Diverse High Side Or Low Side Switching Patents (Class 318/400.28)
  • Patent number: 7948194
    Abstract: An apparatus for monitoring current for a motor drive including at least high-side and low-side switching transistors includes a driver circuit for driving a gate of the low-side switching transistor. First circuitry measures a drain to source voltage across the low-side switching transistor and generates a voltage output responsive thereto. Second circuitry has a first state of operation that samples the voltage output of the first circuitry when the low-side switching transistor is turned on and has a second state of operation to sample the voltage output of the first circuitry when the low-side switching transistor is turned off. The second circuitry further generates a monitored output current responsive to the sampled voltage output.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 24, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Richard Ralph Garcia
  • Patent number: 7940020
    Abstract: A commutation circuit for driving a brushless DC motor is controlled according to a commutation cycle composed of alternating primary steps and transitional steps. The commutation circuit includes pairs of field effect transistors coupled in series between the high voltage and low voltage terminals of a DC power supply. Output terminals between each pair of transistors are individually coupled to the phases of a DC motor. A controller operates the commutation circuit to selectively set the phases at active and inactive states. The controller further employs a plurality of voltage control functions individually associated with the motor phases to selectively modulate the voltage applied to one of the phases during the active states, to provide transitional steps in the commutation cycle during which the applied voltage is modulated to reduce its magnitude with respect to the high voltage or the low voltage.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: May 10, 2011
    Assignee: The Bergquist Torrington Company
    Inventor: Robert G. Brown
  • Patent number: 7923955
    Abstract: A control circuit for an active engine mount is provided, including an electrical bridge circuit, and a pulse-width modulation (‘PWM’) circuit. The PWM circuit receives an input signal from a controller, and generates first and second PWM output signals. The first PWM signal, derived from the input signal, controls first and third switches of the electrical bridge circuit. The second PWM signal comprises a digitally inverted signal of the first PWM signal, and controls second and fourth switches of the electrical bridge circuit. First and second outputs of the bridge circuit are connectable to first and second terminals of the mount device. The controller receives an input signal from crank and cam sensors, as part of the control scheme.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: April 12, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Kwang-Keun Shin, David J. Verbrugge, Robert W. Leschuk
  • Patent number: 7863841
    Abstract: A method for driving a load by using an output stage amplifier in full bridge configuration whose supply is modulated by means of a fast switching power converter, controlled in order to maintain the stage's output common mode at its minimum voltage, is presented. The modulation of the switching power converter output is obtained by a feedback control system regulating directly the voltage of the bridge output stage terminals. This bridge unipolar class H stage allows driving the load with high accuracy and improved efficiency without introducing switching noise and EMI at the load terminals typical of PWM driving. This method can be applied with the same benefits to class AB, pseudo class AB or to class A output stages. When this method is associated with an imposed current driving approach and with a current oversampling digital to analog converter the resulting advantages are very significant for accurate motor control applications.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: January 4, 2011
    Inventors: Paolo Menegoli, Carl Sawtell
  • Patent number: 7847499
    Abstract: An electric load apparatus (100) includes a DC power source (B), a voltage sensor (10, 20), system relays (SR1, SR2), a capacitor (11, 13), a DC/DC converter (12), an inverter (14), a current sensor (24), a rotation sensor (25), a control apparatus (30), and an AC motor (M1). The control apparatus (30) restricts an increase amount of consumed power in the AC motor (M1) in a range in which the driving operation of the electric load apparatus (100) can be maintained, when the increase amount of the consumed power in the AC motor (M1) exceeds an allowable power that can be supplied from the capacitor (13) to the inverter (14).
