Multiple Axes Point To Point Systems Patents (Class 318/574)
  • Patent number: 6675070
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: January 6, 2004
    Assignee: Robotic Workspace Technologies, Inc.
    Inventor: John R. Lapham
  • Patent number: 6671580
    Abstract: A system for directing robot movement in a storage library is provided, the library comprising at least one horizontal array of storage cells and at least one robot that moves along the horizontal array and can retrieve objects from and place objects into the storage cells. The system comprises a guide rail that runs along the length of the horizontal array and loops around from one end of the horizontal array to the other end. The robot may move along the guide rail in a continuous, unidirectional loop. If multiple robots are added to the library, they can be made to move in the same direction along looping guide rail, thus elimination contention among robot movements. If multiple horizontal arrays are stacked vertically within the library, the looping guide rail allows robots to loop around and return to the same level or move onto a different horizontal level.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Storage Technology Corporation
    Inventors: James P. Campbell, Timothy C. Ostwald
  • Patent number: 6611121
    Abstract: For automatically freeing an axis which, after running over a safe end position (E+), is monitored to ascertain when it is at a standstill (3), monitoring for overshooting the safe end positions (E+, E−) is switched off and a freeing range (4) is defined by a limit value (G1), in the traversing direction of the axis which led to the overshooting of the safe end position (E+), with the value of the greater limit (S1) in absolute terms of the monitored standstill range (3), and by a limit value (G2), in the other traversing direction of the axis, with the value of the corresponding safe end position (E1). After deactivating the monitoring for a standstill of the axis, the axis can then be moved automatically back into the normal traversing range (1) within the safe end positions (E+, E−), while monitoring for overshooting of this freeing range (4).
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: August 26, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventor: Markus Schuermann
  • Patent number: 6611122
    Abstract: The invention makes it possible to execute the pre-control and the fine interpolation in the drive (A) in the fast drive clock (tDR) with a slower path pre-setting in the clock (tNC) of the NC. For this purpose, in each NC clock (tNC) a setpoint speed value (nNC*) and the P gain (kP) of the NC position controller (L_NC) and the desired axle speed (nNC) and the average axle speed (nNCMW) during the last NC position controller clock are transferred from the NC to the drive. From this information, polynomial segments of the third degree are in each case generated on the drive side, valid for the duration of an NC position controller clock (tNC). They are constructed in such a way that the speed at the polynomial transitions is constant. A variable component of the position polynomial is determined as the fine position component xF, with which the setpoint position values are finely interpolated in the drive.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 26, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Grohmann, Stefan Kuenzel, Wolfgang Papiernik, Bernd Quaschner, Guido Seeger, Johannes Welker
  • Patent number: 6532403
    Abstract: A robot alignment system (10) includes a sensor system (12). The sensor system (12) is designed to attach to an end effector of a robot arm (14). A rough alignment target (16) is attached to a work station. A fine alignment target (22) is placed on a work surface of the work station. The sensor system (12) first determines the rough alignment target (16). The robot arm (14) is then moved to detect the fine alignment target (22).
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: March 11, 2003
    Assignee: MicroTool, Inc
    Inventors: Gordon Haggott Beckhart, Patrick Rooney Conarro, Kevin James Harrell, Michael Charles Krause, Kamran Michael Farivar-Sadri
  • Patent number: 6445979
    Abstract: An operation line tracking device for a robot for performing an operation with a tool mounted on the robot while tracking an operation line using a sensor wherein a detection failure of the sensor is restored by automatically changing or resetting a detecting condition of the sensor when the sensor fails in detecting the operation line. If a detection failure occurs for a cause of excessive or too small quantity of light impinged on light receiving elements of a laser sensor, a laser output intensity is automatically changed. If a detection failure occurs for a cause of basing of the quantity of the impinged light, an orientation of the laser sensor is automatically adjusted. If a detection failure occurs for a cause of biasing of position of the operation line in the visual field of the laser sensor, the position of the laser sensor is automatically adjusted.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: September 3, 2002
    Assignee: Fanuc Ltd.
    Inventors: Toshihiko Inoue, Mitsuhiro Okuda, Akihiro Terada
  • Patent number: 6442451
    Abstract: An improved, versatile robot control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of robot instructions and to generate a plurality of robot move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a robot move module linked to the data buffer for sequentially processing the moves and calculating a required position for a robot mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a robot joint position feedback signal.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Robotic Workspace Technologies, Inc.
