Electromotive Force Sensor (e.g., Back Or Counter Emf Sensor, Etc.) Patents (Class 318/400.34)
  • Patent number: 8283882
    Abstract: Analog control of the pulse width used to control the speed of a voice coil motor may be implemented using a “constant-current-charging-capacitor” configuration where the time needed to charge the capacitor is directly related to how far the actual motor speed is from the target speed. The BEMF voltage, indicative of motor speed, is sampled, and then stored in a storage capacitor, which is allowed to charge/discharge to a target voltage level. The time required to charge/discharge the capacitor to the target voltage is directly proportional to the difference between the BEMF voltage and the target voltage, and may be used directly as the pulse width (i.e., the charging time) in the PWM velocity control system. To avoid larger capacitors, a pulse multiplier circuit can be added, allowing charging/discharging the sampled voltage to the target voltage to be repeated by a number, N, of times.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 9, 2012
    Assignee: Marvell International Ltd.
    Inventors: Jye Sheng Hong, Siew Yong Chui
  • Patent number: 8274250
    Abstract: A method for controlling a direct current (DC) brushless motor, and a control circuit thereof are provided. The DC brushless motor is sensorless. In response to a digital output signal that is applied to drive the direct current brushless motor, detection of a back electromotive force (BEMF) is ceased in a predetermined time interval, so as to avoid detecting erroneous BEMF and keep normal operation of the direct current brushless motor.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 25, 2012
    Assignee: Feeling Technology Corp.
    Inventors: Hsuan-Chuan Chen, Wen-Jung Su
  • Patent number: 8269444
    Abstract: A system and a method for controlling a sensorless motor are disclosed, where the system includes a motor driver and a zero-crossing detector. The motor driver can drive the sensorless motor. The zero-crossing detector can detect a zero-crossing point when the voltage of one motor coil of the sensorless motor is in a blanking period.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: September 18, 2012
    Assignee: inergy Technology Inc.
    Inventors: Chien-Chung Tseng, Hsien-Wen Hsu, Chien-Jen Hsieh
  • Patent number: 8269440
    Abstract: A motor control system includes a power control module and a detection module. The power control module controls power applied to first and second stator coils of a motor to rotate a rotor. The rotor induces voltages in the first and second stator coils when the rotor is rotating. The detection module determines a first time when a first voltage is induced in the first stator coil and determines a second time when a second voltage is induced in the second stator coil after the first voltage is induced. The detection module determines a speed of the rotor based on a difference between the first and second time. The power control module applies current through the second stator coil a predetermined period after the second time. The power control module determines the predetermined period based on the speed of the rotor.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Marvell World Trade Ltd.
    Inventors: Foo Leng Leong, Edy Susanto, Ravishanker Krishnamoorthy
  • Patent number: 8269442
    Abstract: A brushless D.C. motor includes having a rotor and a plurality of stator windings that define a stator field when driven by a bridge circuit, where a microprocessor drives the bridge circuit using a pulse-width modulation logic. The brushless D.C. motor is driven by triggering a commutation of the stator field; voltage induced by rotating the rotor in a non-energized stator winding is monitored to determine whether the voltage reaches, exceeds or is below a threshold voltage. A delay time between triggering the commutation of the stator field and the voltage reaching, exceeding or being below the threshold voltage is determined; and using the determined delay time a triggering time point for a next commutation of the stator field.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: September 18, 2012
    Assignee: Micronas GmbH
    Inventors: Hans Spirk, Gualtiero Bagnuoli
  • Patent number: 8258732
    Abstract: A drive system of a permanent magnet motor is constituted of a mode switching trigger generator which monitors a state of a permanent magnet motor and issues a mode switching trigger, a conduction mode determining unit which receives the mode switching trigger and switches the mode of the permanent magnet motor, and a PWM generator which outputs a PWM signal to an inverter in accordance with the output of the conduction mode determining unit. The mode switching trigger is generated on condition that the speed electromotive force of the permanent magnet motor exceeds a constant or variable threshold value.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: September 4, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Iwaji, Yasuhiko Kokami, Minoru Kurosawa
  • Patent number: 8258734
    Abstract: An energy converter includes magnetic coils of N phases (N is an integer of 3 or more), and a PWM drive circuit for driving the magnetic coils of N phases, wherein the magnetic coil of each phase can be independently controlled by the PWM drive circuit.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 4, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Kesatoshi Takeuchi, Kazuyoshi Nakamura
