702
    Abstract: A packaged device includes a first die, a second die, and specially spaced and positioned sets of package terminals. The first die includes a pulse-width modulator (PWM), a processor, a timer, high-side drivers, low-side drivers, and a fault protection circuit. The second die includes ultra-high voltage high-side drivers. In an ultra-high voltage application, the PWM and external circuitry together form a switching power supply that generates a high voltage. The high voltage powers external high-side transistors. The processor and timer control the ultra-high voltage high-side drivers, that in turn supply drive signals to the external high-side transistors through the package terminals. External low-side transistors are driven directly by low-side drivers of the first die. If the fault protection circuit detects an excessive current, then the fault protection circuit supplies a disable signal to high-side and low-side drivers of both dice.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Tsing Hsu
  • Publication number: 20150091484
    Abstract: Current source converters and control methods are presented for high dynamic performance by implementing a DC link current control loop parallel to one or more motor control loops, with a DC link current control command value for operating the current source rectifier being derived at least partially independent of the motor control command values, wherein certain implementations drive the current source rectifier to its maximum rated value, or the DC current command value can be set above an amount required by the current source inverter using a gain factor which can be fixed or can itself be adjusted based on one or more motor control error values for balancing as-needed dynamic performance and efficiency.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Semyon Royak, Manish Pande, Jingya Dai, Sang Woo Nam, Ehshan Al-Nabi
  • Patent number: 8994318
    Abstract: An electrical on-board network of a vehicle, having at least two power circuits and an electrical machine allocated to a drive of the vehicle. The electrical machine has at least two phase systems, connected to a respective inverter, and that at least one of the phase systems is capable of being electrically connected to at least one of the power circuits via the associated inverter. A method for operating an electrical on-board network of a vehicle is also described.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 31, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Kurfiss, Sven Finke
  • Patent number: 8994208
    Abstract: In a first aspect, the invention is directed to a circuit for powering a gate drive for an electric motor for a vehicle with an electric motor. The circuit provides a primary power supply and a secondary power supply that powers the gate drive in the event the primary power supply fails. The primary power supply may draw power from the 12V battery on the vehicle. The secondary power supply may draw power from a high voltage battery pack on the vehicle that is normally used to provide power to the electric motor. By providing the secondary power supply to the gate drive, a 3-phase short can be applied to the motor in the event that it is needed as a safety measure even if there is a failure in the primary power supply.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: March 31, 2015
    Assignee: Magna Electronics Inc.
    Inventor: Fengtai Huang
  • Patent number: 8988019
    Abstract: An electric operating machine comprising a motor and a power circuit driving the motor by the electric power supplied from a battery. The power circuit comprises a voltage conversion part converting an input voltage entered in accordance with a voltage of said battery to generate an output voltage and outputting said generated output voltage to said motor. The power circuit is structured so that the voltage value of said output voltage of said voltage conversion part is changeable.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Hitachi Koki Co., Ltd.
    Inventors: Kazuhiko Funabashi, Nobuhiro Takano
  • Patent number: 8981705
    Abstract: An inverter for a permanent magnet brushless dc machine, having a permanent magnet rotor and a set of stator windings, applies the full dc voltage provided to the inverter to each phase of the machine.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: March 17, 2015
    Assignee: Regal Beloit America, Inc.