    Inventor: John R. Lapham
  • Patent number: 6430473
    Abstract: A power assist apparatus includes an autonomously mobile base on which a manipulator for holding a load is mounted. The movement of the mobile base is controlled such that when the manipulator tip is within a prescribed operating region relative to the mobile base, the mobile base is maintained stationary, but when the manipulator tip moves outside the operating region, the mobile base is moved to decrease the distance between the mobile base and the manipulator tip. The power assist apparatus assists with the carrying of loads by amplifying an operational force applied to the manipulator.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: August 6, 2002
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Hyoung-Ki Lee, Hirohiko Arai, Kazuo Tanie
  • Patent number: 6366046
    Abstract: A general type press system with variable-speed slider-crank mechanism driven by a servomotor which can be used for various types of press work by providing various corresponding input speed trajectories. The press includes a frame, a linkage-mechanism with a crank as its input and a slider as its output, and a servomotor. The servomotor is used for driving the crank of the linkage-mechanism. The output motion of the press, i.e., the ram's motion, is accomplished by the slider of the mechanism. The speed of the servomotor is controlled by a micro-computer or a personal computer equipped with a digital signal processor (DSP). This computer supports a number of speed functions for different types of press work to obtain optimal processing results. Because the existing traditional linkage press can also be upgraded to a multi-purpose press, the disclosed press is an innovative design with the advantages of flexibility and practicability.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: April 2, 2002
    Assignee: National Science Council
    Inventors: Hong-Sen Yan, Wei-Ren Chen
  • Patent number: 6327519
    Abstract: A storage library includes a first robotic mechanism having an energy coupler and a second robotic mechanism having an energy coupler. The storage library further includes tracks disposed adjacent to media object storage cells for enabling access to each of the media object storage cells, and powered rails associated with the tracks for providing energy. The first robotic mechanism is movable toward the second robotic mechanism to enable the energy coupler of the first robotic mechanism to couple with the energy coupler of the second robotic mechanism to transfer energy from the first robotic mechanism to the second robotic mechanism. The energy couplers of the first and second robotic mechanisms couple together to transfer energy from the powered rails to the second robotic mechanism. The energy couplers of the first and second robotic mechanisms couple together to transfer energy between on-board energy sources.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: December 4, 2001
    Assignee: Storage Technology Corporation
    Inventors: Timothy C. Ostwald, Frank Smith
  • Patent number: 6323616
    Abstract: A wafer handling apparatus having input and output robotic systems directed by a programmed controller. Each system has components including a robot, a twist and rotate, and a carrier and automated carrier rail. The input system is for removing wafers from their wafer pod, placing them in the carrier and transporting them via the rail to a wafer processing area. The output system performs the reverse operation, taking wafers from a carrier following processing and placing them in a pod. Each robot includes a plurality of interconnected, articulated cantilevered arms. The last one of the arms has a wand on one end and a laser emitter detector on the other end, and operates in cooperation with the controller to provide location detection of system components. The controller also includes circuitry for sensing contact of the wand with an object by measuring the increased robot motor torque occurring upon contact.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: November 27, 2001
    Assignee: Berkeley Process Control, Inc.
    Inventors: Paul Sagues, Robert T. Wiggers, Sanjay K. Aggarwal, Kevin D. D'Souza, Nathan H. Harding
  • Patent number: 6304051
    Abstract: Briefly, a preferred embodiment of the present invention includes a wafer carrier buffer for storage of a plurality of carriers containing wafers either waiting to be taken for processing in an adjacent wafer processing system, or waiting to be taken from the buffer following the processing. The buffer has a sliding carrier first input apparatus for taking a carrier from outside the buffer through a buffer input door and into the buffer interior. A buffer controller is included for directing robotic apparatus to take the carrier from the input apparatus and place it on a selected one of a plurality of carrier storage locations, and from a carrier storage location to a first output for delivery of wafers to processing. The robotic apparatus also delivers an empty carrier to a second input apparatus for receiving wafers from the processing area, and for delivery of a carrier with processed wafers to a second sliding output apparatus for removal from the buffer through a buffer output door.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: October 16, 2001
    Assignee: Berkeley Process Control, Inc.