  • Patent number: 8248011
    Abstract: A method for driving a two-phase brushless motor is disclosed. The motor includes a rotator with permanent magnetism and a stator including a first coil and a second coil. The method includes activating the two-phase brushless motor, detecting an output voltage of a disabled coil of the first coil and the second coil to generate a detection result, comparing the detection result and a reference voltage to determine a commutation time point between the first coil and the second coil, generating a commutation signal according to the commutation time point, and driving the two-phase brushless motor according to the commutation time point.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 21, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Sung-Ming Lai, Chia-Tai Yang
  • Patent number: 8242727
    Abstract: An information handling system includes a three phase brushless direct current motor and a motherboard which in turn includes a drive circuit. The three phase brushless direct current motor is configured to rotate a cooling fan in the information handling system based on a control signal. The drive circuit is connected to the three phase brushless direct current motor, and the drive circuit is configured to adjust the control signal sent to the three phase brushless direct current motor based on a back electromagnetic flux signal.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: August 14, 2012
    Assignee: Dell Products, LP
    Inventors: Andrew T. Sultenfuss, Mark L. Rehman
  • Publication number: 20120200246
    Abstract: A digital signal processor (DSP) is operable to receive a single-phase back electromotive force signal (back-EMF) fed back from a motor and control an inverter for driving the motor based on the single-phase back-EMF signal. The DSP includes an electrical angle building module, a rotation speed control module, and a pulse width modulation control module. In addition, the DSP further includes a field-weakening compensation module. The field-weakening compensation module is operable to automatically regulate an electrical angle based on a rotation speed of the motor and a set of predetermined compensation parameters so that the DSP can be operable to achieve an adaptive control. Furthermore, a motor control system and method are disclosed herein.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 9, 2012
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Cheng-Chung LI, Yungtaek JANG, Chang-Hsien TU, Yen-Heng LIN
  • Patent number: 8237396
    Abstract: A motor driving device includes a first power supply terminal, a second power supply terminal, a drive unit that is coupled to the first power supply terminal, the second power supply terminal, and a motor winding, a control unit that controls the drive unit, and a resistive element that is coupled between the drive unit and the first power supply terminal. The control unit makes the motor winding and the resistive element form a loop circuit when a voltage between the first power supply terminal and the second power supply terminal exceeds a predetermined value.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Satoshi Ikei
  • Patent number: 8237385
    Abstract: A system for determining a commutation state for a brushless DC motor includes a controller configured to control current that is applied to drive each of a plurality of phases of the motor. A time delay system is configured to measure, for a given commutation state, a time delay from when a voltage associated with a driven phase of the plurality of phases crosses a predetermined threshold and a voltage associated with a floating phase of the plurality of motor phases crosses the predetermined threshold. Logic is configured to determine the commutation state for the motor based on the measured time delay.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 7, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: David Ray Street
  • Patent number: 8222847
    Abstract: The invention relates to a device and a method for determining the rotational position of the rotor of an electric machine that has star-connected pole winding phases. The device is equipped with a unit for applying voltage pulses (14-16) to at least one of the phases (1-3) and a unit that evaluates the neutral point potentials generated by the voltage pulses (14-16). The invention is characterized by the provision of the aforementioned unit for applying time-delayed voltage pulses (14-16) to different phases (1-3) and the unit for producing at least one differential between the neutral point potentials generated by said voltage pulses.
    Type: Grant
    Filed: December 9, 2006
    Date of Patent: July 17, 2012
    Inventor: Rolf Strothmann
  • Publication number: 20120169260
    Abstract: The invention relates methods and devices for compensating for load factors in permanently excited motors, wherein the rotor position is determined from the inductivities of the phases. The methods and devices are characterized by a stabilization of the inductivity-based signals for the determination of the position of the rotor in permanently excited motors against load factors. To this end, advantageously current-dependent faults of the angular values determined during the operation of the motor are corrected. For this purpose, in order to correct the inductivity-based determination of the position of the rotor, in a measuring device either the phase currents are measured or the intermediate circuit current is captured.