    Inventor: Krishnan Ramu
  • Patent number: 8975847
    Abstract: A power conversion device includes a first capacitor connected in parallel to a direct-current power supply, plural power converters that drive plural synchronous machines, a second capacitor connected in parallel to a direct-current side of power converters, a switching circuit inserted between the first and second capacitors, a switch-start instruction unit that controls starting of an operation of the power converters, and a control unit that controls the power converters based on a motor velocity and a voltage of the first capacitor. The switch-start instruction unit turns off the switching circuit while the power converters stop, turns off the switching circuit until a terminal voltage of each of the synchronous machines becomes equal to a predetermined value when each of the power converters starts operating, and turns on the switching circuit when the terminal voltage of each synchronous machine becomes equal to or smaller than the predetermined value.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masaki Kono
  • Publication number: 20150061558
    Abstract: An electric compressor capable of discharging electric charges of a capacitor is provided. The electric compressor includes: a compressing unit; an electric motor for rotating the compressing unit; a driving circuit for driving the electric motor; a housing for accommodating the compressing unit and the electric motor; and an inverter cover for accommodating the driving circuit. An outline of the electric compressor is formed by the housing and the inverter cover. The driving circuit includes: an inverter circuit for receiving electric power from a power supply line; a capacitor circuit connected between the power supply line and a ground line; and an electrically discharging circuit, connected to the capacitor circuit, for discharging electric charges accumulated in the capacitor circuit. The electric compressor further includes a capacitor cover, disposed inside the inverter cover, for encompassing and accommodating at least the capacitor circuit and the electrically discharging circuit.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junya YANO, Ken SUITOU, Kazuhiro KUROKI
  • Patent number: 8970149
    Abstract: A motor circuit with power-off braking function includes a driving unit, a coil unit, and a braking unit. The driving unit includes a plurality of switch arms connected in parallel, with each switch arm having a series contact. The coil unit includes a plurality of coils and a central contact. Each coil includes an end connected to the series contact of one of the switch arms. The other end of each coil is connected to the central contact. The braking unit includes a brake loop switch coupled between the central contact of the coil unit and an end of the switch arms. When power is cut off, a plurality of brake loops is formed to share the transient current during braking.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Sunon Electronics (Kunshan) Co., Ltd.
    Inventors: Chung-Ken Cheng, Shou-Chien Chang, Chieh-Jen Yang
  • Patent number: 8963471
    Abstract: A controller for a DC motor comprises an output switching element configured to couple to the DC motor; an input switching element coupled to the output switching element; a pulse width modulated (PWM) signal coupled to a control terminal of the input switching element and a supply voltage applied to the output switching element. A resistive-capacitive (RC) network may be coupled to a control terminal of the output switching element, with the RC network being configured to integrate the PWM signal into a DC voltage. A first resistive network may be configured to set a bias for the output switching element when the input switching element is turned off, and a second resistive network may be configured to set the bias for the output switching element when the input switching element is turned on, such that the controller is effective to provide zero-to-full supply voltage control to the DC motor.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Western Digital Technologies, Inc.
    Inventor: Charles A. Neumann
  • Patent number: 8957617
    Abstract: The present invention discloses a controller and a method for improving motor driving efficiency. According to the present invention, multiple control parameters are inputted to the controller so that the controller can adjust timings of PWM driving signals for driving the motor to advance or delay the turned-ON or turned-OFF points, whereby the motor is driven efficiently.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: February 17, 2015
    Assignee: Padauk Technology Co., Ltd.
    Inventor: Mao-Hsin Cheng
  • Patent number: 8952641
    Abstract: Disclosed herein are a biasing circuit for a hall sensor and a hall amplifier in a motor driving circuit, the biasing circuit including: a regulator installed inside a singled packaged chip, supplied with external power, and regulating the external power in voltage appropriate for a circuit to supply the regulated voltage; the hall amplifier supplied with the voltage regulated from the regulator, receiving an output signal from the hall sensor outside the chip, and amplifying the output signal to output the amplified signal; first and second resistors supplied with the voltage from the regulator to generate an input voltage common mode (VCM) of the hall amplifier; and third and fourth resistors supplied with the voltage from the regulator to generate an input VCM of the hall sensor.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 10, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Soo Woong Lee, Joo Yul Ko