    Inventors: Paul Sagues, Robert T. Wiggers, Nathan H. Harding, Sanjay K. Aggarwal
  • Patent number: 6211639
    Abstract: A drive device regulates a servomotor to one of a predefined position, a predefined speed, and a predefined current setpoint value. A control module is connected upstream from the drive device. A non-volatile memory where motor-specific data is stored is arranged in the housing of the servomotor. The housing has a data output through which the motor-specific data can be read. The motor-specific data is transmitted over a data line over which the feedback signals delivered by a sensor associated with the motor are also transmitted.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: April 3, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Werner Meister, Rupert Weber, Gabriele Pfeiffer, Ralph Kennel, Stefan Melzer, Alfred Punzet, Ralf Dickhaut, Siegfried Melzer, Thomas Kost
  • Patent number: 6163124
    Abstract: A robot controller resolving a path deviation caused in relation to override processing or temporary stop. A motion planning section constituting software of the robot controller forms a motion plan of a robot with no consideration of overriding and outputs it to an interpolation processing section. The interpolation processing section carries out interpolation processing at each period of calculation processing, calculates a motion amount at each ITP and outputs it to a filtering section. An output filtered for acceleration or deceleration control at the filtering section is processed by an overriding processing section having an operational shutter. An output after the processing to which an override value .beta. (0.ltoreq..beta..ltoreq.1) common to respective axes has been applied is constituted by velocity and acceleration respectively multiplied by .beta. and .beta..sup.2.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: December 19, 2000
    Assignee: Fanuc Ltd.
    Inventors: Takayuki Ito, Toru Shirahata, Atsuo Nagayama, Kazuto Hirose
  • Patent number: 6163116
    Abstract: Control system for controlling a dynamic physical system. New, substantially decoupled axes are derived from physical axes of a dynamic system. Closed-loop controllers operate on signals representing the new or synthesized axes to control the coordinate parameters. Control signals are then converted into the original physical axes to generate signals to control the original axes. A preferred embodiment is the application of the control technique to a gantry machine having three degrees of freedom. Actual coordinates are converted to one linear coordinate and one rotational coordinate. The bandwidth of controllers operating on these two coordinates are separated so that crosstalk is diminished and performance improved.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: December 19, 2000
    Assignee: Convolve, Inc.
    Inventors: Mark L. Tanquary, Neil C. Singer, Bert Whitney Rappole, Jr.
  • Patent number: 6075334
    Abstract: A system for automatically calibrating a semiconductor wafer handling robot so that the robot will move wafers into and out of precise locations within enclosures that form process stations or storage cassettes is disclosed. The system comprises a controller having memory and logic sections connected to a robot having an articulated arm that is movable in vertical (Z), horizontal (.theta.), and radial (R) directions and having a wafer retaining wand at the end of the arm. Dimensional characteristics of the robot wand and the enclosures are stored in the controller memory. Sensors are provided at each enclosure and/or the robot wand which are activated and provide signals to the controller that are relative to the wand position. The robot is programmed to execute a series of progressive movements at each enclosure location which are controlled by a combination of sensor response signals and the appropriate dimensional characteristics.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: June 13, 2000
    Assignee: Berkeley Process Control, Inc
    Inventors: Paul Sagues, John T. Peurach, Sanjay D. Aggarwal
  • Patent number: 6060854
    Abstract: A method and apparatus for compensating for the effects of compliant elements in a positioning system is provided. The amount of compensation to be applied can be determined by measuring the lost motion errors which are prevalent during continuous motion of the movable member of the system. The compensation value determined can be used to adjust servo control commands, such as position commands for example. Preferably, the compensation is applied when the movable member is in motion and removed when the movable member comes to a stop. Even more preferably, the compensation is applied and removed gradually. The compensation can be used in additional to friction compensation and backlash compensation, and can be implemented in a machine tool system.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: May 9, 2000
    Assignee: Vickers, Inc.
    Inventor: Stephen J. Yutkowitz
  • Patent number: 5994863
    Abstract: An object of the present invention is to provide a numerical control unit which commands definition data of free curved line to directly interpolate a free curved line and also holds down various errors which occurs during the aforesaid process within each allowable value. In the present invention, a program 11 which defines a moving locus with a curved line P(t) represented by the given parameter t is decoded and working commands according to the moving locus are outputted to servo systems 12, 13, and 14 to be controlled. In the output, the curved line P(t) of moving locus is interpolated in a curved line interpolating section 16. In the interpolation, an allowable error Emax in working results and error factors .omega.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: November 30, 1999
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Jun Fujita
  • Patent number: 5963003