    Type: Application
    Filed: June 22, 2010
    Publication date: July 5, 2012
    Applicant: GAERTNER-ELEKTRONIC-DESIGN GMBH
    Inventors: Alexander Scheit, Horst-Günter Seelig
  • Patent number: 8212504
    Abstract: An inverter controller for driving a brushless DC motor, of which rotor is provided with permanent magnets, includes an inverter circuit, a position sensing circuit, a DC voltage sensor, and a conduction angle controller. The inverter circuit is connected to the brushless DC motor for driving this motor. The position sensing circuit senses a rotor position with respect to a stator from an induction voltage of the brushless DC motor. The DC voltage sensor senses a voltage value of a DC power voltage supplied to the inverter circuit. The conduction angle controller changes a conduction angle of the inverter circuit within a range less than 180 degrees in electric angles in response to a rate of change in the DC power voltage.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 3, 2012
    Assignee: Panasonic Corporation
    Inventor: Hideharu Ogahara
  • Patent number: 8212508
    Abstract: In a three phase BLDC motor the rotor position is monitored by detecting the zero crossing points of the induced back EMF signals BEMF_U, BEMF_V, BEMF_W in the phase windings U, V, W. As they are illustrated, the back EMF signals are substantially sinusoidal but they may in other situations be substantially trapezoidal. The three back EMF signals are 120° out of phase with each other. In order to accurately monitor the back EMF in a phase winding, the driving waveform for each phase U, V, W includes an undriven period P close to the expected zero crossing point. The period P can be a preset part of the driving waveform or can be an interruption of the normal driving waveform in response to suitable interrupt signals. In order to determine the zero crossing points of each back EMF signal, two (or more) samples of the back EMF are taken during the undriven period P and used to interpolate the back EMF signal to determine the zero crossing point.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 3, 2012
    Assignee: Melexis NV
    Inventors: Christian Paintz, Thomas Freitag, Detlef Klose, Enrico Reinhardt
  • Patent number: 8207696
    Abstract: A system includes a speed control module, a repeatable component measuring module, and a repeatable component correcting module. The speed control module controls a speed of a motor based on an error signal generated based on a desired speed and back electromotive force. The error signal includes a repeatable component of noise. The repeatable component measuring module measures the repeatable component. The repeatable component correcting module corrects the repeatable component based on transfer characteristics of the speed control module and the motor and generates a corrected repeatable component.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 26, 2012
    Assignee: Marvell International Ltd.
    Inventor: Kiyotada Ito
  • Patent number: 8203297
    Abstract: The motor control apparatus includes a power supply function of supplying electric power from a power supply to a motor, a rotational position detecting function of performing detection of a rotational position of a rotor of the motor for respective phases of the motor, and outputting first rotational position data indicative of result of the detection, a control function of controlling a power supply operation of the power supply function in accordance with the first rotational position data, and an induced voltage detecting function of performing detection of induced voltages of the respective phases of the motor. The control function controls the power supply operation of the power supply function in accordance with result of the detection performed by the induced voltage detecting function when the first rotational position data are abnormal.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 19, 2012
    Assignee: Denso Corporation
    Inventors: Taizo Kondo, Hideki Kabune
  • Patent number: 8198842
    Abstract: The invention relates to a method for operating an actuating drive having an electrically commutated motor 1 for adjusting an actuating member, having a position sensor 6 for detecting the rotary angle position of the rotor of the motor or of an element which can be driven in a rotatable manner by said motor. A motor control unit 9 serves to commutate the motor 1 and to regulate the position of the actuating member, it being possible to supply position signals, which correspond to the position values detected by the position sensor 6, to the motor control unit 9. After the actuating drive is started, uncompensated measured values are detected by the position sensor 6 over at least one full revolution of the rotor or of the element which can be driven in a rotatable manner; corresponding correction values for compensating angle errors are formed in a compensation unit 11.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: June 12, 2012
    Assignee: Continental Automotive GmbH
    Inventor: Werner Wallrafen
  • Patent number: 8198853
    Abstract: A motor speed controller and a method of controller a speed of a motor are provided. The system and method include a motor and a motor controller that monitors operation of the motor based on electromotive force (EMF) conditions of the motor. The motor controller cuts a voltage to the motor, measures an electromotive force (EMF) of the motor at a predetermined time after the cutting of the voltage to the motor, and compares the measured electromotive force (EMF) to a table.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: June 12, 2012
    Assignee: BSH Home Appliances Corporation
    Inventor: George Savitz
  • Publication number: 20120139464
    Abstract: A synchronous reluctance motor comprises a stator (2) having at least one pair of poles and a plurality (ns) of grooves (3) for each pair of poles, a transverse-laminated rotor (5) with a plurality of disk-line sheet metal members (7, 7?, 7?, . . . ) of predetermined outside diameter (D), each having a plurality of adjacent slots (8, 8?, . . . ; 9, 9?, . . . ; 10, 10?, . . . ; 11, 11?, . . . ) and a central through hole (12) of predetermined inside diameter (d), each slot (8, 8?, . . . ; 9, 9?, . . . ; 10, 10?, . . . ; 11, 11?, . . . ) having a substantially curved elongate shape, symmetrical with respect to a radius, with end portions closed at the edge (13) of a corresponding sheet element (7, 7?, 7?, . . . ) to define corresponding ribs (14, 14?, 14?), which are adapted to be magnetically saturated to be equivalent to rotor slots. At least one first portion of the sheet elements (7, 7?, 7?, . . . ) has a ratio of the inside diameter (d) to the outside diameter (D) equal to or greater than 0.