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Nakamura, Sumikazu Shamoto, Eiji Sato, Ryoji Oki, Masayuki Komatsu
  • Publication number: 20100289440
    Abstract: An active pull-up system for use with a motor is described. The active pull-up system comprises: a first resistor coupled to an Output node; a first switch and a second resistor coupled in parallel with the first resistor, wherein the first switch is in series with the second resistor; a latch coupled to the first switch for either keeping the first switch open or closing the first switch in response to receiving a closing signal; and a threshold comparator coupled between the output node and the latch, wherein the threshold comparator transmits the closing signal when the output node exceeds a threshold value, which actively pulls up the output node.
    Type: Application
    Filed: January 15, 2010
    Publication date: November 18, 2010
    Inventors: Chuan Ni, Pauy Guan Tan
  • Publication number: 20100283419
    Abstract: A two-stranded electronically commutated DC motor has a permanent-magnet rotor (36), power supply terminals (28, 30) for connecting the motor to a current source (22) and a stator (102) having a winding arrangement which includes first and second winding strands (52, 54). The latter are controlled by respective first and second semiconductor switches (70, 80). The motor also has a third controllable semiconductor switch (50), arranged in a supply lead from one of the terminals (28, 30) to the winding strands (52, 54), which third switch is alternately switched on and off by applying to it a PWM (Pulse Width Modulated) signal 24. During switch-off intervals, magnetic flux energy stored in the motor causes a decaying loop current (i2) to run through the windings, continuing to drive the rotor. This facilitates conformal mapping of temperature information in the PWM signal onto a target motor rotation speed.
    Type: Application
    Filed: January 20, 2006
    Publication date: November 11, 2010
    Inventors: Claus Föll, Frank Jeske, Arnold Kuner, Jens Löffler
  • Publication number: 20100270959
    Abstract: A motor control device is electrically connected with a motor. The motor control device includes a controller and a driving circuit. The controller has a default value of time and generates a first driving signal and a second driving signal. The driving circuit includes a first switching element and a second switching element, the first switching element and the second switching element receive the first driving signal and the second driving signal respectively, and the first switching element and the second switching element are switched on or switched off alternately according to the first driving signal and the second driving signal respectively, so as to drive the motor to operate.
    Type: Application
    Filed: October 14, 2009
    Publication date: October 28, 2010
    Inventors: Yu-Liang Lin, Ming-Yen Lin, Chia-Wen Kuo, Kuan-Ting Lee
  • Patent number: 7795828
    Abstract: A DC motor comprises a stator having at least three windings coupled to a neutral point; a first pair of upper and lower switches for driving a first winding of the at least three windings to a first voltage or in tristate; a second pair of upper and lower switches for driving a second winding of the at least three windings to a second voltage or in tristate; a third pair of upper and lower switches for driving a third winding of the at least three windings to a third voltage or in tristate, one of the first, second or third windings being in tristate; a back electro-motive force (BEMF) signal generation circuit coupled to receive a BEMF voltage from the winding in tristate; a comparator coupled to receive the BEMF voltage and a zero-crossing voltage representing the voltage at the neutral point at a predetermined time and for comparing the BEMF voltage and the zero-crossing voltage to generate a comparison result; a zero-crossing voltage generation circuit to output the zero-crossing voltage to the comparato
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 14, 2010
    Assignee: Renesas Electronics America Inc.
    Inventors: Robert Proctor, Kevin P. King, Yashvant Jani
  • Patent number: 7782007
    Abstract: An electrodynamic machine has a winding and a switching arrangement effectively dividing the winding into individually controllable portions. During a first operating condition, current flows through the entire winding in a manner controlled by the switching arrangement. In a second condition, the switching arrangement restricts current flow to only a portion of the winding. The second condition effectively reduces the inductive capacity of the winding.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: August 24, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventor: David G. Halsey
  • Patent number: 7778529
    Abstract: A method is proposed for supplying electrical power to a DC motor (16) which can be commutated electronically via a semiconductor power output stage (28), preferably a three-phase DC motor, through which a control unit (22) passes current in blocks, corresponding to the signals from a rotor position sensor (20). Current is passed through the motor (16) variably in steps, in such a manner that the magnitude and/or the duration and/or the trigger angle of the current blocks can be varied as a function of the rotation speed and/or of the load, with respect to the profile of the induced voltage (E).