    Abstract: A motion controller includes an input for receiving data corresponding to moves in a cycle of a multi-axis machine. The controller controls electric motors of the machine in accordance with positions set forth in a path planning table. The path planning table is generated from the data by applying a curve defining equation and integrating an alpha variable therein. The alpha variable corresponds to a velocity to acceleration ratio and is adjustable to allow the calculation of a new path planning table having a velocity and acceleration profile shifted from an initial velocity and acceleration profile to allow for optimization of motor performance. A method of path planning having user tunable parameters is also provided.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: October 5, 1999
    Assignee: Allen-Bradley Company, LLC
    Inventor: Bradley R. Boyer
  • Patent number: 5920170
    Abstract: A numerical control apparatus enables a tool to move parallel or vertical to a designated shape to easily carry out a machining of a prototype using general-purpose machine tools. A graphic storing device displays guidance information on a display unit through a graphic control circuit and also stores a designated shape such as an oblique straight line or a circular arc entered by the operator through a keyboard in an interactive fashion. On the detection of a pulse signal HP from a manual pulse generator, an interpolation device reads a changeover signal H/V for commanding one of the parallel movement or the vertical movement of the tool from a changeover device. Then, the interpolation device outputs an interpolated pulse signal CP corresponding to the pulse signal HP and changeover signal H/V in accordance with the designated shape stored in the graphic storing device and supplies the interpolated pulse signal HP to an axis control circuit.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: July 6, 1999
    Assignee: Yamanashi
    Inventors: Masaki Seki, Masako Sudo, Syuji Matsuura, Kouji Yamamuro
  • Patent number: 5892345
    Abstract: A system for controlling motion in machine tools and industrial robots. From the specification of a part to be cut or a path to be followed by a machine tool or a robot, the system calculates, for each axis, for each incremental step along the path, a position command, a time delay between successive position commands, and, optionally, a force command based on a prediction of predicted resistive forces. Calculations are specified for precisely controlling velocity, acceleration, and jerk. The generated data is stored in a memory device and subsequently directed to the machine tool or robot.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: April 6, 1999
    Assignee: Omax Corporation
    Inventor: John H. Olsen
  • Patent number: 5811952
    Abstract: A method of setting an accelerating/decelerating motion of a robot, in which a torque of the robot can be used efficiently without being saturated. In one section of motion, a moving ratio r representing a position which satisfies a condition such that a maximum torque is generated at a position where the maximum torque is needed, is successively and approximately obtained. First, a 0-th approximate solution (initial value) is assumed as .sub.i r.sub.0 =0, and then equations of motion are calculated at the position .sub.i r.sub.0 to obtain an acceleration so as to generate the maximum torque. The position such that the torque becomes maximal when the calculated acceleration is used is obtained as .sub.i r.sub.k+1. The difference .vertline..sub.i r.sub.k+1 -.sub.i r.sub.k .vertline. between the calculated .sub.i r.sub.k+1 and the previously calculated .sub.i r.sub.k is calculated, and it is checked whether or not the difference exceeds a preset very small value .epsilon.. If yes, the processing returns to S3.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: September 22, 1998
    Assignee: Fanuc Ltd.
    Inventors: Tetsuaki Kato, Atsuo Nagayama
  • Patent number: 5808434
    Abstract: A numerical control apparatus having command input panels including the number of command keys corresponding to an application program. An application execution unit receives and stores command data output from a machine control console as well as executes an application program generated by the operator and outputs a pulse signal for commanding the operation of a machine tool such as the movement of the machine tool. An interpolation unit receives the pulse signal output from the application execution unit, outputs an interpolation pulse, and supplies the interpolation pulse to an axis control circuit. The axis control circuit receives the interpolation pulse output from the interpolation unit, generates a speed command for each axis and supplies the speed command to a servoamplifier. The servoamplifier controls the machine tool by energizing servomotors mounted thereon.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: September 15, 1998
    Assignee: Fanuc, Ltd.
    Inventors: Masuo Kokura, Minoru Jinnai
  • Patent number: 5789890
    Abstract: An improvement is set forth in a robotic arm structure which includes at least two links. .theta. motion is provided about a primary axis at the proximal end portion of the proximalmost of the links. R motion proceeds radially from the primary axis whereby the distal end portion of the distalmost of the links can be moved in a radially extending straight line. An end effector is pivotally mounted for rotation relative to the distal end portion of the distalmost link about an end effector axis which is parallel to the primary axis. The structure is improved by adding one or more of a yaw motor, a roll motor and a pitch motor for rotating the wrist of the arm about the respective axes. A sensor array senses the R, .theta., Z and yaw, roll and/or pitch motions and creates and transmits electronic signals representative thereof to a computer controller which monitors and controls the R, .theta., Z and yaw, roll and/or pitch motions.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: August 4, 1998
    Assignee: Genmark Automation
    Inventors: Genco Genov, Alexander Todorov, Lubo Kostov, Peter Petkov, Valentin Totev, Eugene Bonev, Zlatko Sotirov
  • Patent number: 5708586
    Abstract: In the numerical control system according to the present invention, analysis data from an analyzing means is given to a distributing means, at least one of addition for a positional instruction, addition for a speed instruction, and addition for a current instruction is computed according to analysis data from the analyzing means, and the computed addition is added at a desired timing to a specified output from a distributing means or other subsequent means.
