With Multimode Control (e.g., Course-fine, Position-force, Etc.) Patents (Class 318/568.17)
  • Patent number: 7957835
    Abstract: Technology is provided that can compute a center of gravity pathway for a robot in which the ZMP matches the target ZMP, even if the robot is caused to perform a crouching movement during a single leg ground phase.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: June 7, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Suga, Ryosuke Tajima
  • Patent number: 7949430
    Abstract: A legged robot subjected to a force is controlled by determining an instantaneous capture point where the robot will step with a swing leg to reach a balanced home position, the balanced home position being a state in which the Center of Mass remains substantially over the Center of Pressure and the robot is able to maintain its balance indefinitely. The capture point can be determined using a Linear Inverted Pendulum Plus Flywheel (LIPPF) model of the robot. The LIPPF model includes a flywheel with a mass and a rotational inertia, and a variable length leg link. A torque profile is applied to the flywheel and a set of capture points is determined based on this torque profile An experimentally determined error value can be added to a capture point that is determined based on the model to account for differences between an actual robot and the model.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: May 24, 2011
    Assignees: Honda Motor Co., Ltd., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Jerry Pratt, Ambarish Goswami
  • Patent number: 7944166
    Abstract: Stabilization of a stage in a movable stage apparatus is enhanced, and increasing in size of the movable stage apparatus is suppressed. A reaction force cancel system is provided in the movable stage apparatus where a stage moves on a surface plate installed on a floor via a vibration-isolating spring, and cancels a reaction force generated on the surface plate upon movement of the stage. The reaction force cancel system includes a reaction force canceling actuator for applying a counter-thrust that is a force for reducing the reaction force to the surface plate. The reaction force canceling actuator is arranged at a lower position than a top surface of the surface plate so that the surface plate hangs over the reaction force canceling actuator.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: May 17, 2011
    Assignee: Sumitomo Heavy Industries
    Inventors: Takuya Hosobata, Kazuya Hioki
  • Patent number: 7923956
    Abstract: A control device, for a servo die cushion, capable of improving a response after overshoot generated by collision of a slide and a die cushion. The control device has a local maximum point judging part which judges a local maximum point based on the detected speed of the servomotor; a speed correction value calculating part which calculates a speed correction value for the servomotor based on the judgment result and the detected speed of the slide; a second force commanding part which generates a second force command value, the second force command value decreasing from an initial value to a first force command value, the initial value being equal to the force detected value when reaching generally the local maximum point. The force command value is switched from the first force command value to the second force command value, when the force detected value reaches the local maximum point.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Fanuc Ltd
    Inventors: Yasusuke Iwashita, Tadashi Okita, Hiroyuki Kawamura, Satoshi Ikai
  • Patent number: 7873436
    Abstract: When the placement of the elements (mass points, links having inertia, etc.) of a model expressing a robot 1 is determined according to a first geometric restrictive condition from an instantaneous desired motion of the robot 1 that has been created using a dynamic model, this placement is defined as a first placement, and the placement determined according to a second geometric restrictive condition from a corrected instantaneous desired motion that has been obtained by correcting the instantaneous desired motion is defined as a second placement. The corrected instantaneous desired motion is determined such that the moment component calculated from the difference between the first and the second placements approximates a predetermined value. The instantaneous desired motion is created using a dynamic model of the robot.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: January 18, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Toru Takenaka
  • Patent number: 7853356
    Abstract: An apparatus and a method for optimizing robot performance includes a computer connected to the robot controller for receiving performance data of the robot as the controller executes a path program. The computer uses the performance data, user specified optimization objectives and constraints and a kinematic/dynamic simulator to generate a new set of control system parameters to replace the default set in the controller. The computer repeats the process until the new set of control system parameters is optimized.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 14, 2010
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jason Tsai, Yi Sun, Sai-Kai Cheng, Min Ren Jean, Hadi Akeel
  • Patent number: 7848849