    Type: Application
    Filed: May 17, 2010
    Publication date: June 7, 2012
    Applicant: REEL S.R.L.
    Inventors: Davor Filipeti, Boris Karuzic, Ezio Bertotto
  • Patent number: 8188700
    Abstract: An apparatus and a method for driving a sensorless motor are described and shown in the specification and drawings, where the method includes steps as follows. First, a control signal is acquired, where the control signal has information of a predetermined rotational speed. Next, energy is supplied and progressively increased to the sensorless motor, so as to rotate a rotor of the sensorless motor. Then, a position of the rotor is detected. Finally, the energy is gradually regulated so that the sensorless motor is maintained at the predetermined rotational speed.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: May 29, 2012
    Assignee: inergy Technology Inc.
    Inventors: Chien-Chung Tseng, Hsien-Wen Hsu, Chien-Jen Hsieh
  • Patent number: 8188696
    Abstract: A motor drive circuit includes an H-bridge circuit, voltage difference detection circuit, calibration circuit, back electromotive voltage detection circuit, control circuit, and calibration value acquisition circuit. The H-bridge circuit is connected to a DC motor. The voltage difference detection circuit outputs terminal voltage according to voltage difference occurring between both terminals of the DC motor. The calibration circuit outputs calibration voltage according to the resistance component. The back electromotive voltage detection circuit outputs voltage according to the difference between the terminal voltage and the calibration voltage, as detection voltage indicating back electromotive voltage. The control circuit drives the H-bridge circuit by pulse width modulation.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Tatsuro Shimizu
  • Publication number: 20120130153
    Abstract: A portable external device for a mechanical circulation support system includes first and second power sources, e.g. batteries and control electronics for redundant uninterrupted operation of an implantable blood pump. The control and power source module may be configured to accommodate a variety of wearable configurations for patient convenience and comfort.
    Type: Application
    Filed: March 4, 2011
    Publication date: May 24, 2012
    Applicant: Minnetronix Inc.
    Inventors: Nathan J. Bolyard, Don W. E. Evans, Thomas P. Sutera
  • Patent number: 8183805
    Abstract: The control system comprises a switch (TR) in series with a stator winding (W) between two terminals (A, B) connected to an alternating supply voltage source (V), a first detector circuit (2) capable of providing a signal (Voi) indicating when the current (I) in that winding (W) is zero, a second detector circuit (1) capable of providing a signal (Vw) indicating the magnitude of the supply voltage (V), and a control unit (MC) connected to the first and second detection circuits (2; 1) and designed to control the switch (TR) in such a way as to cause an alternating current (I) of the same frequency as the supply voltage (V) and having alternating positive and negative phases (11, 12) to pass through the winding (W), separated by intervals during which it remains at zero, of a duration (tp) which varies according to an increasing function of the magnitude of the supply voltage (V).
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: May 22, 2012
    Assignee: Askoll P&C S.r.l.