    Type: Grant
    Filed: August 29, 1995
    Date of Patent: January 13, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Mutsumi Ikeda
  • Patent number: 5656905
    Abstract: A new generation of hybrid form multi-axis machine tools is described. The hybrid machine tools comprise a position mechanism and an orientation mechanism. Both mechanisms are three-DOF parallel mechanisms that can be connected either in series to form a hybrid parallel-serial manipulator, or in parallel to form a cooperating machine. The position mechanism is used for manipulating the position and the orientation mechanism is used for manipulating the orientation of an object. Six-axes machining of a workpiece is achieved by coordinating the motions of the position and orientation mechanisms. This approach has several important advantages. First of all, a high stiffness, low inertia, and high speed machine tool is realized by using the parallel construction. Secondly, its direct and inverse kinematic solutions could be solved in closed forms which would greatly simplify the control and path planning problems. Thirdly, it has a relatively large workspace in comparison to fully parallel platform manipulators.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: August 12, 1997
    Inventor: Lung-Wen Tsai
  • Patent number: 5610491
    Abstract: An electrical drive system for angular positioning of one or several rotating and/or tilting machine components and equipment components, particularly of printing machines, including at least one electric motor having a rotor designed for rigid and direct coupling to the component, further including by one or several angle encoders for registering the angular motion of the rotor of the electric motor and/or the component, a signal processing module which receives the actual angle position signals from the angle encoder or encoders and which also receives the setpoint data for comparison with the actual data, and a power amplifier controlled by the signal processor and used for driving the electric motor.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: March 11, 1997
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Fritz R. Gotz, Heinrich Marz, Harald Meis, Werner Agne
  • Patent number: 5589749
    Abstract: A feedback control system which uses estimated back electromotive force(EMF) from a controlled actuator to provide feedback into the control system and improve control of the actuator. Back EMF is estimated from current through the actuator and voltage across the actuator. The estimated back EMF signal is fed back into the control system where it serves as a rate term. In the preferred embodiment the back EMF signal is used in combination with an actuator position signal which is also feedback into the control system. A complementary filter conditions both the rate and position signals for improved performance. The invention is particularly suited for controlling linear actuators which do not provide conventional rate feedback signals.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: December 31, 1996
    Assignee: Honeywell Inc.
    Inventors: Dale D. Davidson, Hamid R. Sadeghpour
  • Patent number: 5550448
    Abstract: A method and an apparatus for controlling the motors for moving a tool, comprising a control cycle with the steps of calculating first and second parameters indicating the speed to be imparted to the motors to travel at a pre-established nominal speed along first and second segments sequential to each other, and of calculating the absolute value of the difference between first and second parameters. If the difference is less than a pre-established maximum value, the motors are commanded to travel along the first segment at the pre-established nominal speed and are then commanded to travel along the second segment at the pre-established nominal speed.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: August 27, 1996
    Assignee: Black & Decker Inc.
    Inventor: Rosario Ferragina
  • Patent number: 5465037
    Abstract: A system and method for seam tracking in real time without path preprogramming uses at least two degrees of freedom and at least one degree of freedom created by a redundant axis. A robot can be used to weld or apply adhesive or sealant to a workpiece that is mounted on a positioner that it is movable relative to a base of the robot as a movable end of the robot tracks a seam on the workpiece. A sensor expresses a seam trajectory in workpiece coordinates and queues the coordinates in a computer processor so that the coordinates can be extracted from the processor to cause the movable end of the robot to track the seam. The workpiece can remain stationary and the robot base can be moved or the base can remain stationary and the workpiece can be moved or both the workpiece and the robot base can be moved. Any reasonable number of redundant axes can be utilized so long as there is one control parameter independently defined for each degree of freedom greater than six.