  • Patent number: 8947030
    Abstract: A load control device to control current flow to an AC load includes a circuit having line-side switches and floating-neutral side switches, along with a controller connected to the circuit that is programmed to control the circuit so as to cause each of the line-side switches and each of the floating-neutral side switches to switch between an On condition or an Off condition to selectively operate the circuit in an active mode and a free-wheeling mode. A full phase voltage is provided to the AC load during the active mode and a zero voltage is provided to the AC load during the free-wheeling mode. The controller applies a modulating function to the circuit, so as to modulate a supply voltage to control a frequency and an average of a load voltage present across terminals of the AC load, thereby enabling variable frequency operation of the AC load.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Eaton Corporation
    Inventors: Yakov Lvovich Familiant, Zeljko Radomir Jankovic, Bruno Patrice-Bernard Lequesne, Vijay Bhavaraju
  • Patent number: 8941340
    Abstract: A regenerative variable frequency drive includes an active converter connected to an inverter. The converter has a filter capacitor, an inductor, two half bridges, bus bars that connect to the inverter and bus capacitors. The converter converts single phase AC power to DC power and DC power to single phase AC power, boosts the AC power, reduces input line harmonics, maintains input current in phase with utility voltage in order to achieve near unity power factor, and maintains constant DC voltage between the bus bars.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: January 27, 2015
    Inventors: Larry G. Meiners, Theodore Clifton Pettyjohn, Jack Yongchen Yang, Peda V. Medagam
  • Patent number: 8941346
    Abstract: A control system (128) for controlling a switched reluctance (SR) machine (110) having a rotor (116) and a stator (118) is provided. The control system (128) may include a converter circuit (122) operatively coupled to the stator (118) and including a plurality of switches (132) in selective communication with each phase of the stator (118) and a controller (130) in communication with each of the stator (118) and the converter circuit (122). The controller (130) may be configured to determine a position of the rotor (116) relative to the stator (118), and generate a modulated switching frequency (152) based on the rotor position.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: January 27, 2015
    Assignee: Caterpillar Inc.
    Inventors: Brett Nee, Joshua Williams
  • Publication number: 20150008856
    Abstract: A multi-level medium-voltage inverter that receives three-phase power and outputs a three-phase voltage to a three-phase motor, includes: a plurality of unit power cells connected in series to output a single phase voltage, individual unit power cells each having a phase voltage forming a single level to configure multiple levels; and a module-type phase shift transformer configured to convert the three-phase power and applying the converted power to three unit power cells constituting one level, wherein the module-type phase shift transformer includes a plurality of modules.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 8, 2015
    Applicant: LSIS CO., LTD.
    Inventor: Anno YOO
  • Patent number: 8928264
    Abstract: According to typical examples, the first stator winding having the lower rated voltage is connected to the second direct-current voltage source only when the rotation speed of the rotating electrical machine becomes high. Therefore, output in a high-rotation range can be ensured while preventing the second stator winding from reaching a heat-generation limit. Furthermore, such switching operations can be actualized by the first switch and the second switch. Therefore, a control device of a rotating electrical machine can be actualized by a relatively simple configuration.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 6, 2015
    Assignee: Denso Corporation
    Inventor: Makoto Taniguchi
  • Patent number: 8917050
    Abstract: A power inverter is provided that can apply to an AC rotary machine three-phase voltages of high amplitudes and low distortion while suppressing ohmic loss attributed to current detection resisters. The power inverter includes a superimposed voltage command computing device which is configured to compute and output a superimposed voltage command depending on the difference between a maximum value and a minimum value of three-phase voltage commands; a voltage command modification device which is configured to add the superimposed voltage command to each of the three-phase voltage commands and outputting modified three-phase voltage commands; and a power output device which is configure to output the three-phase voltages based on the modified three-phase voltage commands.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: December 23, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiko Kimpara, Takayuki Kifuku, Tatsuya Mori
  • Patent number: 8917041