    Inventors: Sebastiano Acquaviva, Piergiorgio Ricco
  • Patent number: 8183807
    Abstract: A motor driving method for driving a direct-current (DC) motor, designed for avoiding a reverse current induced by the Back Electromotive Force (BEMF), includes providing a driver circuit for driving the DC motor; comparing a signal level of a terminal of the DC motor and a predetermined voltage value to produce a comparing result; and controlling a specific lower gate switch to avoid the occurrence of a reverse current of the DC motor according to the comparing result.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 22, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Ming-Jung Tsai, Ching-Sheng Li, Kun-Min Chen
  • Patent number: 8183806
    Abstract: A back EMF signal from PWM driven motor is passed through an attenuation circuit. The attenuation circuit has a first mode of operation and a second mode of operation. The first mode of operation, used to sample a higher voltage back EMF signal during PWM on-time, applies the back EMF signal to a resistive divider formed of a first resistor and second resistor connected in series. The second mode of operation, used to sample a lower voltage back EMF signal during PWM off-time, applies the back EMF signal to a circuit comprised of a transistor conduction path in series with the second resistor. A control signal, responsive PWM on-time and off-time state, controls switching between the first and second modes.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: May 22, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Dennis C. Nolan
  • Patent number: 8174223
    Abstract: In a method of detecting synchronization loss in a stepping motor, a means for applying either control current or control voltage to a coil of each phase to thereby drive a stepping motor and a means for individually measuring a back EMF voltage induced at the coil of each phase are employed, wherein application of either the control current or the control voltage at the coil of each phase is halted by turns phase by phase for such a short time period as not to affect rotation of a rotor of the stepping motor at a predetermined timing within one step period of the rotor, the back EMF voltage at the coil is measured during the short time period, and the stepping motor is judged to lose synchronization when the measurement result of the back EMF voltage at the coil of at least one phase satisfies a detection criterion.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 8, 2012
    Assignee: Minebea Co., Ltd.
    Inventors: Kazuo Takada, Takayuki Matsui, Haruka Miyaji
  • Patent number: 8164291
    Abstract: An apparatus for starting a direct current brushless motor and a method thereof are provided. The direct current brushless motor comprises a plurality of windings. The control apparatus comprises a sense amplifier, a differential circuit, and a control circuit. The sense amplifier is configured to detect a first back electro-motive force of a non-electrified first winding. The differential circuit is configured to calculate a differential value of the first back electro-motive force. The control circuit is configured to provide a current to two of the windings and to switch the current to another two of the windings to start the direct current brushless motor.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: April 24, 2012
    Assignee: Feeling Technology Corp.
    Inventors: Hsuan-Chuan Chen, Teng-Tsai Lin
  • Patent number: 8164285
    Abstract: A system includes a power control module, a period determination module, and a control module. The power control module controls current through stator coils of a motor to rotate a rotor. The period determination module determines a first length of time between a first set of induced stator coil voltages and determines a second length of time between a second set of induced stator coil voltages. The control module determines whether an external disturbance disturbs rotation of the rotor based on a difference between the first and second lengths of time.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: April 24, 2012
    Assignee: Marvell World Trade Ltd.
    Inventors: Foo Leng Leong, Edy Susanto, Ravishanker Krishnamoorthy
  • Publication number: 20120086375
    Abstract: Problems to be Solved To provide is a motor control device capable of detecting a rotor position of a synchronous motor under a certain accuracy and a low processing load. Means for Solving the Problems The motor control device detects the rotor position ?m by directly finding a rotor position ?m from a rotor position expression (?m=?i???90°) containing, as a variable, a current electrical angle ?i from among a phase current peak value Ip and a phase current electrical angle ?i detected in a phase current peak value and electrical angle detection unit 19 and an induced voltage peak value Ep and an induced voltage electrical angle ?e detected in an induced voltage peak value and electrical angle detection unit 20, and containing, as a variable, a current phase ? capable of being selected using [a phase current peak value Ip] and [an induced voltage electrical angle ?e?a phase current electrical angle ?i] as parameters from a predefined data table.
    Type: Application
    Filed: June 16, 2010
    Publication date: April 12, 2012
    Applicant: SANDEN CORPORATION
    Inventor: Daisuke Hirono
  • Patent number: 8148928
    Abstract: A method for starting a brushless DC motor. A rotor is aligned with a stator in accordance with a predetermined phase. After alignment, the rotor is positioned in accordance with another phase, two phases are skipped, a timer is set to a first count time, and the rotor is aligned with the stator in accordance with a third phase. Then the timer is restarted and the rotor is aligned with the stator in accordance with a fourth phase. After a first delay, first back electromotive force value is stored. The timer is stopped when the first back electromotive force value substantially equals a peak amplitude of opposite polarity. The timer is updated to a second count time that is substantially equal to a time at which the second timer was stopped. The process is repeated until the rotor has a position and a velocity that are suitable for normal operation.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: François Laulanet, Hendrik Paul Judith De Vloed
  • Publication number: 20120074887
    Abstract: A back EMF measuring method for multi-phase BLDC motor is proposed, which includes a driving process and a measuring process. The driving process energizes a plurality of phase windings of a detected motor by driving signals generated by a computing unit to rotate a rotor of the detected motor to a predetermined speed. The measuring process selects one of the phase windings as a target phase winding, continuously sends the driving signals to the phase windings other than the target phase winding but stops the driving signal sent to the target phase winding by the computing unit, and measures the back EMF of the target phase winding by a signal sensing unit.