    Type: Grant
    Filed: January 13, 1994
    Date of Patent: November 7, 1995
    Inventors: Jan P. Huissoon, David L. Strauss
  • Patent number: 5459381
    Abstract: High-speed, high-precision course control can be performed without increasing the loop gain of each control system. A target value for moving a controlled object as a reality axis by a desired amount is produced. A virtual target value for moving a virtual controlled object as a virtual axis based on the reality axis is also produced. A control input and a virtual control input which optimize a predetermined first evaluation function are calculated upon reception of the produced virtual target value, the produced target value, a virtual state amount from the virtual controlled object, a state amount from the controlled object, a first disturbance signal with respect to the virtual controlled object, and a second disturbance signal with respect to the controlled object. The calculated control input and the calculated virtual control input are input to the virtual controlled object and the controlled object, respectively.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: October 17, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroshi Itoh
  • Patent number: 5430360
    Abstract: Spaced cutting tools, each having a plurality of linear axes and a rotational axis, are supported with a conveyor carrying successive parts past the tools. The tools include positioning motors and are positioned by a computer driven system including a controller and a tool program for positioning the tools to sequentially cut each part. Separate computer boards each include a memory unit and a CPU for coupling to individual positioning motors for each tool. The controller downloads the program for particular axes to the board for the tools. A positioning sensor is coupled to each tool axes and connected to the computer input for monitoring each tool position. All tools are simultaneously positioned using an initial fast constant speed feed followed by a varying slow speed, with a closed loop control, within a fixed time period.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: July 4, 1995
    Assignee: Kohler General Corporation
    Inventors: Bruce C. Rosenthal, Kevin L. Zill
  • Patent number: 5339015
    Abstract: A coordinate data converter converts plural shape data of the movable parts from a direction and of the parts that may interfere with the movable parts into the shape data of the three-dimensional coordinate system unique to the machining system, the number of structural shape elements of those parts being different from one another. A generator projects thus converted shape data on the three planes of said three-dimensional coordinate system; an arithmetic operator determines whether or not projected data overlap each other in each of the three planes, and a detector determines that an interference has occurred if the projection data on respective planes overlap and if projected data based on the shape data overlap in all of the three planes.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: August 16, 1994
    Assignee: Okuma Corporation
    Inventors: Yoshimaro Hanaki, Kyoichi Yamamoto
  • Patent number: 5327351
    Abstract: When a non-contact tracing of a configuration of a three-dimensional model is carried out, the measurement axis of a tracer head is controlled to always be facing in an optimum direction with respect to a model surface by controlling the attitude of the tracer head, to thereby create tracing data of the configuration of the model. The tracer head is provided with two non-contact distance sensing units, and a normal vector of the model surface is determined based on a measurement value obtained by sampling tracing data supplied from the tracer head. At this time, the direction of a normal vector is determined from the outer product of surface vectors in a range in which the angle between an axial vector starting from a measurement point of the measurement axis of the tracer head and the normal vector at the measurement point does not exceed 90.degree.. The tracer head is controlled to be rotated in the direction toward a projection obtained by projecting the normal vector on a predetermined plane.
    Type: Grant
    Filed: August 19, 1992
    Date of Patent: July 5, 1994
    Assignee: Fanuc Ltd.
    Inventors: Hitoshi Matsuura, Eiji Matsumoto
  • Patent number: 5287049
    Abstract: A one-dimensional, actual-value-specific path parameter F.sub.I (t) is derived from a motional function F.sub.B (t) to trigger switching functions related to position during the movement along a trajectory path of a numerically controlled system, for example a robot or a machine tool. This allows triggering of a switching operation such as switching on a welding or bonding tool with high precision at the actual position of the tool.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: February 15, 1994
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jurgen Olomski, Manfred Zah, Christof Meier, Norbert Settele
  • Patent number: 5283508
    Abstract: A positional control apparatus capable of readily moving a movable part of an NC device in any desired direction by using a particular handle. The handle is mounted on the movable part by a holding part. When an operator gripping the handle wishes to move the movable part in the desired direction, a strength and a direction of force given to the handle are detected by force sensors, and an axial moving amount calculation means calculates the moving amount of each control axis in consideration of the strength and the direction of the force given to the handle, detected by the force sensors as a strength and a direction of an acceleration given to the movable part. By the moving amount of each control axis, obtained by the axial moving amount calculation means, the positional control of the movable part is performed.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: February 1, 1994
    Assignee: Okuma Corporation
    Inventor: Toshiteru Komatsu
  • Patent number: 5276500
    Abstract: A carriage is moved along a track by a motor connected in a first control loop to a carriage position sensor. The carriage carries a chassis which is coupled to it by a flexible linkage. The chassis carries an accelerometer connected by a second control loop independent of the first control loop to a linear actuator acting on the chassis and bearing on the carriage. The chassis carries a primary mirror fastened to it and a secondary mirror coupled to it by a piezo-electric actuator controlled via a third control loop by an optical path difference OPD error signal generated in the recombination station that includes the interferometer. The third control loop is desaturated by the first or second control loop, preferably by the second control loop. The preferably stellar interferometer may be on board a spacecraft.
    Type: Grant
    Filed: January 22, 1992
    Date of Patent: January 4, 1994
    Assignee: Societe Nationale Industrielle et Aerospatiale
    Inventor: Bertrand Koehler
  • Patent number: 5270627
    Abstract: A machine tool control system in which a programmable controller operates a machine to carry out a plurality of programmable functions. The controller includes a plurality of processor means, a first one of the processor means capable of pre-processing and forwarding control information to a second of said processor means, wherein said second processor means provides control information to control machine movement. Advantageously, the second processor means operates on a periodic time based interrupt method which greatly increases the accuracy of the machine.