    Abstract: A controller of a leg type moving robot determines an action force to be input to an object dynamic model 2 such that a motion state amount (object model velocity) of the object dynamic model 2 follows a desired motion state amount based on a moving plan of an object, and also determines a manipulated variable of the motion state amount (object model velocity) of the object dynamic model 2 such that the difference between an actual object position and a desired object position approximates zero, and then inputs the determined action force and manipulated variable to the object dynamic model 2 to sequentially determine the desired object position. Further, a desired object reaction force to a robot from the object is determined from the determined reaction force.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: December 7, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tadaaki Hasegawa
  • Patent number: 7835822
    Abstract: Systems and methods are presented that enable a legged robot to maintain its balance when subjected to an unexpected force. In the reflex phase, the robot withstands the immediate effect of the force by yielding to it. In one embodiment, during the reflex phase, the control system determines an instruction that will cause the robot to perform a movement that generates a negative rate of change of the robot's angular momentum at its centroid in a magnitude large enough to compensate for the destabilizing effect of the force. In the recovery phase, the robot recovers its posture after having moved during the reflex phase. In one embodiment, the robot returns to a statically stable upright posture that maximizes the robot's potential energy. In one embodiment, during the recovery phase, the control system determines an instruction that will cause the robot to perform a movement that increases its potential energy.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ambarish Goswami, Muhammad E. Abdallah
  • Patent number: 7805220
    Abstract: A robot cleaner is described that cleans a room using a serpentine room clean and a serpentine localized clean. Sensors can include an object following sensor, a stairway detector and bumper sensors.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: September 28, 2010
    Assignee: Sharper Image Acquisition LLC
    Inventors: Charles E. Taylor, Andrew J. Parker, Shek Fai Lau, Eric C. Blair, Andrew Heninger, Eric Ng
  • Patent number: 7801644
    Abstract: The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David J. Bruemmer, Douglas A. Few
  • Patent number: 7761184
    Abstract: A robot apparatus capable of offering significantly improved safety and a control method thereof by detecting a safety level status and a safety level of the safety level status and then, in response, taking prescribed countermeasures. In addition, in a movable robot apparatus and its control method, a safety level status detecting means for detecting a safety level status and a control means for performing a control process so as to implement prescribed countermeasures depending on the position of the safety level status detected by the safety level status detecting means are provided. Further, in a robot apparatus and its control method, a safety level involving an object and movable parts is detected when the object is detected, and the movable parts are moved so as to mitigate or avoid the danger based on the detected safety level and a determined action.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: July 20, 2010
    Assignee: Sony Corporation
    Inventors: Tomohisa Moridaira, Seiji Tamura
  • Patent number: 7729821
    Abstract: When dot-sequential data indicating a temporal variation in position, speed, or acceleration is stored in a memory in an automated guided vehicle as it is, the capacity of the memory is insufficient and thus needs to be increased. A pattern is mounted in a stacker crane 1; the pattern is drawn by dot-sequential data indicating a temporal variation in acceleration (FIG. 2C), and corresponds to an instruction value provided to an actuator installed in the stacker crane 1. In this case, a curve function corresponding to an approximate expression for the dot-sequential data is derived in a form of a Fourier series having a finite number of terms and using time as an independent variable and the position, speed, or acceleration as a dependent variable. Data identifying the Fourier series, having a finite number of terms, is stored in a memory 5 mounted in the stacker crane 1.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: June 1, 2010
    Assignee: Murata Kikai Kabushiki Kaisha
    Inventors: Toshiki Moriguchi, Takeshi Murakami
  • Patent number: 7715945
    Abstract: By using a first dynamic model of a moving robot 1, a provisional motion, which indicates a provisional value of a desired motion of the robot 1, is created such that a desired value of a floor reaction force moment horizontal component and a permissible range of a translational floor reaction force horizontal component are satisfied on the first dynamic model. The difference between a floor reaction force produced on a second dynamic model, which has a dynamic accuracy that is higher than that of the first dynamic model, by the provisional motion and a floor reaction force produced on the first dynamic model is defined as a floor reaction force error. Based on this floor reaction force error, the provisional motion is corrected on the first dynamic model to generate a desired motion. The desired motion is generated such that the value obtained by adding the floor reaction force error to the floor reaction force generated on the first dynamic model satisfies the aforesaid desired value and permissible range.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 11, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7715944