    Abstract: A phase-shift detection circuit detects a phase shift in motor driving, using pulse-shaped position detection signal Rd and measurement signal Ms. The position detection signal is based on sensor signal Hs from a position sensor disposed in a motor. The measurement signal is based on the induced voltage from windings. The phase-shift detection circuit includes a level difference calculator and a phase-shift calculator. The level difference calculator calculates a level difference between the level of measurement signal Ms at a rising timing of position detection signal Rd and the level of measurement signal Ms at a falling timing thereof. The phase-shift calculator calculates the amount of phase shifts based on the level difference.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenichi Kishimoto, Mineaki Isoda, Daisuke Sato, Ryuta Sasaki
  • Publication number: 20140368145
    Abstract: In a three phase inverter device, a smoothing capacitor, a bus bar at a positive electrode side and a bus bar at a negative electrode side are formed on a first surface of the circuit substrate. Electronic s components containing a microcomputer, etc., a differential wiring pattern, a single wiring pattern and a current wiring pattern are formed on a second surface of the circuit substrate. A ground pattern is formed in the inside of the circuit substrate in order to separate the electronic components, the differential wiring pattern, the single wiring pattern and the current wiring pattern from the smoothing capacitor, the bus bar at the positive electrode side and the bus bar at the negative electrode side.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Inventors: Jyunji Miyachi, Tsuneo Maebara, Yousuke Asako
  • Patent number: 8907605
    Abstract: A circuit structure applied to a motor and enabling upgraded MOS transistor heat dissipation ability is disclosed. The circuit structure includes a motor driving unit and a signal processing unit. The signal processing unit is connected to the motor driving unit for maintaining a first and a third switch of the motor driving unit at a constant turn-on voltage and boosting turn-on voltages of a second and a fourth switch of the motor driving unit, so as to effectively upgrade the heat dissipation ability of the first, second, third and fourth switches.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Asia Vital Components (China) Co., Ltd.
    Inventors: Bao-Lin Yao, Qing-Wu Hu
  • Publication number: 20140346989
    Abstract: A method of controlling a switching frequency of an inverter, the method comprising the steps of: measuring a signal indicative of a temperature variable at a first switching frequency to determine a measured temperature variable; comparing the measured temperature variable to a first threshold; determining if the measured temperature variable is above the first threshold; if the measured temperature variable is not above the first threshold, calculating the temperature variable at a second switching frequency; if the temperature variable calculated at the second switching frequency is less than the first threshold, setting the switching frequency of the inverter to the second switching frequency.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Inventor: Gareth Christopher James
  • Patent number: 8896252
    Abstract: An electric motor driving device that drives an electric motor including a field winding, a rotor and a stator, wherein the rotor and the stator each form a field pole by passing a field current through the field winding, includes: a power supply device; a converter including a reactor that at least partially serves as the field winding shared with the electric motor, and configured to receive a voltage from the power supply device to carry out voltage conversion between first and second power lines and to pass the field current through the field winding during voltage conversion operation; an inverter configured to convert a direct-current power received from the converter to an alternating-current power for driving the electric motor; and a controller controlling the converter so that a current flows through the field winding in the same direction both during power running and regeneration of the electric motor.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 25, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Nagoya Institute of Technology
    Inventors: Eiji Yamada, Ryoji Mizutani, Nobuyuki Matsui, Takashi Kosaka
  • Publication number: 20140340013
    Abstract: An electric motor with a stator having two coil sets arranged to produce a magnetic field of the motor, each coil set having a plurality of coil sub-sets; and two control devices, wherein the first control device is coupled to the plurality of coil sub-sets for the first coil set and the second control device is coupled to the plurality of coil sub-sets for the second coil set and each control device is arranged to control current in the respective plurality of coil sub-sets to generate a magnetic field in each coil sub-set to have a substantially different magnetic phase to the other one or more coil sub-sets in the respective coil set; and wherein the first control device and the second control device are mounted adjacent to the stator.
    Type: Application
    Filed: April 27, 2014
    Publication date: November 20, 2014
    Applicant: Protean Electric Ltd.