    Type: Grant
    Filed: June 24, 1991
    Date of Patent: December 14, 1993
    Assignee: Unilens Corp., U.S.A.
    Inventor: Denis Rehse
  • Patent number: 5220261
    Abstract: A method of calibrating highly precise robots having a plurality of arms and axes comprises the method steps of: attaching an angular rate sensor (30) at an arm of the robot, adjusting the arm to a predetermined nominal position, generating an angular rate about an axis (40) of the robot, comparing the angular rate measured by the angular rate sensor (30) about its input axis (46, 48) with the nominal component of the angular rate generated about said axis (40), which nominal component results for the nominal position, and correcting the parameters of the robot according to the deviation of the measured angular rate and the nominal component.
    Type: Grant
    Filed: February 26, 1992
    Date of Patent: June 15, 1993
    Assignee: Bodenseewerk Geratetechnik GmbH
    Inventor: Hagen Kempas
  • Patent number: 5216344
    Abstract: An involute interpolation speed control system for effecting an involute interpolation to which cutter compensation is applied when machining by a numerical control apparatus and the like, comprises a method of outputting commands for a direction in which a first involute curve as an actual machining configuration is rotated, the coordinates of the end point of the first involute curve, the position of the center of a basic circle viewed from a start point of the first involute curve, the radius of the basic circle, a feed speed, a direction in which a cutter is offset, and the radius of the cutter. The offset vector of the cutter is created based on the commands. The calculating the equation of a second involute curve connecting the start point and the end point after the offset vector has been created, is calculated. The radius of curvature of the second involute curve at the center of the cutter is determined.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: June 1, 1993
    Assignee: Fanuc Ltd.
    Inventors: Takao Sasaki, Kunihiko Murakami, Masafumi Sano
  • Patent number: 5206566
    Abstract: A method and apparatus for high speed, high precision control of an actuator. An initializing process sets control signals for moving the actuator a set of predetermined distances using fuzzy logic. Control of actuator movement is then performed using these predetermined set control signals and their corresponding distances. Movement of the actuator to target distance lying between the control signal distances are achieved by an interpolation operation using fuzzy logic.
    Type: Grant
    Filed: March 5, 1991
    Date of Patent: April 27, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shuichi Yoshida, Mitsuo Tokura, Noriaki Wakabayashi
  • Patent number: 5196774
    Abstract: A digital servomechanism and control system which can be used to adjustably point massive structures to increments of microaradians is disclosed. This system includes: a rotating pedestal which is mounted on a gimbal, a high torque motor, a high current amplifier, encoder, a digital-to-analog (D/A) converter, a mount dynamics unt, a summing junction, a rate control unit, a controller unit, a D/P unit, and a Micro Vax computer.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: March 23, 1993
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Mark G. Baciak, Christina Padgett, Craig A. Baer
  • Patent number: 5193952
    Abstract: An apparatus for cutting an inner circle in a workpiece with a cutter of a numerically controlled machine tool linearly moves the cutter from the center of an inner circle in the workpiece in a radial distance according to an initially cut radius I, and cuts an inner circle in the workpiece according to a radial depth of cut K until a finally cut radius J is reached. As other command parameters, there are supplied an initial workpiece radius P which indicates the minimum distance from the center of the inner circle in the workpiece to the workpiece, and a cutting feed starting distance SN that the cutter starts to move at a cutting feed rate across the initial workpiece radius P before reaching the workpiece. The length of a linear path that the cutter linearly moves is compared with the initial workpiece radius P, a feed rate at which the cutter is to move along the linear path is determined depending on the result of comparison between the length of the linear path and the initial workpiece radius P.
    Type: Grant
    Filed: February 21, 1992
    Date of Patent: March 16, 1993
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Hayashi Tomoo, Momochi Takeshi, Kato Kenji, Matsumoto Michio
  • Patent number: 5157316
    Abstract: A robotic joint for use in toys to provide locomotion to animated figures, sub-assemblies, and toy construction building sets. The robotic joint is particularly adaptable because one side of the joint carries the motor that is powering the joint. It also provides for four-way action in a joint in a very compact space by attaching a motorized joint directly to the shaft of another motor. It can also provide up to eight-way action in a joint, since each motor turns the shaft or turns the motor housing based on the amount of resistance applied to the shaft. This can be demonstrated in a joint that is used to support a foot in which the foot has a motor for locomotion, and the limb has a motor for locomotion connected by a four-way joint.