    Abstract: The placement of the elements (mass points or rigid bodies having inertia) of a model expressing a robot 1 determined according to a first geometric restrictive condition from an instantaneous desired motion of the robot 1 is defined as a first placement, and provisional corrected instantaneous desired motions corresponding to a second placement and a third placement having predetermined relationships with the first placement are determined. The position/posture of a predetermined part 3 (body) of the robot 1 are determined by weighted averages of the position/posture of the aforesaid provisional corrected instantaneous desired motions. Thus, the motion of an instantaneous desired gait created using a dynamic model is properly corrected thereby achieving both improved dynamic accuracy between the motion and a floor reaction force of the instantaneous desired gait and a minimized change in the posture of a predetermined part, such as the body, of the robot without using a dynamic model.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: May 11, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7710060
    Abstract: The invention relates to a method for managing systems provided with redundant actuators of the type comprising at least a first system operating according to a first set of variables, representative of a physical quantity to be controlled and a second system operating according to a second set of said variables, representative of a physical quantity to be controlled, said first set of variables and second set of variables identifying one or more redundant variables. The method comprises the operations of commanding the actuators of the system through a numeric control unit and a servo control module to follow trajectories of the variables as a function of a set sequence.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: May 4, 2010
    Assignees: Prima Industrie S.p.A., Sintesi ScpA
    Inventors: Matteo Cardinale, Emanuele Carpanzano, Massimiliano Carracoi, Michele De Chirico, Antonella Lacasella, Saverio Masotti, Ernesto Mininno
  • Patent number: 7705552
    Abstract: A robotic system is provided that enables easy manipulation and various operations. A walking operation allocated to a manipulated switch operation section is performed. Meanwhile, the right ankle roll axis control motor, the left ankle roll axis control motor, right hip joint roll axis control motor, and the left hip joint roll axis control motor are driven according to the operation amount of a manipulated analog operation section. Thus, the barycentric position of the robot is shifted to change the traveling direction of walking.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: April 27, 2010
    Assignee: Futaba Corporation
    Inventors: Masayuki Miyashige, Yasuyuki Suzuki, Chihiro Uemura
  • Patent number: 7706920
    Abstract: A method for controlling movement of movable object having a plurality of movable subcomponents comprises receiving an instruction configured to generate a defined movement of a selected subcomponent of the movable object between a first state and a second state. The method further comprises determining whether execution of the defined movement results in the selected subcomponent leaving a motion space associated with the selected subcomponent. The motion space is defined by a motion space boundary. The method further comprises producing a modified instruction configured to generate a modified movement of the selected subcomponent between the first state and the second state. Execution of the modified movement results in the selected subcomponent remaining within the motion space. At least a portion of the modified movement deviates from the defined movement.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 27, 2010
    Assignee: Disney Enterprises, Inc.
    Inventor: Alexis Paul Wieland
  • Patent number: 7664570
    Abstract: The safety in robotic operations is enhanced and the floor space in a factory or the like is effectively utilized. A virtual safety barrier 50 including the trajectory of movement of a work or tool 7 mounted on a wrist 5 of a robot 1 in operation is defined in a memory. At least two three-dimensional spatial regions S (S1 to S3) including a part of the robot including the work or tool are defined. Predicted positions of the defined three-dimensional spatial regions obtained by trajectory calculations are matched with the virtual safety barrier 50, and if the predicted position of any one of the defined three-dimensional spatial regions based on trajectory calculations is included in the virtual safety barrier 50, a control is effected to stop the movement of the robot arms 3 and 4.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 16, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazutsugu Suita, Morihiko Okura
  • Patent number: 7660650
    Abstract: The present invention relates to a self-propelled working robot, including a first distance sensor 4a and a second distance sensor 4b (4c) for measuring the distance to an obstacle W in front of the robot. The robot includes first determination means for comparing a first measured distance Dc to the obstacle obtained by the first distance sensor 4a with a predetermined first threshold value to determine the proximity to the obstacle W, second determination means for comparing a second measured distance Dr (DL) to the obstacle W obtained by the second distance sensor 4b (4c) with a predetermined second threshold value to determine the proximity to the obstacle, and changing means for changing the first or second threshold value based on information regarding an inclination angle of the obstacle W obtained from the first and second measured distances.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: February 9, 2010
    Assignee: Figla Co., Ltd.