    Type: Application
    Filed: August 19, 2011
    Publication date: March 29, 2012
    Inventors: Guo-Jhih Yan, Kai-Hsiung Chang, Sheng-Chan Yen, Yen-Chih Liu, Jia-Chang Chen
  • Publication number: 20120062160
    Abstract: A permanent magnet motor for position sensorless drive operation provides a stator design that exhibits a saliency (machine asymmetric) functionally dependent on rotor position as caused by periodic magnetic saturation of stator structure. This saturation property is caused by rotor zigzag leakage flux from surface permanent magnets. The stator structure may be designed to further saturate from zigzag leakage flux to provide greatest spatial saliency in the quadrature phase for motor position sensorless position estimation. The position, velocity, and shaft torque can be extracted by measuring the phase current from the stator coil of permanent magnet motor.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Shih-Chin Yang, Takhiro Suzuki, Robert Donald Lorenz, Thomas Merlin Jahns
  • Publication number: 20120049776
    Abstract: A control method for a sensor-less, brushless, three-phase DC motor. The stator coil in the electromagnets inside the motor may be used as the inductive element through which a voltage regulator can regulate the current as a means of regulating the output voltage. The value of the control signal provided to the drivers controlling power to the coils may be calculated based on at least the rail voltage, as measured in real time. This allows for a wide variation of input voltages, while maintaining a relatively constant output power to the motor. In general, by taking into account the value of the rail voltage when determining the final value of the control signal that is applied to the stator coils, the maximum current through the stator coils may be scaled to the same magnitude current that would be expected to flow through the coils if the rail voltage were the rated (nominal) fan/motor voltage, even when the actual rail voltage is different, e.g. higher than the rated fan/motor voltage.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventor: Lynn R. Kern
  • Patent number: 8125170
    Abstract: A system and technique for measuring the mutual inductance in a switched reluctance machine (SRM). In a first example embodiment of the technique, a voltage pulse is applied to primary coil when the machine is stationery. By measuring current in the primary coil and measuring induced voltages in adjacent open circuited coils mutual inductance may be determined. In another example embodiment, a voltage pulse is applied to the primary coil when the machine is stationery. The secondary coil is allowed to freewheel current through the phase. By measuring time taken by the primary phase to reach a preset value, the mutual inductance for the known position of a rotor can be determined.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 28, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: Babak Fahimi, Umamaheshwar Krishnamurthy
  • Publication number: 20120043919
    Abstract: A method of the Pulse Amplitude Modulation for the Sensorless Brushless motor, which includes a start-up circuit, a phase detect circuit, a phase commutation circuit, a driving circuit, BEMF detection circuit, and frequency detector, utilizes the control signal of the phase commutation circuit to control the driving circuit so as to drive the outer motor coil and detect the control signal for the driving motor driving circuit by a detection circuit. The motor system can be controlled to reduce the discharge speed to avoid the motor driving circuit shutdown and further speed up the start-up time for the next charging period of the motor driving circuit to achieve the effect of low speed rotation and power saving.