    Type: Grant
    Filed: June 26, 1991
    Date of Patent: October 20, 1992
    Inventor: Lloyd H. Glovier
  • Patent number: 5153490
    Abstract: In a machine tool having a table adapted to support a workpiece, a plurality of drive shafts for moving the table in three directional directions by servomotors, servo control apparatus controlling the servomotors in response to position instructions, drive shaft control apparatus including position detectors of the servomotors, each drive shaft control apparatus is made up of a servomotor rotation reversal detector for producing a movement reversal signal, a memory device for storing correction amounts necessary to compensate for a position error of the axis of the spindle of the machine tool which occurs as a result of reversal of the direction of movement of the drive shaft and other drive shafts and a transfer switches for selecting the memory device in response to the movement reversal signal and for feeding back to the servo control apparatus the correction amount read out from the memory device.
    Type: Grant
    Filed: March 19, 1991
    Date of Patent: October 6, 1992
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Toshihiro Ueta, Ikuo Kuribayashi, Masayuki Kato, Jun Fujita
  • Patent number: 5142211
    Abstract: A five-axis robot mechanism for moving an operative device along three rectilinear axes and two rotational axis including a carriage movable along one rectilinear axis, a cart movable on the carraige and a mast assembly having two elongated members movable along a third rectilinear axis. The two elongated members are rotatable together one rotatable with respect to the other to produce movement of the operative device on two rotatable axes. The carriage, cart and mast assemblies are uniquely arranged with respect to each other produce the five-axis desired movement of the operative device.
    Type: Grant
    Filed: April 16, 1990
    Date of Patent: August 25, 1992
    Assignee: Progressive Blasting Systems, Inc.
    Inventor: Archie Tan
  • Patent number: 5121040
    Abstract: A positioning control apparatus comprises a plurality of servo mechanisms corresponding to respective axes, a sequence operation part for successively outputting start commands for the respective servo mechanisms, a positioning operation part for storing a plurality of programs specified in accordance with the start commands and for processing the program in accordance with specified one of the programs to thereby output a positioning control command, and a servo interface for supplying the positioning control command to one of the servo mechanisms to be actuated to start.
    Type: Grant
    Filed: July 27, 1990
    Date of Patent: June 9, 1992
    Assignees: Mitsubishi Denki K.K., Mitsubishi Denki K.K.
    Inventors: Yosichika Takizawa, Yasuyuki Suzuki
  • Patent number: 5101147
    Abstract: An involute interpolation speed control method controls a machining speed during a numerical control machining process with involute curve interpolation. A radius of curvature is determined from equations of the involute curve (S3), and whether said radius of curvature is smaller than a predetermined value is then determined (S4). The machining speed is reduced with an override value if the radius of curvature is smaller than the predetermined value (S5, S6, S7). In the vicinity of a base circle for the involute curve, since the radius of curvature is small, any well machined surface would not be produced at a given tangential speed. Therefore, the machining speed is reduced with the override value in the vicinity of the base circle.
    Type: Grant
    Filed: October 17, 1990
    Date of Patent: March 31, 1992
    Assignee: Fanuc Ltd.
    Inventors: Takao Sasaki, Kunihiko Murakami, Masafumi Sano
  • Patent number: 5095258
    Abstract: A table for use with CNC machines has section one table feature being mounted for movement on the base and the other table section being mounted on the one table section. The table means are movable along mutually perpendicular axes, and are controlled in the axes. Motion error is compensated by providing feedback signals that sense and feed back position signals in one controlled axis as the table sections are moved in the other perpendicular axis. Compensation for deviations in motion in the mutually perpendicular axis is provided so that position in each direction of motion is controlled by two feedback signals for error compensation.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: March 10, 1992
    Assignee: Mar Engineering, Inc.
    Inventors: Vladamir Drits, Yevsey Gutman
  • Patent number: 5083073
    Abstract: A method and apparatus for calibrating a vision-guided robot of the type having a slit light unit for illuminating a workpiece with a target image, a camera for detecting the target image, a tool for working upon the workpiece and a controller for positioning the tool in response to image signals from the camera so that the camera signals correspond to stored image signals. The method includes the steps of displacing the robot from a home position to a calibration position wherein the camera is oriented toward a target, determining a camera correction value between a desired camera position and the actual camera position by comparing a perceived target image with a stored target image and incorporating the camera correction value for robot positioning during a subsequent operational movement.
    Type: Grant
    Filed: September 20, 1990
    Date of Patent: January 21, 1992
    Assignee: Mazada Motor Manufacturing U.S.A. Corp.
    Inventor: Hideyuki Kato