    Inventors: Nobukazu Kawagoe, Shiegeru Oyokota
  • Patent number: 7657345
    Abstract: The motion of the movable sections of the robot is taken for a periodic motion so that the attitude of the robot can be stably controlled in a broad sense of the word by regulating the transfer of the movable sections. More specifically, one or more than one phase generators are used for the robot system and one of the plurality of controllers is selected depending on the generated phase. Then, the controller controls the drive of the movable sections according to continuous phase information. Additionally, the actual phase is estimated from the physical system and the frequency and the phase of the phase generator are regulated by using the estimated value, while the physical phase and the phase generator of the robot system are subjected to mutual entrainment so that consequently, it is possible to control the motion of the robot by effectively using the dynamics of the robot.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: February 2, 2010
    Assignees: Sony Corporation, Advanced Telecommunications Research Institute International
    Inventors: Gen Endo, Mitsuo Kawato, Gordon Cheng, Jun Nakanishi, Jun Morimoto
  • Patent number: 7643903
    Abstract: While a biped walking mobile body is in a motion, such as level-ground walking, the position of the center of gravity (G0) of the biped walking mobile body, the position of an ankle joint (12) of each leg (2), and the position of a metatarsophalangeal joint (13a) of a foot (13) are successively grasped. The horizontal position of any one of the center of gravity (G0), the ankle joint (12), and the metatarsophalangeal joint (13a) is estimated as the horizontal position of a floor reaction force acting point on the basis of the combination of the contact or no contact with the ground at a spot directly below the metatarsophalangeal joint 13a of the foot 13 and a spot directly below the ankle joint 12, which is detected by ground contact sensors 51f and 51r, respectively, provided on the sole of the foot 13. The vertical position of the floor reaction force acting point is estimated on the basis of the vertical distance from the ankle joint (12) to a ground contact surface.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: January 5, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventor: Masakazu Kawai
  • Patent number: 7638965
    Abstract: A velocity control loop of a motor control apparatus including a notch filter. The notch filter attenuates a signal component at a central frequency from a motor driving command, and outputs the attenuated motor driving command. The driving of a motor is controlled based on the attenuated motor driving command. The central frequency of the notch filter is set equal to a frequency at which a phase of open loop frequency characteristics of the velocity control loop that does not include a notch filter is a value obtained by subtracting 180 degrees from a preset phase margin. An attenuation factor of the notch filter by which the signal component at the central frequency is attenuated is set so that a gradient of a phase diagram of the open loop frequency characteristics of the velocity control loop including the notch filter is substantially zero.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 29, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohiro Miyazaki
  • Patent number: 7634327
    Abstract: The present invention provides a synchro-drive mobile robot base which allows a robot to accomplish a 360° endless rotation through a triple shaft mechanism, while a turret, a steering unit and a drive unit are decoupled from each other. The mobile robot base includes the turret (34) having thereon a turret motor (33), a drive motor (29) and a steering motor (19); the steering unit (10) which has a differential gear unit and transmits an actuating force generated from the steering motor (29) to a wheel case (41); a drive unit (20) which has a differential gear unit and transmits an actuating force generated from the drive motor (29) to the wheel (42); and a turret rotating unit (30) which transmits an actuating force generated from the turret motor (33) to the turret (34).
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 15, 2009
    Assignee: Hanool Robotics Corp
    Inventors: Ui-Jung Jung, Goon Ho Choi, Byung Soo Kim
  • Patent number: 7606634
    Abstract: Ground contact portions 10 are classified into a tree structure such that each of the ground contact portions 10 of a mobile body 1 (mobile robot) equipped with three or more ground contact portions 10 becomes a leaf node and that an intermediate node exists between the leaf node and a root node having all the leaf nodes as its descendant nodes. On each node (a C-th node) having child nodes, the correction amounts of the desired relative heights of the ground contact portions 10 of the C-th node are determined such that the relative relationship among the actual node floor reaction forces of the child nodes of the C-th node approximates the relative relationship among the desired node floor reaction forces of the child nodes of the C-th node, and joints of the mobile body 1 are operated so that a desired relative height obtained by combining the correction amounts is satisfied.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: October 20, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7603199
    Abstract: Ground contact portions are categorized in a tree structure manner such that all of the ground contact portions of a mobile body (mobile robot) equipped with three or more ground contact portions become leaf nodes and that an intermediate node exists between the leaf nodes and a root node having all the leaf nodes as its descendant nodes. On each node (a C-th node) having child nodes, the correction amounts of the desired relative heights of the ground contact portions of the C-th node are determined such that at least the difference between an actual posture inclination and a desired posture inclination of a predetermined portion, such as a base body, (posture inclination difference) is approximated to zero, and joints of the mobile body 1 are operated so that a desired relative height obtained by combining the correction amounts is satisfied.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 13, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7570006
    Abstract: A computer (20) that determines a sequence of control vectors (16) using predetermined functional instructions. Each vector includes a number of vector elements (17). Each vector element (17) is designed for a maximum of one final drive unit (2 to 4) of a machine (1). Each control vector (16) comprises at least one vector element (17) for each final drive unit (2 to 4) of the machine (1). There is at least one positioning element (s*) for each final drive unit (2 to 4). The computer (20) stores the determined sequence of control vectors (16) as a control file (11). Once the file has been transmitted to a control unit (6) of the machine (1), the control unit retrieves the control file (11) and executes the stored sequence of control vectors (16). The control unit staggers the execution of successive control vectors (16) by a predetermined clock interval (delta t).