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 17, 2010
    Assignee: Robert Bosch GmbH
    Inventor: Torsten Wilharm
  • Publication number: 20100123419
    Abstract: A drive circuit having asymmetrical drivers. In an embodiment, a brushless DC motor may be driven by a drive circuit having three high-side MOSFETs and three low-side MOSFETs. A driver controller turns the MOSFETs on and off according to a drive algorithm such that phase currents are injected into motor coils to be driven. The high-side MOSFETs may be sized differently than the low-side MOSFETs. As such, when a MacDonald waveform (or similar drive algorithm) is used to drive the phases of the motor, less power may be required during disk spin-up because the MOSFETs that are on more (e.g., the low-side MOSFETs with a MacDonald waveform) may be sized larger than the MOSFETs that are on less (e.g., the high-side MOSFETs). In this manner, less power is dissipated in the larger size MOSFETs that are on more than the others.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 20, 2010
    Applicant: STMicroelectronics, Inc.
    Inventor: Frederic BONVIN
  • Patent number: 7609016
    Abstract: A control system includes a controller configured to provide a drive signal, and a switching device configured to generate an output control signal as a function of the drive signal in an on-state mode of operation. The control system also includes a timing network configured to receive the drive signal and output a gated signal to the switching device, wherein the gated signal maintains a relationship with a predetermined threshold during the on-state of operation of the switching device.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: October 27, 2009
    Assignee: Infineon Technologies AG
    Inventor: Richard Alan Kraus
  • Publication number: 20090218972
    Abstract: A reverse current detection apparatus determines whether an electrical conduction control to a motor coil of a motor is in a predetermined state based on a timing signal representing a timing at which to conduct a source current or a sink current through the motor coil and a control signal for a half bridge in a power stage, and compares the output voltage of the power stage with a threshold value, so as to detect the presence/absence of a reverse flow of a phase current based on these results. A motor driving apparatus for driving a motor under a PWM control includes a rectification switching section for switching a rectification scheme from one to another based on the reverse current detection apparatus and a detection result thereof.
    Type: Application
    Filed: February 20, 2009
    Publication date: September 3, 2009
    Inventors: Yasunori YAMAMOTO, Hisanori Nagase, Hideaki Mori
  • Publication number: 20090153084
    Abstract: In the motor drive apparatus, a Hall element outputs a first sinusoidal signal and a second sinusoidal signal, of mutually opposite phases, in accordance with rotor position. A hysteresis comparator compares the first sinusoidal signal and the second sinusoidal signal outputted from the Hall element, and outputs a rectangular wave signal. A pulse width modulation signal generation circuit detects timing at which phase switches, based on the first sinusoidal signal and the second sinusoidal signal outputted from the Hall element, and outputs a pulse width modulation signal in which duty ratio gradually changes, in a predetermined time-period in which the phase switches. A drive circuit combines the rectangular wave signal and the pulse width modulation signal by a logical operation, and drives the fan motor.
    Type: Application
    Filed: August 23, 2006
    Publication date: June 18, 2009
    Applicant: ROHM CO., LTD.
    Inventors: Tomofumi Mishima, Satoshi Miyajima
  • Patent number: 7545111
    Abstract: A method for testing electric motor shut-off including injecting current into an electric motor, applying at least one of a short or an open to the electric motor for a predetermined length of time, calculating the rate of decay of the current and comparing rate of the decay with a predetermined decay criteria. In one implementation, a predefined sequence of opening and short circuiting the electric motor is used, and the shut-off path tests for the motor three phases can be verified with one test.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 9, 2009
    Assignees: Chrysler LLC, GM Global Technology Operations, Daimler AG, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Zhenxing Fu, Marcus Heller