    Type: Application
    Filed: December 16, 2010
    Publication date: February 23, 2012
    Inventors: Teng-Hui Lee, Chan-Chih Liu
  • Patent number: 8115428
    Abstract: A control system for an electric motor is arranged to determine the position of the motor from at least one electrical parameter by means of a position determining algorithm. It is further arranged to monitor at least one algorithm parameter defined by the algorithm and if the monitored parameter meets a predetermined fault condition to generate a fault indication.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 14, 2012
    Assignee: TRW Limited
    Inventors: Connel Brett Williams, Christopher David Dixon
  • Patent number: 8115436
    Abstract: In a motor control apparatus, apparatus all switching devices of all phases of an inverter are kept fixed at OFF in accordance with a value of an all-OFF control pulse signal Poff outputted by a pulse generator. The pulse generator generates at least twice a pulse causing an induced voltage detection signal Pdet to change to an H level. A terminal voltage of a motor is inputted in accordance with the value of the induced voltage detection signal Pdet. Data of the sampling round in which amplitude of the induced voltage signal is great and the signal is not in saturation is selected from the data so inputted and a rotor position is estimated.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: February 14, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoshi Sakamoto, Tomohiro Sugino
  • Patent number: 8093847
    Abstract: A back electromotive force detection circuit detects a zero-crossing point by comparing a back electromotive force Vu in at least one coil of a motor with a center tap voltage at a common node of the coils, and outputs a back electromotive force detection signal. A switching control circuit controls switching states of multiple switching circuits based upon the back electromotive force detection signal, thereby adjusting the current flowing through the coils. A window generating circuit outputs a window signal at a predetermined level during a period obtained by multiplying the cycle of the back electromotive force detection signal by a predetermined coefficient before the detection of the zero-crossing point. The switching control circuit stops the switching operation during a period in which the window signal is maintained at the predetermined level, thereby setting the state to the high impedance state that corresponds to a non-driving period.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: January 10, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Yoshito Otaguro
  • Publication number: 20110316463
    Abstract: Disclosed is a current source inverter device which controls the power factor in an arbitrarily configurable manner without a magnetic pole position detector. The device is provided with a current source inverter; a motor supplied with alternating current power from the current source inverter; and a control means which detects the terminal voltage of the motor, calculates the motor's internal induced voltage and the motor current that flows in the motor based on the detected terminal voltage, and controls the current source inverter. The control means calculates the phase difference (?c) between the terminal voltage and the motor current, the phase difference (?x) between the motor current and the internal induced voltage, and the phase difference (?v) between the terminal voltage and the internal induced voltage.
    Type: Application
    Filed: March 5, 2010
    Publication date: December 29, 2011
    Inventors: Takashi Yamaguchi, Yugo Tadano, Toru Kakebayashi
  • Patent number: 8084970
    Abstract: An electrical machine having a stator and a rotor. The stator includes a core and a plurality of windings disposed on the core in a multiple-phase arrangement. The rotor is disposed adjacent to the stator to interact with the stator. A method of operating the motor includes applying a pulsed voltage differential to first and second terminals of the windings resulting in movement of the rotor; monitoring the back electromotive force (BEMF) of the windings to sense rotor movement; after the applying and monitoring steps, monitoring the BEMF of the windings to determine whether the rotor is rotating in a desired direction, and electrically commutating the motor when the rotor is rotating in the desired direction and zero or more other conditions exist.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 27, 2011
    Assignee: Regal Beloit EPC Inc.
    Inventors: Paul Steven Mullin, Brian Thomas Branecky
  • Patent number: 8076898
    Abstract: The invention relates to electric engineering, in particular to methods for controlling an ac electronic motor. The inventive control method consists in starting and rotating a rotor upon EMF signals in current-free sections of an armature winding, in converting the EMF signals into discrete logical level signals by a normalizer, in detecting switching points by means of a microcontroller and in displacing said points according to a load current quantity, the rotor speed of rotation and the inductance of the armature winding sections, wherein the switching points are calculated and displaced with respect to bridging times of the free sections EMF whose voltage levels are different from zero. The inventive device is characterized in that it comprises a reference level displacing unit (26), which is arranged in the normalizer between a divider 22 and a comparator unit (23) and which consists of a current sensor (27), a voltage sensor (27), two adders (29, 30) and an inverter (31).
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: December 13, 2011
    Assignee: Oilfield Equipment Development Center Limited
    Inventors: Andreiy Vladimirovich Sagalovskiiy, Juliiy Abelevich Aranson, Vladimir Iosifovich Sagalovskiiy, Ol'ga Nikolaevna Gmyzina, Dmitriiy Aleksandrovich Shkad'
  • Publication number: 20110285337
    Abstract: A control device of a synchronous machine is disclosed. The control device includes an inverter configured to provide an output current to a synchronous machine. A controller configured to control the output current and to estimate a voltage command, at least in part, by using pulse width modulation to choose a non-zero vector at a time when the inverter is not driving the synchronous machine with the output current. The estimating the voltage command is performed without using a zero vector. A phase angle and angular velocity estimating section configured to estimate a phase angle and an angular velocity of a rotor of the synchronous machine based, at least in part, on an inductance value, an induction voltage value, the voltage command, and the output current. The controller is further configured to control the output current based, at least in part, on the phase angle and the angular velocity.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Inventors: Shun Taniguchi, Kazuya Yasui, Kazuaki Yuuki, Yosuke Nakazawa
  • Patent number: 8063599
    Abstract: A motor control device includes a rotation speed control circuit, a voltage transforming circuit, a buffering circuit and a driving circuit. The rotation speed control circuit provides a rotation speed control signal. The voltage transforming circuit is electrically connected to the rotation speed control circuit and transforms the rotation speed control signal to a speed control voltage signal. The buffering circuit, electrically connected to the voltage transforming circuit, receives the speed control voltage signal and delays or buffers output of the speed control voltage signal. The driving circuit, electrically connected to the buffering circuit, receives the speed control voltage signal from the buffering circuit and generates a driving signal according to the speed control voltage signal so as to control the operation of the motor.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: November 22, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Yung-Ping Lin, Yong-Yuan Yang, Bao-Qi Shi
  • Patent number: 8054023
    Abstract: A method of driving a sensorless brushless motor in PWM mode includes tristating a winding during a time window for detecting a zero-cross of the back electromotive force induced in the winding by rotation of a rotor, monitoring voltage of the tristated winding during an unmasked portion of the time window, and detecting during the time window a zero-cross event of the induced back electromotive force. The method includes verifying whether the zero-cross event occurred during the unmasked portion, modifying for the next cycle the duration of the time window and/or of the unmasked portion thereof based upon the verification, defining a safety interval in the unmasked time window, modifying the duration of the time window and/or of the unmasked portion thereof depending on whether the zero-cross event has been detected during the safety interval.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: November 8, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Michele Cassiano, Ezio Galbiati
  • Patent number: 8054024
    Abstract: A brushless motor driven by a sensorless driving circuit includes a rotating body capable of being rotated about a center axis; a rotor magnet arranged coaxially with the rotating body; a stator disposed opposite the rotor magnet; and at least one coil wound around the stator. The brushless motor is driven according to a signal containing a third harmonic component relative to a fundamental wave component in an induced electromotive force. Further, an amplitude ratio of the third harmonic component to the fundamental wave component in the induced electromotive force generated in the coil preferably is about 1% or higher.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 8, 2011
    Assignee: Nidec Corporation
    Inventors: Shigeo Hayashi, Yosuke Kawano, Satoshi Komatsu
  • Patent number: 8054022
    Abstract: A disk drive is disclosed comprising a disk, a head actuated over the disk, and a spindle motor for rotating the disk, wherein the spindle motor comprises a plurality of windings. During a spin-up operation of the disk, a sinusoidal driving signal is applied to each winding of the spindle motor for a spin-up interval, wherein during at least eighty percent of the spin-up interval the sinusoidal driving signals are applied to the windings of the spindle motor open loop.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 8, 2011
    Assignee: Western Digital Technologies, Inc.
    Inventors: Robert P. Ryan, Brett A. Henne, Steven Nemshick
  • Patent number: 8049449
    Abstract: In a brushless motor for an electric power steering device having a configuration of 2 poles and 3 slots, or of an integral multiple thereof, a stator coil is supplied with current containing a higher harmonic component. A difference of 0.5% to 1.5% is provided between the higher harmonic component content rate of the stator coil current and the higher harmonic component content rate of the induced electromotive force generated in the stator coil with rotation of a permanent magnet, thereby mitigating the influence by an armature reaction generated in the induced electromotive force to reduce torque ripples. The difference between the higher harmonic component content rates is set on the basis of a change that occurs in the induced electromotive force due to the armature reaction at a time of supplying electricity to the armature coil.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Mitsuba Corporation
    Inventors: Masayuki Okubo, Takeshi Yamazaki, Youichirou Shikine
  • Patent number: 8040095
    Abstract: The method of synchronizing sequential phase switchings in driving stator windings of a multiphase sensorless brushless motor with a reconstructed information on the current angular position of a permanent magnet rotor, includes sampling on a currently non-conductive stator winding a voltage induced thereon by the resultant magnetic field produced by the drive current forced through currently conductive stator windings that inverts its sign when the rotor transitions across a plurality of significant angular positions, at which orthogonality between the resultant magnetic field and a magnetic axis of the non-excited winding verifies.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: October 18, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventor: Michele Boscolo Berto