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: August 4, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jochen Bretschneider
  • Patent number: 7558647
    Abstract: In a robot arm controlling device, a mechanical impedance set value of the arm is set by an object property-concordant impedance setting device based on information of an object property database in which information associated with properties of an object being gripped by the arm is recorded, and a mechanical impedance value of the arm is controlled to the set mechanical impedance set value by an impedance controlling device.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 7, 2009
    Assignee: Panasonic Corporation
    Inventor: Yasunao Okazaki
  • Patent number: 7546179
    Abstract: A method and apparatus allowing a mobile robot to return to a designated location the method including: calculating a first direction angle of the mobile robot at a second location arrived at after the mobile robot travels a predetermined distance from the first location; determining whether the mobile robot approaches or moves away from the designated location, at a third location arrived at after the mobile robot rotates by the first direction angle and then travels a predetermined distance; and if the result of the determination indicates that the mobile robot approaches the docking station, controlling the mobile robot to travel according to the first direction angle, and if the result indicates the mobile robot moves away from the docking station, calculating a second direction angle of the mobile robot at the third location, and controlling the mobile robot to travel according to the second direction angle.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: June 9, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-ki Lee, Sun-gi Hong, Seok-won Bang, Il-hwan Kim, Ki-wan Choi
  • Patent number: 7526693
    Abstract: A circuit that includes a controller and at least one control I/O pin. When the controller is placed into an initial state, the controller initializes the circuit into an initial operation mode. Depending on whether or not signal(s) satisfying predetermined criteria are applied to at least one of the control I/O pins, the controller will cause the circuit to enter one of two or more post-initial operation modes. Accordingly, by initializing the controller, and by controlling a signal on the control I/O pin(s), the operating mode of the circuit may be controlled. In one embodiment, a given control pin might be configurable to be both analog and digital, depending on the circuit's operation mode.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 28, 2009
    Assignee: Semiconductor Components Industries, LLC
    Inventors: David J. Willis, Matthew Austin Tyler, Justin Mark Gedge, Mark R. Whitaker
  • Patent number: 7501780
    Abstract: A docking system includes: a station including: a light emitter comprising light emitting elements arranged in a circular arc form so as to cause optical axes of light generated from the light emitting elements to pass through a curvature center of the circular arc; and a self-moving robot including: a body part having a circular arc part being substantially the same in curvature radius as the circular arc of the station; a movement mechanism attached to the body part to move the body part and capable of causing the body part to conduct on-the-spot rotation at a curvature center of the circular arc part; light receivers attached to the body part to receive a light signal from the light emitter; a direction detector detecting a direction in which the light signal is emitted; and a controller controlling the movement mechanism to move the body part in the direction detected by the direction detector.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: March 10, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisuke Yamamoto
  • Patent number: 7498759
    Abstract: An end effector of a robot tool that includes accelerometers and methods to sense end effector motion. A semiconductor substrate or similar object may be supported by the end effector. Motion of the end effector and associated substrate movement may be transduced and sampled according to specified conditions. The sampled data may be processed, stored and analyzed for subsequent use, and/or may be used in near real time to control end effector movement. Sampled data representative of mechanical events associated with end effector movement may be communicated to a remotely operated processor system.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: March 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Matthew T. Nelson, Kent C. McBride, Paul L. Taylor
  • Patent number: 7496428
    Abstract: A desired gait is generated so as to satisfy a dynamical equilibrium condition concerning the resultant force of gravity and an inertial force applied to a legged mobile robot 1 using a dynamics model which describes a relationship among at least a horizontal translation movement of a body 24 of the robot 1, a posture varying movement in which the posture of a predetermined part, such as the body 24, of the robot 1 is varied while keeping the center of gravity of the robot 1 substantially unchanged and floor reaction forces generated due to the movements and is defined on the assumption that a total floor reaction force generated due to a combined movement of the movements is represented as a linear coupling of the floor reaction forces associated with the movements. The dynamics model represents movements as a movement of a body material particle or the like and a rotational movement of a flywheel.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: February 24, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7466099
    Abstract: The present invention relates to a manipulator arm and drive system that can be operated in multiple modes, including an on or off mode, referred to herein as a “rate mode” or a spatially correspondent (“SC”) mode. The multi-mode manipulator arm and drive system of the present invention can be hydraulically operated subsea.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: December 16, 2008
    Assignee: Oceaneering International, Inc.