    Inventors: Yi Li, Jonathan Richard Meyer, Rupert Paul Kirby, Timothy John Martin
  • Patent number: 8890450
    Abstract: A motor control device includes an inverter circuit having switching elements on/off controlled according to a predetermined PWM signal pattern to convert an input direct current to three-phase alternating current supplied to drive an electric motor. A phase current of the motor is detected based on a detection of the input direct current and the PWM signal pattern. A PWM signal generation unit which generates a three-phase PWM signal pattern to enable detecting two-phase currents twice in synchronization with four time-points within a carrier wave period of the PWM signal respectively and so that a detection of current follows a magnetic pole position of the motor. A current differential unit supplies, as current differential values, differences between twice detected current values regarding the two phases respectively, and a magnetic pole position estimation unit estimates the magnetic pole position of the motor based on the current differential values.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Sari Maekawa
  • Patent number: 8891231
    Abstract: Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). The electronic device may also include a base portion and a lid portion coupled to the base portion at a hinge configured such that the base portion and the lid portion can rotate between an open configuration of the electronic device and a closed configuration of the electronic device. The lid portion can include at least one segment that is to raise at least a portion of the base portion in response to a rotation toward the open configuration (e.g., opening the lid portion to access a touchpad or a keyboard of the electronic device, or to see a display of the electronic device).
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: James M. Okuley, Kimi Jensen
  • Patent number: 8890455
    Abstract: Disclosed herein are electric vehicle control device which can distribute the heat generated by the semiconductor devices in the DC/AC converter efficiently. Also disclosed herein are methods of converting DC to AC while keeping the heat value of the semiconductor devices stable.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Toda, Ikuo Yasuoka, Yosuke Nakazawa
  • Patent number: 8886433
    Abstract: An electric braking control apparatus for controlling an electric braking apparatus which includes a brake pad, a motor which generates a rotational torque, and a rotation/linear motion conversion mechanism which causes the brake pad to generate a pressing force based on the torque. The braking control apparatus includes an inverter which converts and outputs an electric current supplied from a power supply to the motor, and a microcomputer that receives power from the power supply, detects the value of a voltage applied from the power supply to the inverter, and controls the electric current output from the inverter depending on a result of the detection.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: November 11, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yasufumi Konishi, Toshiyuki Innami, Satoru Kuragaki, Takafumi Suzuki
  • Patent number: 8884561
    Abstract: In the case where DC power from a DC power supply is converted to AC power by an inverter and supplied to an AC motor, a power compensator is connected in parallel with a DC power input portion of the inverter, and a control device of the power compensator charges/discharges a power storage device to perform a power compensation process A when power demand for the AC motor exceeds a predetermined value, and takes into account power allowance which can be inputted and outputted from the DC power supply to the power storage device and performs a power storage adjustment process B of performing auxiliary charge of the power storage device within the range of the power allowance when the power compensation process A is unnecessary.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Furutani, Akiko Tabuchi, Kazuhiko Tsutsui, Yoji Tsutsumishita, Jun Hattori, Manabu Ohashi
  • Patent number: 8884577
    Abstract: In a control apparatus for a rotary electric machine receiving power from a DC power supply, a DC-AC converting circuit is provided with serially connected circuits each having high-potential-side and low-potential-side switching elements. When a short-circuit occurs at the switching elements, all the switching elements are turned OFF for failsafe and a path connecting the machine and the battery is opened. In such a case, a switching element belonging to part of the switching elements is turned ON, with potential at all the terminals of the rotary electric machine being the same. A location of the short-circuit occurs is identified, based on changes in current passing through the machine and being detected in response to turning ON the switching element. The changes are at least one of a reduction change in deviation of the current from a zero point and a reduction change in an absolute value of the current.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 11, 2014
    Assignee: Denso Corporation
    Inventor: Hiroya Tsuji
  • Patent number: 8884560
    Abstract: An inverter device includes a plurality of switching circuits in which first switching elements including Si semiconductors and second switching element including WBG semiconductors having ON resistance smaller than that of the first switching elements and having switching speed higher than that of the first switching elements are connected in parallel. The inverter device includes a converting circuit that converts a direct-current voltage into a desired alternating-current voltage and a driving unit that generates a plurality of driving signals for respectively turning on and off the switching circuits. The inverter device includes, for each of the switching circuits, a gate circuit that, based on the driving signals, turns on the second switching element later than the first switching element and turns off the first switching element later than the second switching element.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Norikazu Ito
  • Patent number: 8878475
    Abstract: Techniques and apparatus for limiting the current through a motor, such as a motor for rotating a rotatable element of a hard drive. The current can be limited based on a threshold. A first threshold value can be set for a first time period. A second threshold value can be set for a second time period in which the current through the motor rises. The second threshold value is lower than the first threshold value. A spike in the supply current upon accelerating the rotatable element of the motor can thereby be reduced or eliminated.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: November 4, 2014
    Assignees: STMicroelectronics, Inc., STMicroelectronics S.R.L.
