And Acceleration Control Patents (Class 318/58)
  • Patent number: 12187136
    Abstract: A method for determining an optimized torque distribution to the wheels of a road vehicle comprising the steps of determining a table of distribution of the torque between a front axle and a rear axle; determining a second table and a third table of distribution of the torque between a right wheel and a left wheel of the rear axle and of the front axle, respectively; detecting the current longitudinal dynamics; using the first, the second and the third table to determine a current value of the first, of the second and of the third distribution factor, respectively, based on the current longitudinal speed and on the current longitudinal acceleration of the road vehicle.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: January 7, 2025
    Assignee: FERRARI S.P.A.
    Inventors: Alessandro Flumeri, Francesca Mincigrucci, Stefano Varisco
  • Patent number: 11850948
    Abstract: Drag Detection is provided. A system includes one or more processors of a vehicle, coupled with memory. The one or more processors can determine, for a vehicle, rolling drag based on energy input to one or more motors of the vehicle and a speed of the vehicle. The one or more processors can select, based on the rolling drag and a friction level associated with a surface on which the vehicle traverses, a slip target for the vehicle. The one or more processors can provide the slip target to a traction control system of the vehicle to control the one or more motors.
    Type: Grant
    Filed: June 28, 2023
    Date of Patent: December 26, 2023
    Assignee: RIVIAN IP HOLDINGS, LLC
    Inventors: Quentin Arthur Cradock Watson Spottiswoode, David Martin Armstrong
  • Patent number: 8710777
    Abstract: Systems and methods for estimating an inertia and a friction coefficient for a controlled mechanical system are provided. In one or more embodiments, an inertia estimator can generate a torque command signal that varies continuously over time during a testing sequence. The velocity of a motion system in response to the time-varying torque command signal is measured and recorded during the testing sequence. The inertia estimator then estimates the inertia and/or the friction coefficient of the motion system based on the torque command data sent to the motion system and the measured velocity data. In some embodiments, the inertia estimator estimates the inertia and the friction coefficient based on integrals of the torque command data and the velocity data.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 29, 2014
    Assignee: Linestream Technologies
    Inventor: Gang Tian
  • Patent number: 8598816
    Abstract: A motor control apparatus includes a target acceleration setting unit, a control unit, an acceleration upper limit estimation unit, a mode switching unit, a detection unit and a trajectory setting unit, wherein the mode switching unit controls the target acceleration setting unit to execute a first setting processing, in which the target acceleration at each time point is set corresponding to a first target acceleration trajectory in which the target acceleration at each time point is set corresponding to a first target acceleration trajectory, a second setting processing in which a target acceleration is set corresponding to the acceleration upper limit, or a third setting processing in which the target acceleration is set corresponding to the second target acceleration trajectory, based on the acceleration upper limit, the target acceleration, the speed of the motor.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 3, 2013
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Kenichi Iesaki
  • Patent number: 8200452
    Abstract: To provide an attitude-angle detecting apparatus, which detects an attitude angle of a mobile object during movement with good accuracy by correcting an output value from an acceleration sensor, and to provide a method for the same. It is characterized in that it comprises an acceleration sensor for measuring an acceleration being applied to a mobile object, a yaw-rate sensor for measuring a yaw rate of the mobile object, a speed sensor for measuring a speed of the mobile object, a mobile-component acceleration calculating means for calculating an actual acceleration from the speed, calculating a centrifugal force from the yaw rate and the speed and calculating a mobile-component acceleration, a resultant force of the actual speed and the centrifugal force, and an attitude-angle calculating means for calculating an attitude angle from a gravitational acceleration, which is obtainable by correcting the acceleration with the mobile-component acceleration.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: June 12, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akihiro Ueda, Iwao Maeda, Kiyomi Nagamiya, Naoto Shibata
  • Patent number: 6528959
    Abstract: There is provided a driving force control system for a front-and-rear wheel drive vehicle, which is capable maintaining an optimum slip condition of the drive wheels even on a low-friction road surface, ensuring a proper grip of rear wheels even on a low-friction road surface or a downhill slope, even when the driver operates the steering wheel while the vehicle is performing decelerating travel on such a road, and smoothly performing the assistance of an electric motor when the vehicle is accelerated without developing a torque step, thereby ensuring stable traveling and excellent acceleration and drivability. The front-and-rear wheel drive vehicle drives the front wheels by an engine, and rear wheels by an electric motor via an electromagnetic clutch. The target driving force for driving the vehicle is calculated based on at least a vehicle speed and an accelerator pedal opening. The present traveling condition of the vehicle is determined.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: March 4, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kazuhiko Kitano, Toshihiko Fukuda, Takahiro Yonekura, Naoki Uchiyama, Kenji Honda, Tooru Nakasako
  • Patent number: 6107770
    Abstract: A control system stabilizes the flexible body bending modes of a space, airborne, or ground-based system, while providing angular position control of an oscillating mass connected to a counter-oscillating counterbalance. The actuating mechanism uses two drive motors to exert torques on the mass and counterbalance, respectively, under the control of a feedback controller. The controller has a first control channel generating a first torque command signal for the first drive based on the angular position of the mass, and a second control channel generating a second torque command signal for the second drive based on the angular position of the counterbalance and a torque cross-feed signal from the first control channel. The second control channel includes a notch filter for removing input frequencies in a predetermined bandwidth about the frequency of the first torque command signal.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: August 22, 2000
    Assignees: Lockheed Martin Corporation, The Aerospace Corporation
    Inventors: Richard S. Jackson, Girard M. Manke