    Inventor: Richard W. McCoy, Jr.
  • Patent number: 7460974
    Abstract: A multiple-point smoothing method for motor-speed estimation. The output of an encoder is over-sampled to obtain over-sampled position differences according to an over-sampling factor M. The over-sampled position differences are averaged to obtain an initial speed estimation. The initial speed estimation is low-pass filtered to obtain a final speed estimation. The final speed estimation is sent to a speed controller to control the speed of a motor. Alternatively, in a composite multiple-point smoothing scheme, the initial speed estimations based on two over-sampling factors are obtained. One of the initial speed estimations is selected based on an average of the two estimations, and the selected initial speed estimation is further processed to obtain a final speed estimation. The method of the present invention can reduce ripple in estimated speed of motor when the motor is operated at high speed.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: December 2, 2008
    Assignee: Delta Electronics, Inc.
    Inventors: Jia-Ming Wu, Po-Ming Chen, Dong-Hai Wang
  • Patent number: 7443124
    Abstract: In order to improve the safety of a machine, particularly a robot, such as a multiaxial or multiaxle industrial robot during the operation thereof, particularly in the presence of human beings, the invention provides a method for operating the machine, which is characterized in that at least one path section is traversed in monitored manner in a reference trip, that movement-characteristic operating values are continuously measured and stored as reference values and that during machine operation said operating values are also determined and compared with the stored reference values. The invention also relates to a device for performing the method.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: October 28, 2008
    Assignee: KUKA Roboter GmbH
    Inventors: Rainer Bischoff, Jens Bunsendal, Gerhard Hietmann
  • Patent number: 7437214
    Abstract: A legged mobile robot can calculate the movement amount between a portion of the robot apparatus that had been in contact with a floor up to now and a next portion of the robot apparatus in contact with the floor using kinematics and to switch transformation to a coordinate system serving as an observation reference as a result of the switching between the floor contact portions.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: October 14, 2008
    Assignee: Sony Corporation
    Inventors: Kohtaro Sabe, Takeshi Ohashi, Kenta Kawamoto
  • Patent number: 7430455
    Abstract: A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem aimed at the surface for detecting the surface. The sensor subsystem includes an emitter which emits a signal having a field of emission and a photon detector having a field of view which intersects the field of emission at a region. The subsystem detects the presence of an object proximate the mobile robot and determines a value of a signal corresponding to the object. It compares the value to a predetermined value, moves the mobile robot in response to the comparison, and updates the predetermined value upon the occurrence of an event.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: September 30, 2008
    Assignee: iRobot Corporation
    Inventors: Christopher Casey, Matthew Cross, Daniel Ozick, Joseph L. Jones
  • Patent number: 7415321
    Abstract: Realized is a robot controller capable of handling a large amount of data of images and so on necessary for advanced intelligence of control while securing a real-time performance with a simple structure. For this purpose, there are provided a motion control device for performing a calculation process for achieving motion control of an object to be controlled, a recognition and planning device for performing task and motion planning of the object to be controlled and recognition of outside world, an input/output interface for outputting a command to the object to be controlled and receiving as input, a state of the object to be controlled, and a route selecting device for controlling communications by switching connections among the motion control device the recognition and planning device, and the input/output interface.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 19, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasunao Okazaki, Kazuyuki Sakiyama, Katsuhiko Asai, Masaki Yamamoto
  • Patent number: 7409265
    Abstract: It is arranged such that displacement sensors (70) are installed at a position in or vicinity of elastic members (382), to generate outputs indicating a displacement of the floor contact end of a foot (22) relative to a second joint (18, 20), and a floor reaction force acting on the foot is calculated based on the outputs of the displacement sensors by using a model describing a relationship between the displacement and stress generated in the elastic members in response to the displacement, thereby enabling to achieve accurate calculation of the floor reaction force and more stable walking of a legged mobile robot (1). Further, a dual sensory system is constituted by combining different types of detectors, thereby enabling to enhance the detection accuracy. Furthermore, since it self-diagnoses whether abnormality or degradation occurs in the displacement sensors etc. and performs temperature compensation without using a temperature sensor, the detection accuracy can be further enhanced.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: August 5, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Hiroshi Gomi, Satoshi Shigemi, Takashi Matsumoto