    Inventors: Frederic Bonvin, Diego Armaroli
  • Patent number: 8878470
    Abstract: An electric motor that includes an electronic motor controller is described. The electronic motor controller includes a motor management circuit and a power supply circuit physically separate from the motor management circuit. The motor management circuit includes an insulated metal substrate, driver components operably attached to the insulated metal substrate and operable to provide output signals for application to windings of the electric motor, at least one current sensor operable for sensing an amount of current applied to the windings of and electric motor, and at least one control device operably attached to the insulated metal substrate for controlling operation of the driver components. The power supply circuit includes a composite circuit card and power processing components operably attached to the circuit card and operable to convert an input voltage into at least one output voltage to be supplied to the motor management circuit.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 4, 2014
    Assignee: Regal Beloit America, Inc.
    Inventors: Steven Peter Camilleri, Lyell Douglas Embery, Byron John Kennedy
  • Patent number: 8878476
    Abstract: A PCU drives a motor generator using electric power from a power storage device. The PCU includes a power conversion device, a capacitor and a control unit. When detecting a crash, the control unit drives the power conversion device and discharges charges remaining in the capacitor. Each of a plurality of reverse conducting-type semiconductor elements included in the power conversion device is integrally formed of a first semiconductor element operating as a switching element and a second semiconductor element operating as a free wheeling diode. In response to detection of the crash of a vehicle, the control unit changes a voltage applied to a gate terminal of the first semiconductor element and increases an electric power loss during a current-circulating operation by the second semiconductor element. As a result, the remaining charges stored in the capacitor in the drive apparatus is discharged as soon as possible.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: November 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Hirose
  • Patent number: 8878474
    Abstract: Provided is a motor control device (10) for controlling a motor (5) provided with a plurality of sets of windings, in which, when a current control unit (23) detects a short-circuit failure as a primary failure, the current control unit (23) continues the control, and, further, when the current control unit (23) detects a secondary failure, the current control unit (23) provides control of opening a power supply relay (3). Accordingly, in a case where a failure of a winding of a motor or an inverter occurs, a torque pulsation is restrained and a sufficient output torque is provided, and further, in a case where a secondary failure occurs, excessive heat generation and current consumption are prevented and the cost of the device is reduced.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Isao Kezobo, Kosuke Nakano, Yoshihito Asao
  • Patent number: 8878482
    Abstract: A power converting apparatus includes a timing signal generator and a phase determination signal generator provided in an ON/OFF signal generating unit as well as a detected current correction unit. On the basis of timing signals ts1, . . . and phase determination signals ph1, . . . , the power converting apparatus determines detected current values and phases of the detected current values fed from a DC bus current sensor at timings set in accordance with the timing signals and corrects the detected current values idc1, . . . for the individual phases obtained at the individual timings during PWM cycles to represent values which would be obtained at reference timing t0 to thereby reduce errors caused by differences in the current detecting timings for the individual phases.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuya Kojima, Yoshihiko Kinpara
  • Publication number: 20140320049
    Abstract: An embodiment of the invention provides an AC motor that is driven by an AC voltage. The AC motor includes a motor coil, a switch circuit, a position detector and a controller. The motor coil receives the AC voltage to drive an axis of the motor. The switch circuit is coupled to the motor coil and controls a current passing through the motor coil. The position detector detects the position of a motor rotor to output a polarity signal. The controller controls the switch circuit according to the polarity signal and the AC voltage to make the current to be a first current with a first direction or a second current with a second direction.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 30, 2014
    Inventors: Yueh-Lung HUANG, Tsung-Jung HSIEH, Yen-Hung WU