  • Patent number: 7401880
    Abstract: A system and method of determining paper system position and velocity are provided. The method includes receiving a first data triplet at a first time. The first data triplet includes data related to a first coarse digital position, a first channel X analog voltage and a first channel Y analog voltage. The method also includes storing the first time and the first data triplet. The method further includes receiving a second data triplet at a second time. The second data triplet includes data related to a second digital position, a second X analog voltage and a second Y analog voltage. The method also includes evaluating a control loop associated with controlling paper position and velocity. Evaluating the control loop includes determining a velocity of the paper based on the first data triplet, the second data triplet, the first time and the second time.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: July 22, 2008
    Assignee: Sigmatel, Inc.
    Inventor: Derek T. Walton
  • Patent number: 7400939
    Abstract: A motion equation with a boundary condition regarding a future center-of-gravity horizontal trajectory of a robot is solved so that the moment around a horizontal axis at a point within a support polygon is zero when the robot is in contact with a floor or so that horizontal translational force is zero when the robot is not in contact with the floor and so that connection is made to a current horizontal position and speed of the center of gravity. In addition, a motion equation with a boundary condition regarding a future center-of-gravity vertical trajectory of the robot is solved so that vertical translational force acting upon the robot other than gravity is zero when the robot is not in contact with the floor and so that connection is made to a current vertical position and speed of the center of gravity.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: July 15, 2008
    Assignee: Sony Corporation
    Inventor: Kenichiro Nagasaka
  • Publication number: 20080150467
    Abstract: A robot of a robot system performs a desired operation by an operation motor and moves along a route by a movement motor. The robot system includes a robot power cutoff device for cutting off the power supply to the operation motor when making the robot move from one station to another station across the worker passage, a cutoff state monitoring device for monitoring the cutoff state of the power supply to the operation motor, and an emergency stop device. The emergency stop device cuts off the power supply to the movement motor so as to make the robot stop on an emergency basis, when it is detected that the power supply to the operation motor has not been cut off and the robot enters the predetermined section above the worker passage.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 26, 2008
    Applicant: FANUC LTD
    Inventors: Yoshiki HASHIMOTO, Yoshiyuki KUBO
  • Patent number: 7379789
    Abstract: A permissible range of a restriction object amount, which is a vertical component of a floor reaction force moment or a component of the floor reaction force moment in floor surface normal line direction, or a vertical component of an angular momentum changing rate of the robot or a component of the angular momentum changing rate in floor surface normal line direction, is set, and at least a provisional instantaneous value of a desired motion is input to a dynamic model so as to determine an instantaneous value of a model restriction object amount as an output of the dynamic model. An instantaneous value of a desired motion is determined by correcting the provisional instantaneous value of the desired motion such that at least the instantaneous value of the model restriction object amount falls within the permissible range.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 27, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7366587
    Abstract: The characteristics of actuators themselves and the characteristics of controllers for the actuators are dynamically or statically controlled to achieve stable and highly efficient movements. In a stage in which a leg in the flight state is uplifted such that the reactive force from the floor received by the foot sole of the leg is zero, the characteristics of the respective actuators for the knee joint pitch axis and the ankle pitch and roll axes of the leg in the flight state are set for decreasing the low range gain, increasing the quantity of phase lead and for decreasing the viscous resistance of the actuators, in order to impart mechanical passiveness and fast response characteristics. The followup control for the high frequency range may be achieved as the force of impact at the instant of touchdown is buffered.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 29, 2008
    Assignees: Sony Corporation
    Inventors: Masatsugu Iribe, Jinichi Yamaguchi
  • Patent number: 7337039
    Abstract: There are provided device for determining a desired trajectory of a translation floor reaction force's vertical component of a legged mobile robot 1, a vertical component of the total center-of-gravity acceleration or a body acceleration vertical component of the robot 1, device for determining a desired vertical position of the total center-of-gravity of the robot 1 or a body 24 thereof so as to satisfy the desired trajectory, and means for determining a desired vertical position of the total center-of-gravity of the robot 1 or the body 24 thereof based on a geometrical condition concerning a joint of a leg 2. Depending on the gait mode, such as walking or running, one of the desired vertical positions is selected, or the desired vertical positions are combined by taking the weighted average thereof or the like, thereby determining a final desired vertical position.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: February 26, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7337040
    Abstract: Based on a detected or estimated value of an actual posture of a predetermined part, such as a body 3, of a robot 1 and a deviation the actual posture from a posture of a desired gait, a posture rotational deviation's variation is determined as the temporal variation of the deviation, and the position of the robot 1 (for example, the position where the robot comes into contact with a floor) is estimated on the assumption that the robot 1 rotates about a rotation center by the rotational deviation's variation. In addition, in accordance with the difference between the estimated position and the estimated position of the robot 1 determined by an inertial navigation method using an accelerometer or the like, the estimated position of the robot 1 determined by the inertial navigation method is corrected, thereby improving the precision of the estimated position.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: February 26, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto
  • Patent number: 7328087
    Abstract: A bipedal robot of the present invention has a trunk consisting of an upper trunk and a lower trunk which are rotatable around a rotation axis relative to one another. The upper trunk has shoulders on the right and left sides. An arm is provided at each shoulder. A pair of right and left legs is attached to lower ends of the lower trunk. A storage battery is mounted to the back of the upper trunk, positioned within a shoulder width. The storage battery is positioned below the top of a head mounted on the upper trunk. When the robot walks a narrow passage or corridor having a width slightly larger than the width thereof, for example, this arrangement prevents the storage battery from interfering with the passage or the like.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 5, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhisa Saito, Teruyuki Oka, Toratsugu Kuwahara, Atsushi Demachi, Toshiyuki Higashi, Kenichi Ogawa, Takuro Koyanagi, Susumu Miyazaki
  • Patent number: 7319918
    Abstract: A gait generation device for setting a translation floor reaction force's horizontal component (component concerning a friction force) applied to a robot 1, a limitation-target quantity, such as a ZMP, and an allowable range, for determining at least a provisional instantaneous value of a desired floor reaction force and a provisional instantaneous value for a desired movement of the robot 1, that receives at least the provisional instantaneous value for the desired movement and determines a model floor reaction force instantaneous value with the aid of a dynamics model.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: January 15, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7319919
    Abstract: A landing position/orientation of a foot (22) to be landed in a landing action of a robot (1) such as a biped mobile robot or the like is estimated, and a desired footstep path for the robot (1) is set up. Based on the estimated landing position/orientation and the desired footstep path, a future desired landing position/orientation is determined in order to cause actual footsteps of the robot (1) (a sequence of landing positions/orientations of the foot (22)) to approach desired footsteps. Using at least the determined desired landing position/orientation, a desired gait for the robot (1) is determined, and the robot (1) is controlled in operation depending on the desired gait. For determining the desired landing position/orientation, mechanism-dependent limitations of the robot (1) such as an interference between the legs thereof, etc., and limiting conditions of an allowable range in which a desired ZMP can exist are taken into consideration.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: January 15, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto
  • Patent number: 7319917
    Abstract: A gait generation device for generating a desired gait which includes floating periods in which all the legs 2, 2 of a legged mobile robot 1 float in the air and landing periods in which at least one leg 2 is in contact with a floor which appear alternately generates the desired gait in such a manner that, at least when shifting from the floating period to the landing period, the velocity of an end portion 22 of a landing leg with respect to the floor and the acceleration thereof with respect to the floor is substantially 0 at the instant of landing. After both the velocity of the end portion of the leg with respect to the floor and the acceleration thereof with respect to the floor are determined to be substantially 0, a movement of the body of the robot with the desired gait is determined in such a manner that the horizontal component of a moment produced about the desired ZMP by the resultant force of gravity and an inertial force applied to the robot 1 is substantially 0.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: January 15, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike